• Nenhum resultado encontrado

O aumento da temperatura durante o pré-tratamento alcalino possibilitou a diminuição na quantidade de KOH sem prejudicar a eficiência na extração de hemicelulose. Os experimentos que utilizam 10% de KOH a 70ºC por 3 horas (Tratamento 1) e 5% de KOH a 121ºC por 30 minutos (Tratamento 3) foram similares no rendimento de hemicelulose em relação ao método ZD, porém foram bem mais econômicos. O tratamento 1 apresentou redução de 54,1% de KOH e 1,98% de etanol e o tratamento 3 reduziu em 76,2% o KOH e 40,9% o etanol. Este último tornou-se um processo menos trabalhoso pela retirada da etapa de pré-incubação e consequentemente mais rápido, resultando em uma economia de 27 vezes no tempo gasto durante a reação, quando comparado ao método ZD.

A hidrólise com enzimas do fungo A. fumigatus juntamente com substrato de hemicelulose obtida por hidrólise alcalina utilizando 10% de KOH a 70ºC por 3 horas, apresentou melhor rendimento de XOs com 24 horas de reação. A hidrólise enzimática com enzimas do fungo T. reesei mostrou ser mais vantajosas para produção de xilose, principalmente com substrato de hemicelulose obtida utilizando 5% de KOH a 121ºC por 30 minutos.

Testes de digestibilidade “in vitro” confirmaram a resistência dos XOs e FOs comerciais a ação de enzimas encontradas no trato gastrointestinal e resistência à acidez do suco gástrico. A fermentação “in vitro” dos FOs e XOs comerciais indicaram a capacidade de

Lactobacillus e Bifidobacterium utilizarem estes oligossacarídeos como fonte de nutrientes

para o crescimento, comprovando o potencial prebiótico dos mesmos. B. breve e L. brevis demonstraram preferência por XOs comercial, enquanto B. lactis e L. acidophilus demonstraram preferência por FOs comercial. B. longum cresceu tanto no XO comercial como no FO comercial e B. animalis não foi capaz de fermentar nenhum dos oligossacarídeos estudados. Os XOs LABI não foram capazes de estimular o crescimento da maioria das bactérias probióticas, provavelmente pela sua pureza inferior ao comercial, o que reforça a necessidade de mais estudos de purificação. Entretanto os resultados indicaram um possível potencial prebiótico dos XOs LABI, visto que, apresentaram resistência à ação de enzimas presentes no trato gastrointestinal de animais e inibiram o crescimento de Salmonella

REFERÊNCIAS BIBLIOGRÁFICAS

AACHARY, A. A.; PRAPULLA, S. G. Value addition to corncob: Production and

characterization of xylo-oligosaccharides from alkali pretreated lignin-saccharide complex using Aspergillus oryzae MTCC 5154. Bioresource Technology. v. 100, p. 991-995, 2009. AKPINAR, O.; ERDOGAN, K.; BOSTANCI, S. Enzymatic production of xylo-

oligosaccharide from selected agricultural wastes. Food and Bioproducts Processing. v. 87, p. 145-151, 2009 (a).

AKPINAR, O.; ERDOGAN, K.; BOSTANCI, S. Production of xylo-oligosaccharides by controlled acid hydrolysis of lignocellulosic materials. Carbohydrate Research. v. 344, p. 660-666, 2009 (b).

AL-SHERAJI, S. H., et al. Prebiotics as functional foods: A review. Journal of Functional Foods, v. 5, p. 1542-1553, 2013.

ARO, N.; PAKULA, T.; PENTILLA, M. Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiology Reviews. v. 29, p. 719-739, 2005. ASANO, I., et al. In vitro digestibility and fermentation of manno-oligosaccharides from coffee mannan. Food Science and Technology Research. v. 9, p. 62-66, 2003.

BALAT, M.; BALAT, H.; ÖZ, C. Process in bioethanol processing. Progress in Energy and Combustion Science. v. 34, p. 551-573, 2008.

BALAT, M. Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conversion and Management. v. 52 p. 858-875, 2011.

BALI, V., et al. Fructo-oligosaccharides: production, purification and potential applications. Critical Reviews in Food Science and Nutrition. v. 55, p. 1475-1490, 2015.

BEG, Q. K., et al. Microbial xylanases and their industrial applications: a review. Applied of Microbiology and Biotechnology. v. 56, p. 326-338, 2001.

BIELECKA, M., et al. M. Effect of non-digestible oligosaccharides on gut microecosystem in rats. Food Research International. v. 35, p. 139-144, 2002.

