• Nenhum resultado encontrado

A dieta HL+ termolizada com 50% de lipídios administrada por um período de

60 dias foi eficiente na indução da esteatose hepática nos animais.

O uso das fontes lipídicas óleo de peixe e óleo de TCM nas proporções utilizadas nas dietas influenciou de diferentes modos o acúmulo hepático de lipídios e o estresse oxidativo. A adição de 25% de óleo de peixe na dieta dos animais resultou em efeito benéfico devido aos menores valores de gordura total e TG hepáticos, mas verificou-se acúmulo de colesterol, maior peroxidação lipídica hepática e depleção de Vitamina E sérica. Apesar do acúmulo significativo de gordura hepática, o óleo de TCM (25%) foi associado à prevenção do acúmulo excessivo de TG, menor acúmulo de colesterol, à menor peroxidação lipídica hepática e maiores valores de antioxidantes.

No entanto, quando o óleo de TCM e óleo de peixe foram utilizados em associação na proporção de 15% e 10%, respectivamente, verificou-se efeito negativo devido ao acúmulo de gordura hepática tanto na forma de TG quanto de colesterol, maior peroxidação lipídica hepática e, consequentemente, maior valor de GSH e menor de vitamina E.

As alterações séricas em relação às frações lipídicas, peroxidação lipídica e antioxidantes não refletiram as alterações hepáticas encontradas. Portanto, as dosagens apenas no soro podem não refletir as alterações metabólicas que ocorrem no fígado. Os resultados encontrados no presente estudo servem de alerta para os riscos da suplementação de fontes lipídicas associadas (óleo de peixe + óleo de TCM), uma vez que os estudos realizados em humanos ainda são escassos.

As perspectivas de estudos futuros são avaliar as alterações metabólicas da dieta HL+ contendo o óleo de peixe e óleo de TCM em associação com diferentes proporções para verificar se a alteração dos percentuais na dieta poderia ter influência no acúmulo de lipídios e estresse oxidativo hepáticos.

Referências

Bibliográficas

Referências Bibliográficas

AHMED, U.; REDGRAVE, T. G.; OATES, P.S. Effect of dietary fat to produce non- alcoholic fatty liver in the rat. Journal of Gastroenterology and Hepatology. v. 24, n. 8, p. 1463-71, 2009.

ALMEIDA, B.B. Ações do óleo de peixe e triglicerídeos de cadeia média na esteatose hepática e estresse oxidativo induzidos pela dieta hiperlipídica em ratos. 2011. 121 p. : il. Dissertação (Mestrado em Clínica Médica) - Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 2011.

ALMEIDA, M.E.F.; et al. Efeitos do estresse auditivo e da dieta hipercalórica sobre o peso corporal, lipídios e glicemia de ratos wistar. Alimentos e Nutrição. v. 22, n. 3, p. 359-365, 2011.

ANDREOLI, M. F.; et al. Conjugated Linoleic Acid Reduces Hepatic Steatosis and RestoresLiver Triacylglycerol Secretion and the Fatty Acid Profile During Protein Repletion in Rats. Lipids. v. 45, n. 11, p. 1035-45, 2010.

___________. Effects of CLA at different dietary fat levels on the nutritional status of rats during protein repletion. Nutrition. v. 23, n. 11-12, p. 827-35, 2007.

ANGULO P.; et al. Independent predictors of liver fibrosis in patients with nonalcoholic steatohepatitis. Hepatology. v. 30, p. 1356-62, 1999.

___________. Nonalcoholic fatty liver disease. The New England Journal of Medicine. v. 346, n. 16, p. 1221-29, 2002.

AOYAMA, T.; NOSAKA, N.; KASAI, M. Research on the nutritional characteristics of medium-chain fatty acids. The Journal of Medical Investigation. v. 54, n. 3-4, p. 385-8, 2007.

ARNAUD, J.; et al. Simultaneous determination of retinol, α-tocopherol and β- carotene in serum by isocratic high-performance liquid chromatography. Journal of chromatography. v. 572, n. 1-2, p. 103-116, 1991.

