• Nenhum resultado encontrado

O presente estudo apresenta uma análise da suplementação de NaCl em dietas utilizadas na alimentação do camarão do Pacífico, Penaeus vannamei, cultivado em águas oligohalinas. Em síntese, as principais conclusões foram:

1. A sobrevivência foi moderada e incrementada pelo uso das diferentes rações suplementadas com NaCl. A dieta D2 apresentou valores de sobrevivência diferentes da dieta controle (D1), indicando a importância da suplementação conjugada de NaCl, MgO e KCl. Por outro lado, o aumento progressivo da suplementação de NaCl nas dietas não foi capaz de incrementar a taxa de sobrevivência;

2. Não houve diferenças para os pesos finais dos diversos tratamentos (D2, D3, D4 e D5), independente da concentração de NaCl nas diversas rações suplementadas utilizadas;

3. Consequentemente, os valores de ganho de peso, TCE e TCA de juvenis de camarão do Pacífico, P. vannamei alimentados com rações suplementadas com NaCl (D2, D3, D4 e D5) foram maiores que os valores observados para a dieta controle (D1);

4. A osmolalidade da hemolinfa de exemplares (Lote 1) do camarão do Pacífico, P. vannamei, cultivado na Fazenda Joli Aquicultura Ltda, em águas oligohalinas (salinidade entre 0,3 e 0,5 ppt), não foi influenciada pelo incremento de peso dos indivíduos amostrados, não ficando demonstrado a redução da capacidade osmoregulatória com o incremento do peso dos indivíduos como observado por outros pesquisadores;

5. Após terem sido aclimatados à água do mar, os exemplares (Lote 1) do camarão do Pacífico, P. vannamei, apresentaram incremento na osmolalidade da hemolinfa, em todos os pesos amostrados (entre 5 e 20 g), havendo diferenças entre os valores para indivíduos com peso em torno de 5 g e os demais pesos amostrados (10, 15 e 20 g);

6. Os exemplares do camarão do Pacífico, P. vannamei, no início do procedimento experimental, não apresentaram diferenças entre os tratamentos no que diz respeito a osmolalidade da hemolinfa. Entretanto, ao final do experimento, houve um incremento significativo na osmolalidade da hemolinfa da dieta D5, em comparação com as dietas D1 (dieta controle), D2 e D3. Em adição, a osmolalidade da hemolinfa de D5 foi igual à de D4; 7. A contagem total de hemócitos em juvenis de camarão do Pacífico, Penaeus vannamei, tanto no início como no final do procedimento experimental, não foi diferente entre os tratamentos;

8. No geral, os parâmetros físico-químicos da água durante o experimento foram mantidos dentro do intervalo de tolerância para a maioria das espécies de camarões peneídeos utilizadas

61

na aquicultura, indicando que os sistemas aquícolas de recirculação (SARs) empregados funcionaram efetivamente.

REFERÊNCIAS

ABREU, M. C. S.; MATTOS, P.; LIMA, P. E. S.; PADULA, A. D. Shrimp farming in coastal Brazil: Reasons for market failure and sustainability challenges. Ocean & Coastal

Management, Amsterdam, v. 54, p. 658–667, Sept. 2011.

AHMED, N.; DEMAINE, H.; MUIR, J. F. Freshwater prawn farming in Bangladesh: history, present status and future prospects. Aquaculture Research, New Jersey, v. 39, p. 806–819, Apr. 2008.

ANDERSON, J. L.; VALDERRAMA, D.; JORY, D. Global Shrimp Production Review. Industry Projects Steady Recovery Following Disease Impacts. Global Aquaculture

Advocate, Portsmouth, v. 6, p. 10–11, Apr. 2014.

ANDRADE, T. P. D.; SRISUVAN, T.; TANG, K. F. J.; LIGTHNER, D. V. Real-time reverse transcription polymerase chain reaction assay using TaqMan probe for detection and

quantification of Infectious myonecrosis virus (IMNV). Aquaculture, Amsterdam, v. 264, p. 9–15, Apr. 2007.

APHA (American Public Health Association). Standard Methods for the Examination of

Water and Wastewater. Washington, DC, 1995.

