• Nenhum resultado encontrado

 Através da caracterização do concentrado proteico de ervilha foi possível identificar uma grande quantidade de fração de proteína insolúvel em água, o que teoricamente limita a sua capacidade de atuar como agente emulsificante;

 O concentrado proteico de ervilha foi utilizado como agente emulsificante em diferentes concentrações na produção de emulsões O/A; a concentração mínima de proteína necessária para a produção de uma emulsão suficientemente estável durante 2 horas foi de 2,4% (m/m). De forma geral, floculação e cremeação foram os fenômenos de desestabilização predominantes nas emulsões;

As micropartículas produzidas por spray drying a partir de emulsões contendo 2,4% e 4,8% (m/m) de concentrado proteico de ervilha apresentaram elevados valores de retenção de óleo essencial de laranja. Não foram verificados efeitos significativos nas características físico-químicas das micropartículas, devido à variação da quantidade de proteína na formulação e temperatura de secagem;

 O estudo da porosidade das micropartículas destacou que não houve efeito significativo da variação da concentração de proteína em propriedades como área superficial específica, diâmetro médio e volume de poro;

 As micropartículas produzidas apresentaram boa capacidade de retenção de óleo essencial de laranja durante ensaio de estabilidade à estocagem. Após quatro semanas de ensaio as matrizes retiveram cerca de 58% do óleo adicionado inicialmente à formulação. A produção de compostos de oxidação durante a estocagem das micropartículas foi limitada à 8%, referente à quantidade de limoneno ainda presente nas micropartículas, após quatro semanas;

 O estudo de estabilidade apresentou boa correlação com o estudo de porosidade das micropartículas, confirmando que a variação da concentração de proteína não resultou na alteração das propriedades de barreira dos sistemas particulados produzidos.

SUGESTÕES PARA TRABALHOS FUTUROS

 Explorar o uso da proteína de ervilha como emulsificante para a produção de emulsões de estabilidade prolongada, através de métodos como sonicação por ultrassom e homogeneização a alta pressão;

 Avaliar o efeito do uso combinado da proteína de ervilha com outros emulsificantes naturais com o objetivo de detectar possíveis interações sinérgicas;

 Estudar o desempenho da proteína de ervilha na produção de emulsões para a encapsulação de outros ativos lipofílicos como, por exemplo, óleos ricos em ácidos graxos poli-insaturados;

 Estudar o desenvolvimento de uma metodologia eficiente e rápida para a determinação da quantidade de óleo volátil presente na superficie de micropartículas produzidas por

spray drying;

Avaliar se o processo de secagem em spray dryer é capaz de alterar o perfil de voláteis do óleo essencial de laranja encapsulado;

 Realizar a aplicação das micropartículas contendo óleo essencial de laranja em matrizes alimentares e avaliar se o processo de encapsulação é capaz de preservar o óleo encapsulado durante etapas de processamento, como por exemplo, o forneamento.

REFERÊNCIAS BIBLIOGRÁFICAS

ABERKANE, L.; ROUDAUT, G.; SAUREL, R. Encapsulation and Oxidative Stability of PUFA-Rich Oil Microencapsulated by Spray Drying Using Pea Protein and Pectin. Food and

Bioprocess Technology, v. 7, p. 1505–1517, 2014.

ANANTHARAMKRISHNAN, V.; REINECCIUS, G. A. Pro-oxidative effects of spray drying orange oil in a bench top dryer. Drying Technology, v. 36, p. 1179-1185, 2018. ADAMIEC, J.; KALEMBA, D. Analysis of Microencapsulation Ability of Essential Oils during Spray Drying. Drying Technology, v.24, p. 1127-1132, 2006.

ADEBIYI, A. P.; ALUKO, R. E. Functional properties of protein fractions obtained from commercial yellow field pea (Pisum sativum L.) seed protein isolate. Food Chemistry, v. 128, p. 902–908, 2011.

AGHBASHLO, M. et al. Influence of Wall Material and Inlet Drying Air Temperature on the Microencapsulation of Fish Oil by Spray Drying. Food and Bioprocess Technology, v. 6, p. 1561-1569, 2013.

ASBAHANI, A. EL et al. Essential oils: From extraction to encapsulation. International

Journal of Pharmaceutics, v. 483, p. 220–243, 2015.