ASRIH, M.; JORNAYVAZ, F.R. Diets and nonalcoholic fatty liver disease: The good and the bad. Clinical Nutrition. v. 33, p. 186-190, 2014.

ASSIS, A.M.; et al. Ω3-Polyunsaturated fatty acids prevent lipoperoxidation, modulate antioxidant enzymes, and reduce lipid content but do not alter glycogen metabolism in the livers of diabetic rats fed on a high fat thermolyzed diet. Molecular and Cellular Biochemistry. v. 361, n. 1-2, p. 151-60, 2012.

___________. High Fat and Highly Thermolyzed Fat Diets Promote Insulin Resistance and Increase DNA Damage in Rats. Experimental Biology and Medicine. v. 234, p. 1296-1304, 2009.

BACH, A. C.; BABAYAN, V. K. Medium-chain triglycerides: an update. The American Journal of Clinical Nutrition. v. 36, n. 5, p. 950-62, 1982.

BARGUT, T.C.L.; et al. Effects of a Diet Rich in n-3 Polyunsaturated Fatty Acids on Hepatic Lipogenesis and Beta-Oxidation in Mice. Lipids. v. 49, n. 5, p. 431-44, 2014.

BASARANOGLU, M.; BASARANOGLU, G.; SENTÜRK, H. From fatty liver to fibrosis: A tale of “second hit”. World Journal of Gastroenterology. v. 19, n. 8, p. 1158- 1165, 2013.

BEERMANN, C.; et al. Short term effects of dietary medium-chain fatty acids and n-3 long-chain polyunsaturated fatty acids on the fat metabolism of healthy volunteers. Lipids in Health and Disease. v. 2, p. 10, 2003.

BENANI, A.; et al. Food Intake Adaptation to Dietary Fat Involves PSA-Dependent Rewiring of the Arcuate Melanocortin System in Mice. The Journal of Neuroscience. v. 32, n. 35, p. 11970 –11979, 2012.

BERNARDES, D., et al. Efeitos da dieta hiperlipídica e do treinamento de natação sobre o metabolismo de recuperação ao exercício em ratos. Revista Brasileira de Educação Física e Esporte. v.18, n.2, p.191-200, 2004.

BLIGH, E.G.; DYER, W.J. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemitry and Physiology. v. 37, n. 8, p. 911-7, 1959. BOUZIANAS, D.G.; BOUZIANA, S.D.; HATZITOLIOS, A. Potential treatment of human nonalcoholic fatty liver disease with long-chain omega-3 polyunsaturated fatty acids. Nutrition Reviews. v. 71, n. 11, p. 753–771, 2013.

BRUNT E.M.; TINIAKOS, G. Histopathology of nonalcoholic fatty liver disease. World Journal of Gastroenterology. v. 16, n. 42, p. 5286-5296, 2010.

BUETTNER, R.; et al. Defining high-fat-diet rat models: metabolic and molecular effects of different fat types. Journal of Molecular Endocrinology. v. 36, n. 3, p. 485-501, 2006.

CARMIEL-HAGGAI M.; CEDERBAUM A.I.; NIETO N. A high-fat diet leads to the progression of non-alcoholic fatty liver disease in obese rats. The FASEB Journal. v.19, n. 1, p. 136-8, 2005.

CARPENTIER Y.A.; et al. Rapid Reduction of Liver Steatosis in n3 Depleted Rats Injected with a Novel Lipid Emulsion. Hormone and Metabolic Research. v. 40, p. 875-879, 2008.

CARVALHANA S.; MACHADO, M.V.; CORTEZ-PINTO, H. Improving dietary patterns in patients with nonalcoholic fatty liver disease. Current Opinion in Clinical Nutrition and Metabolic Care. v. 15, p. 468–473, 2012.