ARANA, L. V. Aquicultura e Desenvolvimento Sustentável: Subsídios para a

Formulação de Políticas de Desenvolvimento da Aqüicultura Brasileira. Editora da

UFSC, 1.a Edição, Florianópolis, SC, 1999.

ATWOOD, H. L.; YONG, S. P.; TOMASSO, J. R.; BROWDY, C. L. Survival and growth of Pacific white shrimp Litopenaeus vannamei postlarvae in low-salinity and mixed-salt

environments. J. World Aquacult. Soc., Virginia, v. 34, p. 518-523, Dec. 2003.

BALDWIN, J. D.; BASS, A. L.; BOWEN, B. W.; CLARK, W. H. Molecular phylogeny and biogeography of the marine shrimp Penaeus. Mol. Phylogenet. Evol., San Diego, v. 10, p. 399–407, Dec. 1998.

BALOI, M.; ARANTES, R.; SCHVEITZER, R.; MAGNOTTI, C.; VINATEA, L.

Performance of Pacific white shrimp Litopenaeus vannamei raised in biofloc systems with varying levels of light exposure. Aquacultural Engineering, Amsterdam, v. 52, p. 39– 44, Jan. 2013.

BIAO, X.; KAIJIN, Y. Shrimp farming in China: Operating characteristics, environmental impact and perspectives. Ocean & Coastal Management, Amsterdam, v. 50, p. 538–550, Mar. 2007.

63

BOYD, C. E.; TUCKER, C. S. Pond Aquaculture Water Quality Management. Kluwer Academic Publishers, Norwell, MA, 700 p., Aug. 1998.

BRAY, W. A.; LAWRENCE, A. L.; LEUNG-TRUJILLO, J. R. The effect of salinity on growth and survival of Penaeus vannamei, with observation on the interaction of IHHN virus and salinity. Aquaculture, Amsterdam, v. 122, p. 133–146, May 1994.

BRIGGS, M. Standard Operating Procedures (SOPs) for Penaeus monodon Hatcheries

in Bangladesh. FAO Fisheries Technical Paper, Rome, Italy, 113 p., Jan. 2009.

BRIGGS, M.; FUNGE-SMITH, S.; SUBASINGHE, R. P.; PHILLIPS, M. Introductions and

movement of two penaeid shrimp species in Asia and the Pacific. FAO Fisheries Technical

Paper, Rome, Italy, 78 p., 2005.

BROWDY, C. L.; BHARADWAJ, A. S.; VENERO, J. A.; NUNES, A. J. P. Supplementation with 2-hydroxy-4-(methylthio) butanoic acid (HMTBa) in low fish meal diets for the white shrimp, Litopenaeus vannamei. Aquaculture Nutrition, [s.l.], v. 18, p. 432-440, Dec. 2012. CASILLAS-HERNÁNDEZ, R.; NOLASCO-SORIA, H.; GARCÍA-GALANO, T.;

CARRILLO-FARNES, O.; PÁEZ-OSUNA, F. Water quality, chemical fluxes and production in semi-intensive Pacific white shrimp (Litopenaeus vannamei) culture ponds utilizing two different feeding strategies. Aquacultural Engineering, Amsterdam, v. 36, p. 105–114, Mar. 2007.

CASTILLE, F.L.; LAWRENCE, A.L. A comparison of the capabilities of juvenile and adult

Penaeus setiferus and Penaeus stylirostris to regulate the osmotic, sodium, and chloride

concentrations in the hemolymph. Comp. Biochem. Physiol. A, Amsterdam, v. 68, p. 677– 680, 1981.

CHAN, S. M.; RANKIN, S. M.; KEELEY, L. L. Characterization of the molt stages in

Penaeus vannamei: setogenesis and hemolymph levels of total protein, ecdysteroides, and

glucose. Biological Bulletin, [s.l.], v. 175, p. 185–192, Oct. 1988.

CHARMANTIER, G.; BOUARICHA, N.; CHARMANTIER-DAURES, M.; THUET, P.; TRILLES, J. P. Salinity tolerance and osmoregulatory capacity as indicators of the

physiological state of peneid shrimps. European Aquacultural Society Special Publication, [s.l.], v. 10, p. 65–66, 1989.