BOUHNIK, Y., et al. Short chain fructo-oligosaccharide administration dose dependently increases fecal bifidobacteria in healthy humans. Journal of Nutrition. v. 129, p. 113-116, 1999.

BRIENZO, M.; SIQUEIRA, A. F.; MILAGRES, A. M. F. Search for optimum conditions of sugarcane bagasse hemicellulose extraction. Biochemical Engineering Journal. v. 46, p. 199-204, 2009.

BRIENZO, M. Extração da hemicellulose do bagaço de cana-de-açúcar para produção de xilo-oligossacarídeo. 2010. 137 f. Tese (Doutorado em Microbiologia Aplicada). Escola de Engenharia de Lorena da Universidade de São Paulo- SP.

BRIENZO, M; CARVALHO, W.; MILAGRES, A. M. F. Xylo-oligosaccharides production from alkali-pretreated sugarcane bagasse using xylanases from Thermoascus aurantiacus. Applied Biochemistry and Biotechnology. v. 162, p. 1195-1205, 2010.

CARVALHO, A. F. A., et al. Xylo-oligosaccharides from lignocellulosic materials: chemical structure, health benefits and production by chemical and enzymatic hydrolysis. Food

Research International. v. 51, p. 75-85, 2013.

CARVALHO, A. F. A., et al. Screening of xylanolytic Aspergillus fumigatus for prebiotic xylo-oligosaccharide production using bagasse. 2015. Food Technology and Biotechnology, v. 53, p. 1, 2015.

CHEN, M. H., et al. Autohydrolysis of Miscanthus × giganteus for the production of xylo- oligosaccharides (XOS): kinetics, characterization and recovery. Bioresource Technology. v. 65, p. 155-359, 2014.

CHEN, M. H., et al. Miscanthus × giganteus xylo-oligosaccharides: purification and fermentation. Carbohydrate Polymers. v. 140, p. 96-103, 2016.

CHIANG, V.L., FUNAOKA, M. The difference between guayacyl and guaiacyl-syringyl lignins in their response to kraft delignification. Holzforschung. v. 44, p. 309-313, 1990. CHILDS, C. E., et al. Xylo-oligosaccharides alone or in synbiotic combination with

Bifidobacterium animalis subsp. lactis induce bifidogenesis and modulate markers of immune

function in healthy adults: a double-blind, placebo-controlled, randomised, factorial cross- over study. British Journal of Nutrition. v. 111, p. 1945-1956, 2014.

CHUNG, Y. C., et al. Dietary intake of xylo-oligosaccharides improves the intestinal microbiota, fecal moisture, and pH value in the elderly. Nutrition Research. v. 27, p. 756- 761, 2007.

COLLINS, T.; GERDAY, C.; FELLER, G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiology Reviews. v. 29, p. 3-23, 2005.

Companhia Nacional de Abastecimento (CONAB). Primeiro levantamento de cana-de- açúcar Abri/2015. Disponível na internet: <

http://www.conab.gov.br/OlalaCMS/uploads/arquivos/15_04_13_08_49_33_boletim_cana_p ortugues_-_1o_lev_-_15-16.pdf> Acesso em 04/2015.

CRITTENDEN, R. G.; PLAYNE, M. J. Production, properties and applications of food-grade oligosaccharides. Trends in Food Science & Technology. v. 71, p. 353-361, 1996.

CRITTENDEN, R. G., et al. In vitro fermentation of cereal dietary fibre carbohydrates by probiotic and intestinal bacteria. Journal of the Science of food and Agriculture. v. 82, p. 781-789, 2002.

CUMMINGS, J. H.; MACFARLANE, G. T.; ENGLYST, H. N. Prebiotic digestion and fermentation. The American Journal of Clinical Nutrition, v. 73, p. 415-420, 2001.

DE MAN, J. C.; ROGOSA, M.; SHARPE, M. E. A medium for the cultivation of lactobacilli. Journal of Applied Microbiology. v. 23, p. 130-135, 1960.

DE SOUSA, V. M. C.; DOS SANTOS, E. F.; SGARBIERI, V. C. The importance of prebiotics in functional foods and clinical practice. Food and Nutrition Sciences. v. 2, p. 133-144, 2011.

DUARTE, M. C. T., et al. Characterization of alkaline xylanases from Bacillus pumilis. Brazilian Journal of Microbiology. v. 31, p. 90-94, 2000.

FENGEL, D.; WEGENER, G. Wood: chemistry, ultrastructure reactions. New York: W. De Gruyter. 613, 1984.