CASTRO, G.S.F.; et al. Characterization of nonalcoholic fatty liver disease in rats for low protein diet induced. Medicina (Ribeirão Preto). v. 42, n. 1, p. 48-53, 2009. ____________________. Omega-3 improves glucose tolerance but increases lipid peroxidation and DNA damage in hepatocytes of fructose-fed rats. Applied Physiology, Nutrition, and Metabolism. v. 37, n. 2, p. 233-40, 2012.

CATER, N.B.; HELLER, H.J.; DENKE, M.A. Comparison of the effects of medium- chain triacylglycerols, palm oil, and high oleic acid sunflower oil on plasma triacylglycerol fatty acids and lipid and lipoprotein concentrations in humans. The American Journal of Clinical Nutrition. v. 65, p. 41-5, 1997.

CATON, S.J.;et al. Low-carbohydrate high-fat diets: regulation of energy balance and body weight regain in rats. Obesity (Silver Spring). v. 17, n. 2, p. 283-9, 2009. CAVE, M.; et al. Nonalcoholic fatty liver disease: predisposing factors and the role of nutrition. Journal of Nutritional Biochemistry. v. 18, p. 184-195, 2007.

CHALASANI, N., et al. The Diagnosis and Management of Non-alcoholic Fatty Liver Disease: Practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. The American Journal of Gastroenterology. v. 107, p. 811– 826, 2012.

CHANEZ, M.; et al. Metabolic effects in rats of a diet with a moderate level of medium-chain triglycerides. The Journal of Nutrition. v. 121, n. 5, p. 585-94, 1991. CHARLTON M.; et al. Apolipoprotein synthesis in nonalcoholic steatohepatitis. Hepatology. v. 35, p. 898-904, 2002.

CHAVES, G.V. Association Between Liver Vitamin A Reserves and Severity of Nonalcoholic Fatty Liver Disease in the Class III Obese Following Bariatric Surgery.

Obesity Surgery. v. 24, p. 219–224, 2014.

CINTRA, D.E.; et al. Unsaturated Fatty Acids Revert Diet-Induced Hypothalamic Inflammation in Obesity. Plos One. v. 7, n. 1, e30571, p. 1-15, 2012.

CLARKE, S.D. Nonalcoholic Steatosis and Steatohepatitis. I. Molecular mechanism for polyunsaturated fatty acid regulation of gene transcription. American Journal of Physiology. Gastrointestinal and Liver Physiology. v. 281, p. G865–G869, 2001. COSTA, C.M.; DOS SANTOS, R.C.C.; LIMA, E.S. A simple automated procedure for thiol measurement in human and serum samples. O Jornal Brasileiro de Patologia e Medicina Laboratorial. v. 42, p. 345-350, 2006.

COTRIM, H.; et al. Nonalcoholic fatty liver disease in Brasil. Clinical and histological profile. Annals of Hepatology. v. 10, n. 1, p. 33-37, 2011.

CUSI, K. Nonalcoholic fatty liver disease in type 2 diabetes mellitus. Current Opinion in Endocrinology, Diabetes & Obesity. v. 16, p. 141–149, 2009.

DARA, L.; JI, C; KAPLOWITZ, N. The Contribution of Endoplasmic Reticulum Stress to Liver Diseases. Hepatology. v. 53, p. 1752-1763, 2011.

DAY, C.P.; JAMES, O. Steatohepatitis: a tale of two “hits”? Gastroenterology. v. 114, p. 842–5, 1998.

DEMINICE, R; et al. Effects of a Low-Protein Diet on Plasma Amino Acid and Homocysteine Levels and Oxidative Status in Rats. Annals of Nutrition and Metabolism. v. 54, p. 202-207, 2009.

DONNELLY, K.L.; et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. The Journal of Clinical Investigation. v. 115, p. 1343–51, 2005.

DOWMAN, J. K.; TOMLINSON, J. W.; NEWSOME P.N. Pathogenesis of non- alcoholic fatty liver disease. QJM: monthly journal of the Association of Physicians. v. 103, p. 71-83, 2010.