BAJAJ, P. R.; TANG, J.; SABLANI, S. S. Pea Protein Isolates: Novel Wall Materials for Microencapsulating Flaxseed Oil. Food and Bioprocess Technology, v. 8, p. 2418–2428, 2015.

BARAC, M. et al. Profile and functional properties of seed proteins from six pea (Pisum

sativum) genotypes. International Journal of Molecular Sciences, v. 11, p. 4973–4990,

2010.

BARAĆ, M. et al. Functional properties of pea (Pisum sativum, L.) protein isolates modified with chymosin. International Journal of Molecular Sciences, v. 12, p. 8372–8387, 2011. BHANDARI, B. R. et al. Flavor Encapsulation by Spray Drying: Application to Citral and Linalyl Acetate. Journal of Food Science, v. 57, p. 217-221, 1992.

BARANAUSKIEN, R. et al. Properties of oregano (Origanum vulgare L.), citronella (Cymbopogon nardus G.) and marjoram (Majorana hortensis L.)flavors encapsulated into milk protein-based matrices. Food Research International, v. 39, p. 413-425, 2006. BARRETT, E.P., JOYNER, L.G., HALENDA, P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of

the American Chemical Society, v. 73, p. 373-380, 1951.

BOTREL, D. A. et al. Evaluation of spray drying conditions on properties of

microencapsulated oregano essential oil. International Journal of Food Science and

BOUGHENDJIOUA, H.; DJEDDI, S. Fourier Transformed Infrared Spectroscopy Analysis of Constituents of Lemon Essential Oils from Algeria. American Journal of Optics and

Photonics, v. 5, p. 30-35, 2017.

BOYE, J. I. et al. Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food

Research International, v. 43, p. 537–546, 2010.

BRINGAS-LANTIGUA et al. Influence of Spray-Dryer Air Temperatures on Encapsulated Mandarin Oil. Drying Technology, v.29, p. 520-526, 2011.

BRUNAUER, S., EMMETT, P.H., TELLER, E. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, v. 60, p. 309-319, 1938.

CALEJA, C. et al. Fortification of yogurts with different antioxidant preservatives: A

comparative study between natural and synthetic additives. Food Chemistry, v. 210, p. 262– 268, 2016.

CANO-CHAUCA, M. et al. Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science and

Emerging Technologies, v. 6, p. 420-428, 2005.

CARMONA, P. A. O. Secagem por atomização e microencapsulação de óleo de laranja: estudo das propriedades da emulsão e do tipo de material de parede sobre as características do pó e a estabilidade do D-Limoneno. Dissertação de mestrado. Programa de pós-graduação em Engenharia de Alimentos. Universidade Estadual de Campinas, Campinas, SP, 2011.

CARMONA, P. A. O.; TONON, R. V.; DA CUNHA, R. L.; HUBINGER, M. D. Influence of Emulsion Properties on the Microencapsulation of Orange Essential Oil by Spray Drying.

Journal of Colloid Science and Biotechnology, v. 2, p. 1-10, 2013.

CAROCHO, M; BARREIRO, M. F.; FERREIRA, I. C. F. R. Adding Molecules to Food, Pros and Cons: A Review on Synthetic and Natural Food Additives. Comprehensive Reviews in

Food Science and Food Safety, v. 13, p. 377-399, 2014.

COSTA, A. M. M. et al. Effective stabilization of CLA by microencapsulation in pea protein.

Food Chemistry, v. 168, p. 157–166, 2015.

CHARVE, J.; REINECCIUS, G. A. Encapsulation performance of proteins and traditional materials for spray dried flavors. Journal of Agricultural and Food Chemistry, v. 57, p. 2486–2492, 2009.

CHANG, C. et al. Effect of pH on the inter-relationships between the physicochemical, interfacial and emulsifying properties for pea, soy, lentil and canola protein isolates. Food

Research International, v. 77, p. 360–367, 2015.

CHEN, G.; ZHANG, B. Hydrolysis of granular corn starch with controlled pore size. Journal

CHOI, K. O. et al. Spray-dried Conjugated Linoleic Acid Encapsulated with Maillard

Reaction Products of Whey Proteins and Maltodextrin. Food Science and Biotechnology, v. 19, p. 957-965, 2010.

DAMODARAN, S. Protein Stabilization of Emulsions and Foams. Journal of Food Science, v. 70, p. R54–R66, 2006.