CHARMANTIER, G.; CHARMANTIER-DAURES, M.; TOWLE, D. Osmotic and ionic regulation in aquatic arthropods. In: EVANS, D.H. (Ed.), Osmotic and Ionic Regulation.

Cells and Animals. CRC Press, Boca Raton, FL, New York, NY, Oxford, UK, pp. 165–230, Nov. 2009.

CHEN, H. C. Water quality criteria for farming the grass shrimp, Penaeus monodon. First

International Conference on the Culture of Penaeid Prawn/Shrimps. SEAFDEC,

Aquaculture Department, Iloilo, Philippines, p. 165, Dec. 1985.

CHEN, J. C.; LIN, J. N.; CHEN, C. T.; LIN, M. N. Survival, growth and intermolt period of juvenile Penaeus chinensis (Osbeck) reared at different combinations of salinity and

temperature. J. Exp. Mar. Biol. Ecol., Amsterdam, v. 204, p. 169–178, Oct. 1996. CHEN, J. C.; LIN, M. N.; TING, Y. Y.; LIN, J. N. Survival, haemolymph osmolality and tissue water of Penaeus chinensis juvenile acclimated to different salinity and

temperature levels. Comp. Biochem. Physiol., Amsterdam, v. 110, p. 253–258, 1995. COSTA, A. M.; MARTINS, P. C. C. Analysis of total hemocytes counting and capacity of hemolymph coagulation of shrimp Litopenaeus vannamei (Boone, 1931) in ponds with occurrence of myonecrosis. B. Inst. Pesca, São Paulo, v. 35, p. 545–551, Jan. 2009. CSAVAS, I. Important factors in the success of shrimp farming. World Aquaculture, Virginia, v. 25, p. 34–56, Mar. 1994.

CUVIN-ARALAR, M. L. A.; LAZARTIGUE, A. G.; ARALAR, E. V. Cage culture of the Pacific white shrimp Litopenaeus vannamei (Boone, 1931) at different stocking densities in a shallow eutrophic lake. Aquaculture Research, New Jersey, v. 40, p. 181–187, Jan. 2009. DALL, W.; HILL, B. J.; ROTHLISBERG, P. C.; STAPLES, D. L. The Biology of the

Penaeidae. Advances in Marine Biology. Academic Express, London, 1990.

DAVIS, D. A.; SAOUD, I. P.; BOYD, C. E.; ROUSE, D. B. Effects of potassium,

magnesium, and age on growth and survival of Litopenaeus vannamei post-larvae reared in inland low salinity well waters in west Alabama. J. World Aquac. Soc., Sorrento, v. 36, p. 403–406, Sep. 2005.

DEB, A. K. Fake blue revolution: environmental and socio-economic impacts of

shrimp culture in the coastal areas of Bangladesh. Ocean & Coastal Management, Amsterdam, v. 41, p. 63–88, Oct. 1998.

DOTE-SÁ, T.; SOUSA, R. R.; ROCHA, I. R. C. B.; LIMA, G. C.; COSTA, F. H. F. Brackish shrimp farming in Northeastern Brazil: the environmental and socio-economic impacts and sustainability. Natural Resources, Aracajú, v. 4, p. 538–550, Dec. 2013.

FAO. The State of World Fisheries and Aquaculture 2012. Roma: FAO. 209 p., 2012. FAO. The State of World Fisheries and Aquaculture 2014. Roma: FAO. 229 p., 2014.

65

FERREIRA, N. C.; BONETTI, C.; SEIFFERT, W. Q. Hydrological and water quality indices as management tools in marine shrimp culture. Aquaculture, Amsterdam, v. 318, p. 425–433, Aug. 2011.

FERRARIS, R. P.; PARADO-ESTEPA, F. D.; JESUS, E. G.; LADJA, J. M. Osmoregulation in Penaeus monodon: effects of molting and external salinity. In: MCLEAN, J.L.; DIZON, L.B.; HOSILLOS, L.V. (Eds.), Proceeding of The First Asian Fisheries Forum. Asian Fisheries Society, Manila, p. 637–640, May. 1986.

FLEGEL, T. W. The right to refuse revision in the genus Penaeus. Aquaculture, Amsterdam, v. 264, p. 2–8, Apr. 2007.