DULLOO, A.G.; et al. Differential effects of high-fat diets varying in fatty acid composition on the efficiency of lean and fat tissue deposition during weight recovery after low food intake. Metabolism. v. 44, n. 2, p. 273-9, 1995.

DUVNJAK, M.; et al. Therapy of nonalcoholic fatty liver disease. Journal of physiology and pharmacology. v. 60, n. 7, p. 57-66, 2009.

EROGLU, A.; HARRISON, E.H. Carotenoid metabolism in mammals, including man: formation, occurrence, and function of apocarotenoids. Journal of Lipid Research. v. 54, n. 7, p. 1719-30, 2013.

FAN, J.G.; CAO, H.X. Role of diet and nutritional management in non-alcoholic fatty liver disease. Journal of Gastroenterology and Hepatology. v. 28, n. 4, p. 81–87, 2013.

FAN, J.G.; QIAO, L. Commonly used animal models of non-alcoholic steatohepatitis. Hepatobiliary and Pancreatic Disease International. v. 8, n. 3, p. 233-240, 2009.

FAN X.; et al. Triglyceride/highdensity lipoprotein cholesterol ratio: a surrogate to predict insulinresistance and lowdensity lipoprotein cholesterol particle size in nondiabetic patients with schizophrenia. The Journal of Clinical Psychiatry. v. 72, n. 6, p. 806-12, 2011.

FERRAMOSCA, A.; ZARA, V. Modulation of hepatic steatosis by dietary fatty acids. World Journal of Gastroenterology. v. 20, n. 7, p. 1746-1755, 2014.

FIERBINTEANU-BRATICEVICI, C.; et al. Predictive Factors for Nonalcoholic Steatohepatitis (NASH) in Patients with Nonalcoholic Fatty Liver Disease (NAFLD). Journal of Gastrointestinal and Liver Diseases. v. 20, n. 2, p. 153-159, 2011.

FLOYD, A. G. Top ten considerations in the development of parenteral emulsions. Pharmaceutical Science and Technology Today. v. 4, n. 2, p. 134-143, 1999. FORD L; et al. The value of measuring serum cholesterol-adjusted vitamin E in routine practice. Annals of Clinical Biochemistry. v. 43, p. 130–134, 2006.

FOUFELLE, F.; et al. Effect of diets rich in medium-chain and long-chain triglycerides on lipogenic-enzyme gene expression in liver and adipose tissue of the weaned rat. European Journal of Biochemistry. v. 208, n. 2, p. 381-7, 1992.

FREITAS, M.C. Efeitos do consumo de dieta de cafeteria durante a gestação e lactação sobre o crescimento somático e parâmetros metabólicos em ratos neonatos. 2011. 55 f. Dissertação (Mestrado) – Universidade Federal da Bahia. Escola de Nutrição. Salvador, 2011.

GABRIEL, H.C.; ALEXANDER, J.C.; VALLI, V.E. Biochemical and Histological Effects of Feeding Thermally Oxidized Rapeseed Oil and Lard to Rats. Canadian Journal of comparative Medicine. v. 41, p. 98-106, 1977.

GALLO-TORRES, H.E.; LUDORF, J.; BRIN, M. The effect of medium-chain triglycerides on the bioavailability of vitamin E. International Journal for Vitamin and Nutrition Research. v. 48, n. 3, p. 240-1, 1978.

GARREL, C; et al. Omega-3 fatty acids enhance mitochondrial superoxide dismutase activity in rat organs during post-natal development. The International Journal of Biochemistry and Cell Biology. v. 44, p. 123-131, 2012.

GEELEN, M.J.; et al. Dietary medium-chain fatty acids raise and (n-3) polyunsaturated fatty acids lower hepatic triacylglycerol synthesis in rats. The Journal of Nutrition. v. 125, n. 10, p. 2449-56, 1995.

GENTILE, C. L.; PAGLIASSOTTI, M. J. The role of fatty acids in the development and progression of nonalcoholic fatty liver disease. The Journal of Nutritional Biochemistry. v. 19, n. 9, p. 567-76, 2008.