FINEGOLD, S. M., et al. Xylo-oligosaccharide increases bifidobacteria but not lactobacilli in human gut microbiota. Food & Function, v. 5, p.436-445, 2014.

GARCIA, J. R.; LIMA, D. A. L. L.; VIEIRA, A. C. P. A nova configuração da estrutura produtiva do setor sucroenergético brasileiro: panorama e perspectivas. Revista de Economia Contemporânea. v. 19, p. 162-184, 2015.

GARROTE, G.; DOMÍNGUEZ, H.; PARAJÓ, J. C. Mild autohydrolysis: an environmentally friendly technology for xylo-oligosaccharide production from wood. Journal of Chemical Technology and Biotechnology. v. 74, p. 1101-1109, 1999.

GIBSON, G. R., et al. Selective stimulation of bifidobacteria in the human colon by oligofructose and Inulin. Gastroenterology. v. 108, p. 975-982, 1995.

GIBSON, G. R.; ROBERFROID, M. B. Dietary modulation of the human colonie microbiota: introducing the concept of prebiotics. Journal of Nutrition. v. 125, p. 1401-1412, 1995. GIBSON, G. R. Fibre and effects on probiotics (the prebiotic concept). Clinical Nutrition Supplements. v. 1, p. 25-31, 2004.

GIBSON, G. R., et al. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutrition Research Reviews. v. 17, p. 259-275, 2004.

GÓMEZ, R. J. H. Sacarificacão da hemicelulose do bagaco de cana-de-acúcar e sua fermentacão por Pachysolen tannophilus. 1985, Tese (Doutorado em ciências), Faculdade de Engenharia de Alimentos e Agrícola, Universidade Estadual de Campinas, Campinas-SP. GÓMEZ, M., et al. Chemical mechanism of -xylosidase from Trichoderma reesei QM 9414: pH-dependence of kinetic parameters. Biochimie. v. 83, p. 961-967, 2001.

GOUVEIA, E. R.; DO NASCIMENTO, R. T.; SOUTO-MAIOR, A. M. Validação de metodologia para a caracterização química de bagaço de cana-de-açúcar. Química Nova. v. 32, p.1500-1503, 2009.

GROOTAERT, C., et al. Microbial metabolism and prebiotic potency of arabinoxylan oligosaccharides in the human intestine. Trends in Food Science & Technology. v. 18, p. 64-71, 2007.

GUARNER, F.; MALAGELADA, J. R. Gut flora in health and disease. The Lancet. v. 361, p. 512-19, 2003.

GULLÓN, P., et al. Assessment on the fermentability of xylo-oligosaccharides from Rice

husks by probiotic bacteria. Journal of Agricultural Food Chemicals. v. 56, p. 7482-7487,

2008.

HENDRIKS, A. T. W. M.; ZEEMAN, G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology. v. 100, p. 10-18, 2009.

HIDAKA, H., et al. Effects of fructo-oligosaccharides on intestinal flora and human health. Bifidobacteria Microflora. v. 5, p. 37-50, 1986.

HO, A. L., et al. Production and purification of xylo-oligosaccharides from oil palm empty fruit bunch fibre by a non-isothermal process. Bioresource Technology. v. 152, p. 526-529, 2014.

HOFSETZ, K.; SILVA, M. A. Brazilian sugarcane bagasse: energy and non-energy consumption. Biomass and Bioenergy. v. 46, p. 564-573, 2012.

HOLT-HARRIS, J. E.; TEAGUE, O. A new culture medium for the isolation of Bacillus

typhosus from stools. The Journal of Infectious Diseases. v. 18, p. 596-600, 1916.

HOLZAPFEL, W. H., et al. Overview of gut flora and probiotics. International Journal of Food Microbiology. v. 41, p. 85-101, 1998.

JAYAPAL, N., et al. Value addition to sugarcane bagasse: xylan extraction and its process optimization for xylo-oligosaccharides production. Industrial Crops and Products. v. 42, p. 14-24, 2013.

KABEL, M. A., et al. Hydrothermally treated xylan rich by-products yield different classes of xylo-oligosaccharides. Carbohydrate Polymers. v. 50, p. 47-56, 2002.

KAUFFMANN, F. Weitere erfahrungen mit den kombinierten anreicherungsverfahren für

Salmonellabacillen. Zeitschrift fur Hygiene und Infektionskrankheiten, v. 117, p 26-32,

1935.

LEAHY, S. C., et al. Getting better with bifidobacteria. Journal of Applied Microbiology. v. 98, p. 1303-1315, 2005.