FREIRE, C. A.; AMADO, E. M.; SOUZA, L. R.; VEIGA, M. P. T.; VITULE, J. R. S.; SOUZA, M. M.; PRODOCIMO, V. Muscle water control in crustaceans and fishes as a function of habitat, osmoregulatory capacity, and degree of euryhalinity. Comparative

Biochemistry and Physiology, New York, v. 149A, 435–446. Apr. 2008.

GATLIN, D. M.; MACKENZIE, D. S.; CRAIG, S. R.; NEILL, W. H. Effects of dietary sodium chloride on red drum juveniles in waters of various salinities. The Progressive

Fish-Culturist, [s.l.], v. 54, p. 220–227, Oct. 1992.

GONG, H.; JIANG, D. H.; LIGHTNER, D. V.; COLLINS, C.; BROCK, D. A dietary modification approach to improve the osmoregulatory capacity of Litopenaeus vannamei cultured in the Arizona desert. Aquaculture Nutrition, [s.l.], v.10, p. 227–236, Aug. 2004. GREENAWAY, P. Calcium and magnesium balance during molting in land crabs.

Journal of Crustacean Biology, [s.l.], v. 13, p. 191–197, Apr. 1993.

GUSMÃO, J. Sistemática molecular e genética populacional de espécies brasileiras de

camarão (Penaeus: Decapoda: Penaeidae). Tese de Doutorado, Universidade Federal do

Rio de Janeiro, RJ, 120 p., 2001.

HICKMAN, C. P.; ROBERTS, L. S.; LARSON, A. Princípios Integrados de Zoologia. Rio de Janeiro: Guanabara Koogan S.A, 2004.

HUONG, D. T. T.; JASMANI, S.; JAYSANKAR, V.; WILDER, M. Na/K-ATPase activity and osmo-ionic regulation in adult whiteleg shrimp Litopenaeus vannamei exposed to low salinities. Aquaculture, Amsterdam, v. 304, p. 88–94. Jun. 2010.

HURTADO, M. A.; RACOTTA, I. S.; ARJONA, O.; HERNÁNDEZ-RODRÍGUEZ, M.; GOYTORTÚA, E.; CIVERA, R., PALACIOS, E. Effect of hypo-and hyper-saline conditions on osmolality and fatty acid composition of juvenile shrimp Litopenaeus vannamei (Boone, 1931) fed low-and high-HUFA diets. Aquaculture Research, New Jersey, v. 37, p. 1316– 1326, Aug. 2006.

KUMLU, M.; EROLDOGAN, O.T.; AKTAS, M. Effect of temperature and salinity on larval growth, survival and development of Penaeus semisulcatus. Aquaculture, Amsterdam, v. 188, p. 167– 173, Aug. 2000.

LARAMORE, S.; LARAMORE, C. R.; SCARPA, J. Effect of low salinity on growth and survival of postlarvae and juvenile Litopenaeus vannamei. J. World Aquac. Soc., Sorrento, v. 32, p. 385–392, Dec. 2001.

LIGHTNER, D. V.; PANTOJA, C. R.; POULOS, B. T.; TANG, K. F. J.; REDMAN, R. M.; ANDREAS, T.; BONAMI, J. R. Infectious myonecrosis (IMN): a new virus disease of

Litopenaeus vannamei. In: Abstract Book of Aquaculture 2004. Honolulu, Hawaii, EUA, p.

353, 2004.

LIGHTNER, D. V.; REDMAN, R. M. Shrimp diseases and current diagnostic methods.

Aquaculture, Amsterdam, v. 164, p. 201–220, May 1998.

LIGNOT, J.H.; SPANINGS-PIERROT, C.; CHARMANTIER, G. Osmoregulatory capacity as a tool in monitoring the physiological condition and the effect of stress in crustaceans.

Aquaculture, Amsterdam, v. 191, p. 209–245, Nov. 2000.