GERARD-MONNIER D.; et al. Reactions of 1-methyl-2-phenylindole with malondialdehyde and 4-hydroxyalkenals. Analytical applications to a colorimetric assay of lipid peroxidation. Chemical Research in Toxicology. v. 11, n. 10, p. 1176- 83, 1998.

GODA T.; YASUTAKE, H.; TAKASE, S. Dietary fat regulates cellular retinol-binding protein II gene expression in rat jejunum. Biochimica et Biophysica Acta. v. 1200, n. 1, p. 34-40, 1994.

GOULET, O.; et al. A new intravenous fat emulsion containing soybean oil, medium- chain triglycerides, olive oil, and fish oil: a single-center, double-blind randomized study on efficacy and safety in pediatric patients receiving home parenteral nutrition. Journal of Parenteral and Enteral Nutrition. v. 34, n. 5, p. 485-95, 2010.

GRATTAGLIANO, I.; et al. Managing nonalcoholic fatty liver disease: recommendations for family physicians. Canadian Family Physician. v. 53, n. 5, p 857-63, 2007.

HAN, J.; et al. Medium-chain oil reduces fat mass and down-regulates expression of adipogenic genes in rats. Obesity Research. v. 11, n. 6, p. 734-44, 2003.

HAYES, K.C. Medium-chain triacylglycerols may not raise cholesterol. The American Journal of Clinical Nutrition. v. 72, p. 1583–93, 2000.

HENSLER, M.; et al. The inhibition of fat cell proliferation by n-3 fatty acids in dietary obese mice. Lipids in Health and Disease. v. 10, p. 128, 2011

HIJONA, E.; et al. Biochemical determination of lipid content in hepatic steatosis by the Soxtec method. World Journal of Gastroenterology. v. 16, n. 2, p. 1495-9, 2010.

ICHIMURA, M.; et al. High-fat and high-cholesterol diet rapidly induces nonalcoholic steatohepatitis with advanced fibrosis in Sprague-Dawley rats. Hepatology Research. 2014. In press.

INGENBLEEK, Y.; HARDILLIER, E.; JUNG, L. Subclinical protein malnutrition is a determinant of hyperhomocysteinemia. Nutrition. v. 18, p. 40–46, 2002.

JELINEK, D.; et al. A high-fat diet Supplemented with fish oil improves metabolic features associated with type 2 diabetes. Nutrition. v. 29, n. 9, p. 1159-65, 2013. JOU, J.; CHOI, S.S.; DIEHL, A.M. Mechanisms of Disease Progression in Nonalcoholic Fatty Liver Disease. Seminars In Liver Disease. v. 28, n. 4, p. 370-9, 2008.

JULIUS, U. Fat modification in the diabetes diet. Experimental and Clinical Endocrinology and Diabetes. v. 111, p. 60 –5, 2003.

JUMP, D.B. Fatty acid regulation of hepatic lipid metabolism. Current Opinion in Clinical Nutrition and Metabolic Care. v. 14, p. 115–120, 2011.

KANG, M.; AHN, H.; LEE, S. Effects of polyunsaturated/saturated fatty acid ratio and antioxidant supplementation on hepatic TBARS and enzyme activities under the maintenance of dietary peroxidizability index value in young and adult rats. Annals of Nutrition and Metabolism. v. 49, n. 5, p. 304-311, 2005.

KANURI, G.; BERGHEIM, I. In vitro and in vivo models of non-alcoholic fatty liver disease (NAFLD). International Journal of Molecular Science. V. 14, p. 11963– 11980, 2013.

KIRK, E.; et al. Dietary fat and carbohydrates differentially alter insulin sensitivity during caloric restriction. Gastroenterology. v. 136, n. 5, p. 1552-1560, 2009.

KLEINER, D.E.; et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. v. 41, p. 1313-1321, 2005.