DE ALMEIDA, M. M. C. et al. Textural, Color, Hygroscopic, Lipid Oxidation, and Sensory Properties of Cookies Containing Free and Microencapsulated Chia Oil. Food and

Bioprocess Technology, v. 11, p. 926-939, 2018.

DELADINO, L. et al. Corn starch systems as carriers for yerba mate (Ilex paraguariensis) antioxidants. Food and Bioproducts Processing, v. 94, p. 463-472, 2015.

DIAS, M. I.; FERREIRA, I. C. F. R.; BARREIRO, M. F. Microencapsulation of bioactives for food applications. Food & function, v. 6, p. 1035–1052, 2015.

ĐORĐEVIĆ, V. et al. Trends in Encapsulation Technologies for Delivery of Food Bioactive Compounds. Food Engineering Reviews, v. 7, p. 452-490, 2014.

DRUSCH, S. Sugar beet pectin: A novel emulsifying wall component for microencapsulation of lipophilic food ingredients by spray-drying. Food Hydrocolloids, v. 21, p. 1223-1228, 2007.

DRUSCH, S. et al. Differences in Free Volume Elements of the Carrier Matrix Affect the Stability of Microencapsulated Lipophilic Food Ingredients. Food Biophysics, v. 4 , p. 42-48, 2009.

DRUSCH, S. et al. New insights into the microencapsulation properties of sodium caseinate and hydrolyzed casein. Food Hydrocolloids, v. 27, p. 332-338, 2012.

FELIX, P. H. C. et al. Physicochemical and thermal stability of microcapsules of cinnamon essential oil by spray drying. Journal of Food Processing and Preservation, v. 41, p. FERRARI, C. C.; GERMER, S. P. M.; ALVIM, I. D.; VISSOTTO, F. Z.; AGUIRRE, J. MA. Influence of carrier agents on the physicochemical properties of blackberry powder produced by spray drying. International Journal of Food Science and Technology, v. 47, p. 1237– 1245, 2012.

FERNANDES, L. P. et al. Volatile Retention and Antifungal Properties of Spray-Dried Microparticles of Lippia sidoides Essential Oil. Drying Technology, v. 26, p. 1534-1542, 2008.

FERNANDES, R. V. B. et al. Effect of solids content and oil load on the microencapsulation process of rosemary essential oil. Industrial Crops and Products, v. 58, p. 173-181, 2014. FILIPSSON, S. F.; BARD, J.; KARLSSON, S. Concise International Chemical Assessment Document 5: Limonene. In: IPCS Concise International Chemical Assessment

FINNEY, J.; BUFFO, R.; REINECCIUS, G. A. Effects of Type of Atomization and Processing Temperatures on the Physical Properties and Stability of Spray-Dried Flavors.

JFS: Food Engineering and Physical Properties, v. 67, p. 1108-1114, 2002.

FISHER, K.; PHILLIPS, C. Potential antimicrobial uses of essential oils in food : is citrus the answer ? Trends in Food Science & Technology, v. 19, p. 156–164, 2008.

FRANCISCO, C. R. L. et al. Functionalization of yogurts with Agaricus bisporus extracts encapsulated in spray-dried maltodextrin crosslinked with citric acid. Food Chemistry, v. 245, p. 845–853, 2018.

FRASCARELI, et al. Effect of process conditions on the microencapsulation of coffee oil by spray drying. Food and Bioproducts Processing, v. 90, p. 413-424, 2012.

GARCIA, L. C.; TONON, R. V.; HUBINGER, M. D. Effect of oil in emulsion and

homogenization pressure on the microencapsulation of basil oil. Drying Technology, v. 30, p. 1413-1421, 2012.

GHARSALLAOUI, A. et al. Pea (Pisum sativum, L.) Protein Isolate Stabilized Emulsions: A Novel System for Microencapsulation of Lipophilic Ingredients by Spray Drying. Food and

Bioprocess Technology, v. 5, p. 2211–2221, 2012.

GHARSALLAOUI, A. et al. Utilisation of pectin coating to enhance spray-dry stability of pea protein-stabilised oil-in-water emulsions. Food Chemistry, v. 122, p. 447–454, 2010.

GIBBS, B. F. et al. Encapsulation in the food industry: a review. International Journal of

Food Sciences and Nutrition, v. 50, p. 213–224, 1999.