LIU, Y.; WANG, W. N.; WANG, A. L.; WANG, J. M.; SUN, R. Y. Effects of dietary vitamin E supplementation on antioxidant enzyme activities in Litopenaeus vannamei (Boone, 1931) exposed to acute salinity changes. Aquaculture, Amsterdam, v. 265, p. 351–358, May 2007. LUCU, Č.; TOWLE, D. W. Na++K+-ATPase in gills of aquatic crustacean. Comparative Biochemistry and Physiology, New York, v. 135A, p. 195–214, Jun. 2003.

MARTINEZ, C. L. R.; PORCHAS, C. M. A.; PORTILLO, C. G.; MAGALLON, B. F. Effect of increased salinity for nursery of yellowleg shrimp Penaeus californiensis postlarvae hatched at different salinity. J. Aquac. Trop., [s.l.], v. 11, p. 175–178, 1996.

McGRAW, W. J.; DAVIS, D. A.; TEICHERT-CODDINGTON, D.; ROUSE, D. B. Acclimation of Litopenaeus vannamei postlarvae to low salinity: influence of age, salinity endpoint, and rate of salinity reduction. J. World Aquac. Soc., New York, v. 33, p. 78–84, Mar. 2002.

McNEVIN, A. A.; BOYD, C. E.; SILAPAJARN, O.; SILAPAJARN, K. Ionic

supplementation of pond waters for inland culture of marine shrimp. J. World Aquacult.

Soc., New York, v. 35, p. 460–467, Dec. 2004.

MERINO, G.; BARANGE, M.; BLANCHARD, J. L.; HARLE, J.; HOLMES, R.; ALLEN, I.; ALLISON, E. H.; BADJECK, M. C.; DULVY, N. K.; HOLT, J.; JENNINGS, S.; MULLON, C.; RODWELL, L. D. Can marine fisheries and aquaculture meet fish demand from a

growing human population in a changing climate? Global Environmental Change, Amsterdam, v. 22, p. 795–806, Oct. 2012.

67

MOLES, P.; BUNGE, J. Shrimp Farming in Brazil: An Industry Overview. Report prepared under the World Bank, NACA, WWF and FAO Consortium Program on Shrimp Farming and the Environment. Work in Progress for Public Discussion. Published by the Consortium. 26 p., 2002.

MUANGKEOW, B.; IKEJIMA, K.; POWTONGSOOK, S.; YI, Y. Effects of white shrimp,

Litopenaeus vannamei (Boone), and Nile tilapia, Oreochromis niloticus L., stocking density

on growth, nutrient conversion rate and economic return in integrated closed recirculation system. Aquaculture, Amsterdam, v. 269, p. 363–376, Sep. 2007.

MUGNIER, C.; ZIPPER, E.; GOARANT, C.; LEMONNIER, H. Combined effect of exposure to ammonia and hypoxia on the blue shrimp Litopenaeus stylirostris survival and physiological response in relation to molt stage. Aquaculture, Amsterdam, v. 274, p. 398– 407, Feb. 2008.

NATORI, M. M.; SUSSEL, F. R.; SANTOS, E. C. B.; PREVIERO, T. C.; VIEGAS, E. M. M.; GAMEIRO, A. H. Desenvolvimento da carcinicultura marinha no Brasil e no mundo: avanços tecnológicos e desafios. Informações Econômicas, São Paulo, v. 41, p. 61–73, Fev. 2011.

NUNES, A. J. P.; ROCHA, I. P. Overview and latest developments in shrimp and tilapia aquaculture in Northeast Brazil. World Aquaculture, Virginia, v. 6, p. 10–17, Jun. 2015. O’BRIEN, C. J. The effects of temperature and salinity on growth and survival of juvenile tiger prawns Penaeus esculentus (Haswell). J. Exp. Mar. Biol. Ecol., Amsterdam, v. 183, p. 133– 145, Oct. 1994.

OSTRENSKY, A.; BORGHETTI, J. R.; SOTO, D. Estudo Setorial para Consolidação de

uma Aquicultura Sustentável no Brasil. Curitiba, 279 p., 2007.

PALACIOS, E.; BONILLA, A.; PÉREZ, A.; RACOTTA, I.; CIVERA, R. Influence of highly unsaturated fatty acids on the responses of white shrimp (Litopenaeus vannamei) postlarvae to low salinity. Journal of Experimental Marine Biology and Ecology, Amsterdam, v. 299, p. 201–215, Feb. 2004.