MÄKELÄINEN, H., et al. Xylo-oligosaccharides enhance the growth of bifidobacteria and

Bifidobacterium lactis in a simulated colon model. Beneficial Microbes. v. 1, p. 81-91, 2010.

MANNING, T. S.; GIBSON, G. R. Prebiotics. Best Practice & Research Clinical Gastroenterology. v. 18, p. 287-298, 2004.

MARTINS, F. S., et al. Estudo do potencial probiótico de linhagens de Saccharomyces

cerevisiae através de testes in vitro. Revista de Biologia e Ciências da Terra. v. 5, p. 1-13,

MASLEN, S. L., et al. Structure elucidation of arabinoxylan isomers by normal phase HPLC– MALDI-TOF/TOF-MS/MS. Carbohydrate Research. v. 342, p. 724-735, 2007.

MENEZES, C. R.; DURRANT, L. R. Xilo-oligossacarídeos: produção, aplicações e efeitos na saúde humana. Ciência Rural, Santa Maria. v. 38, p. 587-592, 2008.

MILLER GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chemistry. v. 31, p. 426-428, 1959.

MOLIS, C., et al. Digestion, excretion, and energy value of fructo-oligosaccharides in healthy humans. The American Journal of Clinical Nutrition. v. 64, p. 324-328, 1996.

MOSIER, N., et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology. v. 96, p. 673–686, 2005.

MOURA, P., et al. In vitro fermentation of xylo-oligosaccharides from corn cobs autohydrolysis by Bifidobacterium and Lactobacillus strains. LWT- Food Science and Technology. v. 40, p. 963-972, 2007.

MOURE A., et al. Advances in the manufacture, purification and applications of xylo- oligosaccharides as food additives and nutraceuticals. Process Biochemistry. v. 41, p. 1913- 1923, 2006.

MUSSATTO, S. I.; MANCILHA, I. M. Non-digestible oligosaccharides: a review. Carbohydrate Polymers. v. 68, p. 587-597, 2007.

MUSSATTO, S. I.; ROBERTO, I. C. Alternatives for detoxification of diluted-acid lignocellulosic hydrolysates for use in fermentative processes: a review. Bioresource Technology. v. 93, p. 1-10, 2004.

NABARLATZ, D.; EBRINGEROVÁ, A.; MONTANÉ, D. Autohydrolysis of agricultural by- products for the production of xylo-oligosaccharides. Carbohydrate Polymers. v. 69, p. 20– 28, 2007.

NABARLATZ, D.; FARRIOL, X.; MONTANÉ, D. Kinetic modeling of the autohydrolysis of lignocellulosic biomass for the production of hemicellulose-derived oligosaccharides. Industrial Engineering Chemistry Research. v. 43, p. 4124-4131, 2004.

NILSSON, U.; BJORCK, I. Availability of cereal fructans and inulin in the rat intestinal tract. Journal of Nutrition. v. 118, p. 1482-1486, 1988.

OKAZAKI, M.; FUJIKAWA, S.; MATSUMOTO, N. Effects of xylo-oligosaccharides on growth of bifidobacteria. Bifidobacteria and Microflora. v. 9, p. 77-86, 1990.

OKAZAKI, M., et al. In vitro digestibility and in vivo utilization of xylobiose. Journal of Japan Society of Nutrition and Food Science. v. 44, p. 41-44, 1991.

OKU, T.; TOKUNAGA, T.; HOSOYA, N. Nondigestibility of a new sweetener, "neosugar," in the rat. Journal of Nutrition. v. 114, p. 1574-1581, 1984.

OTIENO, D. O.; AHRING, B. K. A thermochemical pretreatment process to produce xylo- oligosaccharides (XOS), arabino-oligosaccharides (AOS) and manno-oligosaccharides (MOS) from lignocellulosic biomasses. Bioresource Technology. v. 112, p. 285-292, 2012.

OVEREND, R. P.; CHORNET, E. Steam and aqueous pretreatments: are they prehydrolyses? In: Wood Processing and Utilisation. Chichester: Ellis Horwood, p. 395-400, 1989. PARAJÓ, J. C.; DOMÍNGUEZ, H.; DOMÍNGUEZ, J. M. Biotechnological production of xylitol. Part 3: operation in culture media made from lignocellulose hydrolysates.

Bioresource Technology. v. 66, p. 25-40, 1998.

PATEL, S.; GOYAL, A. The current trends and future perspectives of prebiotics research: a review, 3 Biotech. v. 2, p. 115-125, 2012.