KRAVCHENKO, L.V.; et al. Effects of omega-3 polyunsaturated fatty acids on antioxidant capacity in rats. Voprosy Pitananiia. v. 82, n. 2, p. 4-9, 2013.

KUWAHATA, M.; et al. Dietary medium-chain triglycerides attenuate hepatic lipid deposition in growing rats with protein malnutrition. Journal of Nutritional Science and Vitaminology (Tokyo). v. 57, n. 2, p. 138-43, 2011.

KWON, D.H.; et al. Dietary protein restriction induces steatohepatitis and alters leptin/signal transducers and activators of transcription 3 signaling in lactating rats. The Journal of Nutritional Biochemistry. v. 23, n. 7, p. 791-9, 2012.

LARTER, C.Z.; YEH, M.M. Animal models of NASH: Getting both pathology and metabolic context right. Journal of Gastroenterology and Hepatology. v. 23, p. 1635–1648, 2008.

LAVAU, M.M.; HASHIM, S. A. Effect of medium chain triglyceride on lipogenesis and body fat in the rat. The Journal of Nutrition. v. 108, n.4, p. 613-20, 1978.

LEONARDI, D.S.; et al. Low-Carbohydrate and High-Fat Diets on the Promotion of Hepatic Steatosis in Rats. Experimental and Clinical Endocrinology and Diabetes. v. 118, n. 10, p. 724-9, 2010.

LEVY, J.R.; CLORE, J.N.; STEVENS, W. Dietary n-3 polyunsaturated fatty acids decrease hepatic triglycerides in Fischer 344 rats. Hepatology. v. 39, n. 3, p. 608-16, 2004.

LIEBER, C.S.; et al. Beneficial effects versus toxicity of medium-chain triacylglycerols in rats with NASH. Journal Hepatology. v. 48, n. 2, p. 318-26, 2008.

________________. Role of medium-chain triglycerides in the alcohol-mediated cytochrome P450 2E1 induction of mitochondria. Alcoholism Clinical and Experimental Research. v. 31, n. 10, p. 1660-8, 2007.

LIONETTI, L.; et al. High-Lard and High-Fish-Oil Diets Differ in Their Effects on Function and Dynamic Behaviour of Rat Hepatic Mitochondria. PLoS One. v. 9, n. 3, p. e92753, 2014

LOGUERCIO, C.; et al. Non-alcoholic fatty liver disease in an area of southern Italy: main clinical, histological, and pathophysiological aspects. Journal of hepatology. v. 35, p. 568–574, 2001.

LOMONACO, R.; et al. Role of ethnicity in overweight and obese patients with nonalcoholic steatohepatitis. Hepatology. v. 54, n. 3, p. 837–45, 2011.

_________________. Nonalcoholic Fatty Liver Disease: Current Issues and Novel Treatment Approaches. Drugs. v. 73, p. 1–14, 2013.

LOPEZ, D.; et al. Long-chain n-3 polyunsaturated fatty acid from fish oil modulates aortic nitric oxide and tocopherol status in the rat. The British Journal of Nutrition. v. 100, n. 4, p. 767-75, 2008.

LUCI, S.; et al. Feeding of a deep-fried fat causes PPARa activation in the liver of pigs as a non-proliferating species. The British Journal of Nutrition. v. 97, p. 872– 882, 2007.

NANNIPIERI, M.; et al. Pattern of Expression of Adiponectin Receptors in Human Liver and its Relation to Nonalcoholic Steatohepatitis. Obesity Surgery. v. 19, p. 467–474, 2009.

MACHADO, M.V.; et al. Blood oxidative stress markers in nonalcoholic steatohepatitis and how it correlates with diet. Scandinavian Journal of Gastroenterology. v. 43, p. 95–102, 2008.

MOORE, J.B. Symposium 1: Overnutrition: consequences and solutions Non- alcoholic fatty liver disease: the hepatic consequence of obesity and the metabolic syndrome. Proceedings of the Nutrition Society. v. 69, p. 211–220, 2010.