GUMUSTAS et al. Chapter 5: Effect of Polymer-Based Nanoparticles on the Assay of Antimicrobial Drug Delivery Systems. In: Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics. 1. Ed. Netherlands: Elsevier Inc., 2017, p. 67-108.

JAFARI, S. M. et al. Encapsulation efficiency of food flavours and oils during spray drying.

Drying Technology, v. 26, p. 816–835, 2008.

JAFARI, S. M.; HE, Y.; BHANDARI, B. Encapsulation of nanoparticles of d-limonene by spray drying: Role of emulsifiers and emulsifying techniques. Drying Technology, v. 25, p. 1079–1089, 2007.

JANISZEWSKA, E.; JEDLIŃSKA, A.; WITROWA-RAJCHERT, D. Effect of

homogenization parameters on selected physical properties of lemon aroma powder. Food

and Bioproducts Processing, v. 94, p. 405-413, 2015.

JOGLEKAR, M. M. et al. A novel mechanism for antiglycative action of limonene through stabilization of protein conformation. Molecular BioSystems, v. 9, p. 2463–2472, 2013. JONGEDIJK, E. et al. Biotechnological production of limonene in microorganisms. Applied

KARACA, A. C.; LOW, N.; NICKERSON, M. Emulsifying properties of chickpea, faba bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction. Food

Research International, v. 44, p. 2742–2750, 2011.

KARACA, A. C.; LOW, N. H.; NICKERSON, M. T. Potential use of plant proteins in the microencapsulation of lipophilic materials in foods. Trends in Food Science and

Technology, v. 42, p. 5–12, 2015.

KIM, Y. D.; MORR, C. V. Microencapsulation Properties of Gum Arabic and Several Food Proteins: Spray-Dried Orange Oil Emulsion Particles. Journal of Agricultural and Food

Chemistry, v. 44, p. 1314–1320, 1996.

KOYORO, H.; POWERS, J. R. Functional Properties of Pea Globulin Fractions. Cereal

Chem., v. 64, p. 97–101, 1987.

KUMMER, R. et al. Evaluation of anti-inflammatory activity of citrus latifolia Tanaka essential oil and limonene in experimental mouse models. Evidence-based Complementary

and Alternative Medicine, p. 1–8, 2013.

LADJAL-ETTOUMI, Y. et al. Pea, Chickpea and Lentil Protein Isolates: Physicochemical Characterization and Emulsifying Properties. Food Biophysics, v. 11, p. 43–51, 2016. LI, Y. et al. Soy Protein Isolate-Phosphatidylcholine Nanoemulsions Prepared Using High- Pressure Homogenization. Nanomaterials, v. 8, p. 307, 2018.

LU, G. W.; GAO, P. Emulsions and Microemulsions for Topical and Transdermal Drug Delivery. In: Handbook of Non-Invasive Drug Delivery Systems. 1. Ed. Netherlands:

Elsevier Inc., 2010, p. 59-94.

MARTINS, N. et al. Introduction: The Increasing Demand for Functional Foods. In: Wild Plants, Mushrooms and Nuts: Functional Food Properties and Applications. 1. Ed. United Kingdom: John Wiley & Sons, Ltd, 2017, p. 1-10.

MASTERS, K. Spray Drying Handbook. 5th ed. Longman Scientific & Technical, p. 725, 1991.

MCCARTHY, N. A. et al. Emulsification properties of pea protein isolate using

homogenization, microfluidization and ultrasonication. Food Research International, v. 89, p. 415–421, 2016.

MCCLEMENTS, D. J. et al. Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Critical Reviews in Food Science and Nutrition, v. 49, p. 577–606, 2009.

MCCLEMENTS, D. J.; DECKER, E. A.; WEISS, J. Emulsion-based delivery systems for lipophilic bioactive components. Journal of Food Science, v. 72, p. R109-R124, 2007. Mini Spray Dryer B-290 Technical data sheet. Disponível em:<https://bit.ly/2Cj9ZwV>. Acesso em: 04 de set. de 2018.

MITROPOULOU, G. et al. Citrus medica essential oil exhibits significant antimicrobial and antiproliferative activity. LWT - Food Science and Technology, v. 84, p. 344–352, 2017. MOREAU, D. L.; ROSENBERG, M. Porosity of Microcapsules with Wall Systems Consisting of Whey Proteins and Lactose Measured by Gas Displacement Pycnometry.