PAN, L. Q.; ZHANG, L. J.; LIU, H. Y. Effects of salinity and pH on ion-transport enzyme activities, survival and growth of Litopenaeus vannamei postlarvae. Aquaculture,

Amsterdam, v. 273, p. 711–720, Dec. 2007.

PEQUEUX, A. Osmotic regulation in crustaceans. J. Crustacean Biol., Oxford, v. 15, p. 1– 60, Feb. 1995.

PERAZZOLO, L. M.; GARGIONI, R.; OGLIARI, P.; BARRACCO, M. A. Evaluation of some hemato-immunological parameters in the shrimp Farfantepenaeus paulensis submitted to environmental and physiological stress. Aquaculture, Amsterdam, v. 214, p. 19–33, Nov. 2002.

PÉREZ-FARFANTE, I.; KENSLEY, B. Penaeid and Sergestoid Shrimps and Prawns of

the World: Keys and Diagnoses. Mémoires du Muséum National D‟Histoire Naturelle, Paris, 233 p., 1997.

PONCE-PALAFOX, J.; MARTINEZ, P. C. A.; ROSS, L. G. The effects of salinity and temperature on the growth and survival rates of juvenile white shrimp, Penaeus vannamei, Boone, 1931. Aquaculture, Amsterdam, v.157, p. 107-115, Nov. 1997.

POULOS, B. T.; TANG, K. F. J.; PANTOJA, C. R.; BONAMI, J. R.; LIGTHNER, D. V. Purification and characterization of infectious myonecrosis virus of penaeid shrimp. Journal

of General Virology, London, v. 87, p. 987–996, Nov. 2006.

RAINBOW, P.S.; BLACK, W.H. Effects of changes in salinity on the apparent water permeability of three crab species: Carcinus maenas, Eriocheir sinensis and Necroa

puber. Journal of Experimental Marine Biology and Ecology, Amsterdam, v. 264, p. 1–13,

Sep. 2001.

RANA, K. J. Guidelines on the Collection of Structural Aquaculture Statistics.

Supplement to the Programme for the world census of agriculture 2000. FAO Statistical

Development Series, 5b, FAO, Rome, Italy, 56 p., 1997.

RAY, A. J.; LEWIS, B. L.; BROWDY, C. L.; LEFFLER, J. W. Suspended solids removal to improve shrimp (Litopenaeus vannamei) production and an evaluation of a plant based feed in minimal-exchange, superintensive culture systems. Aquaculture, Amsterdam, v. 299, p. 89– 98, Feb. 2010.

RAY, A. J.; DILLON, K. S.; LOTZ, J. M. Water quality dynamics and shrimp (Litopenaeus

vannamei) production in intensive, mesohaline culture systems with two levels of biofloc

management. Aquacultural Engineering, Amsterdam, v. 45, p. 127–136, Nov. 2011. RICE, J. C.; GARCIA, S. M. Fisheries, food security, climate change and biodiversity: characteristics of the sector and perspectives of emerging issues. ICES Journal of Marine

Sciences, [s.l.], v. 68, p. 1343–1353, Jul. 2011.

ROCHA, I. P. Current status and trends in Brazilian shrimp farming. Infofish International, Ohio, v. 5, p. 24–28, Sep. 2011.

ROCHA, I. P.; BORBA, M. G.; MOURA, M. J. N. O censo da carcinicultura em 2011.

Revista da Associação Brasileira dos Criadores de Camarão – ABCC, Natal, v. 1, p. 24–

28, Fev. 2013.

ROCHA, I. P.; RODRIGUES, J.; AMORIM, L. A carcinicultura brasileira em 2003. Revista

da Associação Brasileira dos Criadores de Camarão – ABCC, Natal, v. 1, p. 30–36, Jan.

69

ROCHA, I. R. C. B.; DOTE-SÁ, T.; SOUSA, R. R.; LIMA, G. C.; CÉSAR, J. R. O.; COSTA, F. H. F. Technical and Environmental Analysis of Shrimp Farming in the CoreaúRiver Estuary, Ceará State, Brazil.J. Aquac. Res. Development., Los Angeles, v. 6, p. 1–7, Jun. 2015.