MOURÃO, D.M.; et al. Biodisponibilidade de vitaminas lipossolúveis. Revista de Nutrição. v.18, n. 4, p. 529-539, 2005.

MUSSO, G.; et al. Dietary habits and their relations to insulin resistance and postprandial lipemia in nonalcoholic steatohepatitis. Hepatology. v. 37, n. 4, p. 909- 16, 2003.

NAKAMURA, A.; TERAUCHI, Y. Lessons from Mouse Models of High-Fat Diet- Induced NAFLD. International Journal of Molecular Sciences. v. 14, p. 21240- 21257, 2013.

NARCISO-SCHIAVON, J.L.; et al. Clinical characteristics associated with hepatic steatosis on ultrasonography in patients with elevated alanine aminotransferase. Sao Paulo Medical Journal. v. 128, n. 6, p. 342-7, 2010.

NEUSCHWANDER-TETRI, B. A.; CALDWELL, S.H. Nonalcoholic Steatohepatitis: Summary of an AASLD Single Topic Conference. Hepatology. v. 37, n. 5, 2003.

NSEIR, W.; HELLOU, E.; ASSY, N. Role of diet and lifestyle changes in nonalcoholic fatty liver disease. World Journal of Gastroenterology. v. 20, n. 28, p. 9338-9344, 2014.

OKAWA, H.; MORITA, T.; SUGIYAMA, K. Increased plasma homocysteine concentration in rats from a low casein diet. Biosciece Biotechnology Biochemistry. v. 70, p. 3050–3053, 2006.

OLIVEIRA, C.P.; et al. Lipid peroxidation in bariatric candidates with nonalcoholic fatty liver disease (NAFLD)— preliminary findings. Obesity Surgery. v. 15, p. 502–5, 2005.

OTTO, D.A.; et al. Apparent inhibition of hepatic triacylglycerol secretion, independent of synthesis, in high-fat fish oil-fed rats: role for insulin. Biochimica et Biophysica Acta. v. 1082, n. 1, p. 37-48, 1991.

PAMPLONA, R.; et al. Mitochondrial membrane peroxidizability index is inversely related to maximum life span in mammals. Journal of Lipid Research. v. 39, n. 10, p. 1989-94, 1998.

PAREKH, S.; ANANIA, F. Abnormal Lipid and Glucose Metabolism in Obesity: Implications for Nonalcoholic Fatty Liver Disease. Gastroenterology. v. 132, n. 6, p. 2191-2207, 2007.

PATEL, R.; et al. Effect of Dietary Advanced Glycation End Products on Mouse Liver. PLoS One. v. 7, n. 4, p. e35143, 2012.

PETTINELLI, P.; OBREGÓN, A.M.; VIDELA, L.A. Molecular mechanisms of steatosis in nonalcoholic fatty liver disease. Nutrición Hospitalaria. v. 26, n. 3, p. 441-450, 2011.

PICCHI, M.G.; et al. A high-fat diet as a model of fatty liver disease in rats. Acta Cirúrgica Brasileira. v. 26, p. 25-30, 2011. Supplement 2.

PICKOVA, J. Importance of knowledge on lipid composition of foods to support development towards consumption of higher levels of n-3 fatty acids via freshwater fish. Physiological Research. v. 58, p. S39-45, 2009. Supplement 1.

POPESCU, L.A.; et al. Effect of diet and omega-3 fatty acids in NAFLD. Romanian Journal of Morphology and Embryology. v. 54, p. 785–790, 2013. Supplement 3. QUEIROZ, J.C.F.; et al. Controle da adipogênese por AGs. Arquivos Brasileiros de Endocrinologia & Metabologia.v. 53, n. 5, p. 582-94, 2009.

RAHIMI, R.S.; LANDAVERDE, C. Nonalcoholic Fatty Liver Disease and the Metabolic Syndrome: Clinical Implications and Treatment. Nutrition in Clinical Practice. v. 28, n. 1, p. 40-51, 2013.