Journal of Food Science, v. 64, p. 405-409, 1999.

MOREAU, D. L.; ROSENBERG, M. Porosity of Whey Protein-Based Microcapsules Containing Anhydrous Milkfat Measured by Gas Displacement Pycnometry. Journal of

Food Science, v. 63, p. 819-823, 1998.

MORR, C. V.; GERMAN, B.; KINSELLA, J. E.; REGENSTEIN, J. M.; BUREN, J. P.; KILARA, A.; LEWIS, B. A.; MANGINO, M. E. A Collaborative Study to Develop a Standardized Food Protein Solubility Procedure. Journal of Food Science, v.50, p.1715- 1718, 1985.

MOURA, S. C. S. R; et al. Encapsulating anthocyanins from Hibiscus sabdariffa L. calyces by ionic gelation: Pigment stability during storage of microparticles. Food Chemistry, v. 241, p. 317-327, 2018.

MURALI, R.; KARTHIKEYAN, A.; SARAVANAN, R. Protective Effects of d-Limonene on Lipid Peroxidation and Antioxidant Enzymes in Streptozotocin-Induced Diabetic Rats. Basic

& Clinical Pharmacology & Toxicology, v. 112, p. 175–181, 2013.

NESTERENKO, A. et al. Vegetable proteins in microencapsulation: A review of recent interventions and their effectiveness. Industrial Crops and Products, v. 42, p. 469–479, 2013.

ORIANI, V. B. et al. Solid lipid microparticles produced by spray chilling technique to

deliver ginger oleoresin: Structure and compound retention. Food Research International, v. 80, p. 41-49, 2016.

PASCUAL-PINEDA, L. A. et al. Effect of porous structure and spreading pressure on the storage stability ofred onion microcapsules produced by spray freezing into liquid

cryogenicand spray drying. Journal of Food Engineering, v. 245, p. 65-72, 2019.

PIERUCCI, A. P. et al. Comparison of α-tocopherol microparticles produced with different wall materials: Pea protein a new interesting alternative. Journal of Microencapsulation, v. 24, p. 201–213, 2007.

RÉ, M. I. Microencapsulation by spray drying. Drying Technology, v. 16, p. 1195-1236, 1998.

REID, D. S.; FENNEMA, O. R. 2008. Water and ice. In: Srinivasan D, Parkin KL, Fennema OR, editors. Fennema’s food chemistry. 4th ed. Boca Raton, FL: CRC Press.

REINECCIUS, G. A. Spray-drying of food flavors. Drying Technology, v. 22, p. 1289–1324, 2004.

REINECCIUS G. Aroma Encapsulation and Controlled Delivery. In: Buettner A. (eds) Springer Handbook of Odor. Springer Handbooks. Springer, Cham, 2017, p. 261-271.

REINECCIUS, G. Use of proteins for the delivery of flavours and other bioactive compounds.

Food Hydrocolloids, 2018, https://doi.org/10.1016/j.foodhyd.2018.01.039.

RIBEIRO, A. et al. Spray-drying microencapsulation of synergistic antioxidant mushroom extracts and their use as functional food ingredients. Food Chemistry, v. 188, p. 612–618, 2015.

ROLAND, I. et al. Systematic characterization of oil-in-water emulsions for formulation design. International Journal of Pharmaceutics, v. 263, p. 85–94, 2003.

RORIZ, C. L. et al. Gomphrena globosa L. as a novel source of food-grade betacyanins: Incorporation in ice-cream and comparison with beet-root extracts and commercial betalains.

LWT - Food Science and Technology, v. 92, p. 101–107, 2018.

ROSENBERG, M.; ROSENBERG, Y.; FRENKEL, L. Microencapsulation of model oil in wall matrices consisting of SPI and maltodextrins. AIMS Agriculture and Food, v. 1, p. 33- 51, 2016.

ROSENBERG, M.; TALMON, Y.; KOPELMAN, I. J. The Microstructure of Spray-Dried Microcapsules. Food Structure, v.7, p. 15-23, 1988

SANCHEZ-REINOSO, Z.; OSORIO, C.; HERRERA, A. Effect of microencapsulation by spray drying on cocoa aroma compounds and physicochemical characterisation of

microencapsulates. Powder Technology, v. 318, p. 110-119, 2017.