POUTANEN, K.; PUIS, J. Characteristics of Trichoderma reesei p-xylosidase and its use in the hydrolysis of solubilized xylans. Applied Microbiology Biotechnoly. v. 28, p. 425-432, 1988.

RIVAS, B., et al. Bioconversion of posthydrolysed autohydrolysis liquors: an alternative for xylitol production from corn cobs. Enzyme and Microbial Technology. v. 31, p. 431-438, 2002.

ROBERFROID, M. Prebiotics: The concept revisited. Journal of Nutrition. v. 137, p. 830- 837, 2007.

RODRIGUES, R. C. L. B., et al. Scale-up of diluted sulfuric acid hydrolysis for producing sugarcane bagasse hemicellulosic hydrolysate (SBHH). Bioresource Technology. v. 101, p. 1247-1253, 2010.

RUIZ-ARRIBAS, A., et al. Overproduction, purification, and biochemical characterization of a xylanase (Xys1) from Streptomyces halstedii JM8. Applied and Environmental

Microbiology. v. 61, p. 2414-2419, 1995.

RYCROFT, C. E., et al. A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. Journal of Applied Microbiology. v. 91, p. 878-887, 2001. SCHREZENMEIR, J.; DE VRESE, M. Probiotics, prebiotics, and synbiotics—approaching a definition. The American Journal of Clinical Nutrition. v. 73, p. 361-400, 2001.

SEARLE, L. E. J., et al. A mixture containing galacto-oligosaccharide, produced by the enzymic activity of Bifidobacterium bifidum, reduces Salmonella enterica serovar

Typhimurium infection in mice. Journal of Medical Microbiology. v. 58, p. 37-48, 2009.

SILVA, D.F., et al. Cellulolytic enzyme production by the fungi Trichoderma reesei CCT 2769 using citrus pulp. Anais do 6o. Simpósio de Microbiologia Aplicada. Rio Claro-SP, Brazil, 2013.

SLUITER, A., et al. Determination of structural carbohydrates and lignin in biomass. Technical Report. p. 1-14, 2010.

SYKES, G.; SKINNER, F.A. Techniques for the isolation and characterization of

Actinomyces and Bifidobacterium species report of a panel discussion. Applied Bacteriology Symposium. v. 2, p. 327-333, 1973.

SZCZODRAK, J.; FIEDUREK, J. Technology for conversion of lignocellulosic biomass to ethanol. Biomass and Bioenergy. v. 10, p. 367-375, 1996.

TAHERZADEH, M.J.; KARIMI, K. Pretreatment of lignocellulosic wastes to improve

ethanol and biogas production: a review. International Journal of Molecular Sciences. v. 9, p. 1621-1651, 2008.

TORRES, D. P. M., et al. Galacto-oligosaccharides: production, properties, applications, and significance as prebiotics. Comprehensive Reviews in Food Science and Food Safety. v. 9, p. 438-454, 2010.

TUOHY, K. M. et al., Modulation of the human gut microflora towards improved health using prebiotics – assessment of efficacy. Current Pharmaceutical Design. v. 11, p. 75-90, 2005.

VÁZQUEZ, M. J., et al. Xylo-oligosaccharides: manufacture and applications. Trends in Food Science & Technology. v. 11, p. 387–393, 2000.

VÁZQUEZ, M. J., et al. Refining of autohydrolysis liquors for manufacturing xylo- oligosaccharides: Evaluation of operational strategies. Bioresource Technology. v. 96, p. 889-896, 2005.

WEIL, J., et al. Cellulose pretreatments of lignocellulosic substrates. Enzyme and Microbial Technology. v. 16, p. 1002-1004, 1994.

XIAO, L.; NING, J.; XU, G. Application of xylo-oligosaccharide in modifying human intestinal function. African Journal of Microbiology Research. v. 6, p. 2116-2119, 2012. ZHU, S., et al. The effect of microwave irradiation on enzymatic hydrolysis of rice straw. Bioresource Technology. v. 97, p. 1964-1968, 2006.

ZIEMER, C. J.; GIBSON, G. R. An Overview of probiotics, prebiotics and synbiotics in the functional food concept: perspectives and future strategies. International Dairy Journal. v. 8, p. 473-479, 1998.

ZIESENITZ, S. C.; SIEBERT, G. In vitro assessment of nystose as a sugar substitute. Journal of Nutrition. v. 5, p. 846-851, 1987.

ZILLIOX, C.; DEBEIRE, P. Hydrolysis of wheat straw by a thermostable endoxylanase: adsorption and kinetic studies. Enzyme and Microbial Technology. v. 22, p. 58-63, 1998.

Documentos relacionados