RODRIGUES, J. Carcinicultura marinha – Desempenho em 2004. Revista da Associação

Brasileira dos Criadores de Camarão – ABCC, Natal, v. 2, p. 38–44, Jan, 2005.

ROMANO, N.; ZENG, C. Osmoregulation in decapod crustaceans: implications to

aquaculture productivity, methods for potential improvement and interactions with elevated ammonia exposure. Aquaculture, Amsterdam, v. 334–337, p. 12–23, Mar. 2012.

ROSENBERRY, B. Directory of the Shrimp Industry in the Western Hemisphere. 9434 Kearny Mesa Road, San Diego, CA 92126, USA, 1995.

ROY, L. A.; DAVIS, D. A.; SAOUD, I. P. Effects of lecithin and cholesterol supplementation to practical diets for Litopenaeus vannamei reared in low salinity waters. Aquaculture, Amsterdam, v. 257, p. 446–452, Jun. 2006.

ROY, L. A.; DAVIS, D. A.; SAOUD, I. P.; HENRY, R. P. Supplementation of potassium, magnesium and sodium chloride in practical diets for the Pacific white shrimp, Litopenaeus

vannamei, reared in low salinity waters. Aquaculture Nutrition, [s.l], v. 13, p. 104-113, Apr.

2007.

ROY, L. A.; DAVIS, D. A.; SAOUD, I. P.; BOYD, C. A.; PINE, H. J.; BOYD, C. E. Shrimp culture in inland low salinity waters. Reviews in Aquaculture, London, v. 2, p. 191–208, Nov. 2010.

RUTTANAGOSRIGIT, W.; MUSIG, Y. Effect of salinity rate of Penaeus merguiensis larvae. Fish. Div., Dep. Fish., [s.l.], p. 3, 1982.

SABRY-NETO, H. S.; NUNES, A. J. P. Performance and immunological resistance of

Litopenaeus vannamei fed a β-1,3/1,6-glucan-supplemented diet after per os challenge with

the Infectious myonecrosis virus (IMNV). R. Bras. Zootec, Viçosa, v. 44, p. 165-173, Mai. 2015.

SANG, H. M.; FOTEDAR, R. Growth, survival, haemolymph osmolality and organosomatic indices of the western king prawn (Penaeus latisulcatus Kishinouye, 1896) reared at different salinities. Aquaculture, Amsterdam, v. 234, p. 601-614, May, 2004.

SÁNCHEZ, A.; PASCUAL, C.; SÁNCHEZ, A.; VARGAS-ALBORES, F.; Le MOULLAC, G.; ROSAS, C. Hemolymph metabolic variables and immune response in Litopenaeus

setiferus adult males: the effect of acclimation. Aquaculture, Amsterdam, v. 198, p. 13– 28,

SAOUD, I. P.; DAVIS, D. A.; ROUSE, D. B. Suitability studies of inland well waters for

Litopenaeus vannamei culture. Aquaculture, Amsterdam, v. 217, p. 373–383, Mar. 2003.

SCHVEITZER, R.; ARANTES, R.; COSTÓDIO, P. F. S.; SANTO, C. M. E.; ARANA, L. V.; SEIFFERT, W. Q.; ANDREATTA, E. R. Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tank system operated with no water exchange. Aquacultural Engineering, Amsterdam, v. 56, p. 59–70, Sep. 2013. SETIARTO, A.; AUGUSTO, S. C.; TAKASHIMA, F.; WATANABE, S.; YOKOTA, M. Shortterm responses of adult kuruma shrimp Marsupenaeus japonicus (Bate) to

environmental salinity: osmotic regulation, oxygen consumption and ammonia excretion.

Aquaculture, Amsterdam, v.35, p. 669-677, Jun. 2004.

SILVA, E.; CALAZANS, N.; SOARES, M.; SOARES, R.; PEIXOTO, S. Effect of salinity on survival, growth, food consumption and haemolymph osmolality of the pink shrimp

Farfantepenaeus subtilis (Pérez-Farfante, 1967). Aquaculture, Amsterdam, v. 306, p. 352

356, Aug. 2010.