SAWASHITA, N. et al. Effect of dietary vegetable and animal proteins on atherothrombosis in mice. Nutrition, v. 22, p. 661–667, 2006.

SEIBEL, N. F. Caracterização, fracionamento e hidrólise enzimática dos componentes do resíduo do processamento da soja [glycine max (l.) merrill], fibras dos cotilédones, 115f. Tese (Doutorado em Ciência de Alimentos) Departamento de Tecnologia de Alimentos e

Medicamentos. Universidade Estadual de Londrina, Londrina, PR, 2006.

SHEU, T-Y.; ROSENBERG, M. Microstructure of Microcapsules Consisting of Whey Proteins and Carbohydrates. Journal of Food Science, v. 63, p. 491-494, 1998.

SIKORSKI, Z. E. Functional properties of proteins in food systems. In: Chemical and Functional Properties of Food Proteins. 1. Ed. CRC Press: Boca Raton, FL, 2001; p. 113- 135.

SOBEL, R.; VERSIC, R.; GAONKAR, A. G. Introduction to Microencapsulation and Controlled Delivery in Foods. In: Microencapsulation in the Food Industry. Netherlands:

Elsevier Inc., 2014. p. 3–12.

SOOTTITANTAWAT, A.et al. Effect of water activity on the release characteristics and oxidative stability of d-limonene encapsulated by spray drying. Journal of Agricultural and

SOOTTITANTAWAT, A. et al. Influence of emulsion and powder size on the stability of encapsulated D-limonene by spray drying. Innovative Food Science and Emerging

Technologies, v. 6, p. 107–114, 2005.

SULTANA, A. et al. Stability and release behavior of encapsulated flavor from spray-dried Saccharomyces cerevisiae and maltodextrin powder. Food Research International, v. 106, p. 809–816, 2018.

TAHERIAN, A. R. et al. Comparative study of functional properties of commercial and membrane processed yellow pea protein isolates. Food Research International, v. 44, p. 2505–2514, 2011.

TAMM, F. et al. Functional properties of pea protein hydrolysates in emulsions and spray- dried microcapsules. Food Hydrocolloids, v. 58, p. 204–214, 2016.

TOME, D. Criteria and markers for protein quality assessment - A review. British Journal of

Nutrition, v. 108, p. 222–229, 2012.

TONON, R. V.; GROSSO, C. R. F.; HUBINGER, M. D. Influence of emulsion composition and inlet air temperature on the microencapsulation of flaxseed oil by spray drying. Food

Research International, v. 44, p. 282-289, 2011.

TSUMURA, K. et al. Functional properties of soy protein hydrolysates obtained by selective proteolysis. LWT - Food Science and Technology, v. 38, p. 255–261, 2005.

TURCHIULI, C. et al. Oil encapsulation by spray drying and fluidised bed agglomeration.

Innovative Food Science and Emerging Technologies, v. 6, p. 29-35, 2005.

VIEIRA, A. J. et al. Limonene: Aroma of innovation in health and disease. Chemico-

Biological Interactions, v. 283, p. 97–106, 2018.

WLODARCZYK-STASIAK et al. Porosity of starch-proteins extrudates determined from nitrogen dsorption data. Food Hydrocolloids, v. 36, p. 308-315, 2014.

YAMAMOTO, C. et al. Evaluation of Flavor Release From Spray-Dried Powder by Ramping with Dynamic Vapor Sorption-Gas Chromatography. Drying Technology, v. 30, p. 1045– 1050, 2012a.

YOUNG, S. L.; SADRA, X.; ROSENBERG, M. Microencapsulating properties of whey proteins. 2. Combination of whey proteins with carbohydrates. Journal of Dairy Science, v. 76, p. 2878–2885, 1993.

YAMAMOTO, C. et al. Kinetic Analysis and Evaluation of Controlled Release of D- Limonene Encapsulated in Spray-Dried Cyclodextrin Powder under Linearly Ramped Humidity. Drying Technology, v. 30, p. 1283–1291, 2012b.

ZHANG, X.-Z. et al. Synergistic inhibitory effect of berberine and d-limonene on human gastric carcinoma cell line MGC803. Journal of medicinal food, v. 17, p. 955–962, 2014.

Documentos relacionados