RONIS, M.J.; et al. Medium chain triglycerides dose-dependently prevent liver pathology in a rat model of non-alcoholic fatty liver disease. Experimental Biology and Medicine. v. 238, n. 2, p. 151–162, 2013.

ROODENBURG, A.J.; et al. Amount of fat in the diet affects bioavailability of lutein esters but not of alpha-carotene, beta-carotene, and vitamin E in humans. The American Journal of Clinical Nutrition. v. 71, n. 5, p. 1187-93, 2000.

ROYNETTE, C. E.; et al. Structured medium and long chain triglycerides show short- term increases in fat oxidation, but no changes in adiposity in men. Nutrition, Metabolism and Cardiovascular Disease. v. 18, n. 4, p. 298-305, 2008.

SAITO, M.; NAKATSUGAWA, K. Increased susceptibility of liver to lipid peroxidation after ingestion of a high fish oil diet. International Journal for Vitamin and Nutrition Research. v. 64, n. 2, p. 144-51, 1994.

SANTOS, J.C.; et al. Development of Nonalcoholic Hepatopathy: Contributions of Oxidative Stress and Advanced Glycation End Products. International Journal of Molecular Sciences. v. 14, n. 10, p. 19846-19866, 2013.

SANYAL, A.J.; et al. End points and clinical trial design for nonalcoholic steatohepatitis. Hepatology. v. 54, n. 1, p. 344 – 53, 2011.

____________________. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology. v. 120, n. 5, p. 1183–92, 2001.

SARASWATHI, V.; et al. Fish oil increases cholesterol storage in white adipose tissue with concomitant decreases in inflammation, hepatic steatosis, and atherosclerosis in mice. The Journal of Nutrition. v. 137, n. 7, p. 1776-82, 2007. SCHUPPAN, D.; SCHATTENBERG, J.M. Non-alcoholic steatohepatitis: Pathogenesis and novel therapeutic approaches. Journal of Gastroenterology and Hepatology. v. 28, p. 68–76, 2013. Supplement 1.

SCORLETTI, E.; BYRNE, C.D. Omega-3 Fatty Acids, Hepatic Lipid Metabolism, and Nonalcoholic Fatty Liver Disease. Annual Review of Nutrition. v. 33, p. 231–48, 2013.

SEALLS, W.; et al. Dietary polyunsaturated fatty acids (C18:2 omega6 and C18:3 omega3) do not suppress hepatic lipogenesis. Biochimica et Biophysica Acta. v. 1781, n. 8, p. 406-14, 2008.

SEDLAK, J.; LINDSAY, R. H. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Analitycal Biochemistry. v. 25, n. 1, p. 192-205, 1968.

SENGUPTA, A.; GHOSH, M. Comparison of native and capric acid-enriched mustard oil effects on oxidative stress and antioxidant protection in rats. British Journal of Nutrition. v. 107, n. 6, p. 845–849, 2012.

SHANGARI, N.; et al. A thermolyzed diet increases oxidative stress, plasma – aldehydes and colonic inflammation in the rat. Chemico-Biological Interactions. n. 169, p. 100–109, 2007.

SHINOHARA H.; et al. Effect of randomly interesterified triacylglycerols containing medium- and long-chain fatty acids on energy expenditure and hepatic fatty acid metabolism in rats. Bioscience, Biotechnology and Biochemistry. v. 69, n. 10, p. 1811-8, 2005.

SINITSKAYA, N.; et al. Increasing the fat-to-carbohydrate ratio in a high-fat diet prevents the development of obesity but not a prediabetic state in rats. Clinical Science (London). v. 113, n. 10, p. 417-25, 2007.

SCHUGAR, R.C.; et al. Role of Choline Deficiency in the Fatty Liver Phenotype of Mice Fed a Low Protein, Very Low Carbohydrate Ketogenic Diet. PLoS ONE. v. 8, n. 8, p. e74806, 2013.

SUGIHARA, N.; et al. High peroxidative susceptibility of fish oil polyunsaturated fatty

Documentos relacionados