SMITH, S. J. F.; TAYLOR, A. C.; WHITLEY, J.; BROWN, J. H. Osmotic and ionic regulation in the giant Malaysian fresh water prawn, Macrobrachium rosenbrgii (de Man), with special references to strontium and bromine. Comparative Biochemistry and

Physiology Part A, New York, v. 110, p. 357–365, Apr. 1995.

SÖDERHÄLL, K.; SMITH, V. J. Separation of the haemocyte population of Carcinus

maenas and other marine decapods and prophenoloxidase distribution. Dev. Comp.

Immunol., [s.l.], v. 7, p. 229–239, 1983.

STAPES, D. J.; HEALES, D. S. Temperature and salinity optima for growth and survival of juvenile banana prawn Penaeus merguiensis. J. Exp. Mar. Biol. Ecol., Amsterdam, v. 154, p. 251– 274, Dec. 1991.

TAVABE, K. R.; RAFIEE, G.; FRINSKO, M.; DANIELS, H. Effects of different calcium and magnesium concentrations separately and in combination on Macrobrachium rosenbergii (de Man) larviculture. Aquaculture, Amsterdam, v. 412–413, p. 160–166, Nov. 2013.

TOWLE, D. W.; WEIHRAUCH, D. Osmoregulation by gills of euryhaline crabs: molecular analysis of transporters. Integrative and Comparative Biology, v. 41, p. 770–780, Aug. 2001.

VENKATARAMAIAH, A.; LAKSHMI, G. J.; GUNTER, G. The effect of salinity,

temperature and feeding level on the food conversion, growth and survival rates of the shrimp

Penaeus aztecus. In: Worthen, L.R. (Ed.), Conference on Food-Drug from the Sea,

71

VIJAYYAKUMARAN, M. Effect of salinity and quality of feed on food conversion

efficiency in post larvae of the prawn Penaeus indicus (H. Milne Edwards). In: Joseph, M.M., Menon, N.R., Nair, N.U. (Eds.), Indian Fisheries Forum. Proceeding of the Asian Fisheries

Society, Indian Branch, Mangalore (India), Kochi, Kerala. Asian Fish Society, Kerela,

India, p. 193–195, 1999.

WABETE, N.; CHIM, L.; PHAM, D.; LEMAIRE, P.; MASSABUAU, J. C. A soft

technology to improve survival and reproductive performance of Litopenaeus stylirostris by counterbalancing physiological disturbances associated with handling stress. Aquaculture, Amsterdam, v. 260, p. 181–193, Dec. 2006.

WELKER, T. L.; LIM, C.; YILDIRIM-AKSOY, M.; KLESIUS, P. H. Susceptibility of Nile tilapia (Oreochromis niloticus) fed with dietary sodium chloride to nitrite toxicity.

Aquaculture International, New York, v. 20, p. 159–176, Feb. 2012.

WYBAN, J. A.; SWEENEY, J. N. Intensive Shrimp Production Technology. High Health Aquaculture Inc., Hawaii. 158 p., 1991.

XIE, S. W.; TIAN, L. X.; JIN, Y.; YANG, H. J.; LIANG, G. Y.; LIU, Y. J. Effect of glycine supplementation on growth performance, body composition and salinity stress of juvenile Pacific white shrimp, Litopenaeus vannamei fed low fishmeal diet. Aquaculture,

Amsterdam, v. 418-419, p. 159–164, Jan. 2014.

YE, L.; JIANG, S.; ZHU, X.; YANG, Q.; WEN, W.; WU, K. Effects of salinity on growth and energy budget of juvenile Penaeus monodon. Aquaculture, Amsterdam, v. 290, p. 140– 144, May 2009.

ZHANG, S.; DONG, S.; WANG, F. The effects of salinity and food on carbon budget of

Penaeus chinensis. J. Fish., [s.l.], v. 23, p. 144–149, 1999.

ZHOU, X. X.; ZHANG, J. Y.; LIU, S. L.; DING, Y. T. Supplementation of sodium chloride in diets to improve the meat quality of Pacific white shrimp, Litopenaeus vannamei, reared in low-salinity water. Aquaculture Research, New Jersey, v. 45, p. 1187–1195, Jun. 2014.

Documentos relacionados