• Nenhum resultado encontrado

A partir dos resultados apresentados pode-se concluir que:

Thermoascus aurantiacus ATCC 204492produz a maioria das enzimas do complexo celulolítico e hemicelulolítico. Apresentou bom crescimento em farelo de trigo, destacando a predominância na produção de endo-β-1,4-xilanase perante as demais enzimas. Os ensaios de estabilidade térmica confirmaram a estabilidade da xilanase em temperaturas elevadas.

A hemicelulose foi extraída com alto rendimento com peróxido alcalino e apresentou alta solubilidade, coloração clara e baixo teor de lignina. De acordo com sua composição química pode ser classificada como L-arabino-(4-O-metil-D-glucurono)-D-xilana. As propriedades desse polissacarídeo foram adequadas para emprego em ensaios de hidrólise enzimática, diferente da hemicelulose extraída com hidróxido de sódio, a qual apresentou baixa solubilidade.

A hidrólise da hemicelulose extraída do bagaço de cana-de-açúcar com enzimas de T.

aurantiacus e T. reesei resultou em maior conversão em XOs do que as enzimas de A. niger.

O uso de xilanases comerciais na hidrólise da hemicelulose não superou o desempenho das enzimas de T. aurantiacus na produção de XOs, provavelmente pela presença de várias enzimas acessórias além da xilanase no extrato de T. aurantiacus. A xilanase de T.

lanuginosus mostrou-se uma excelente enzima para a obtenção de xilobiose, uma vez que não

produziu xilose.

A xilanase de T. aurantiacus hidrolisou de modo semelhante as hemiceluloses de bagaço de cana-de-açúcar, bétula e semente de aveia. As diferenças estruturais como ramificações e presença de lignina não interferiram na ação dessa enzima. Em todos os casos houve formação apenas de xilo-oligossacarídeos lineares.

A hidrólise da hemicelulose com as enzimas de T. aurantiacus e T. reesei apresentou algumas diferenças. T. aurantiacus produziu XOs principalmente em tempos longos de reação (acima 48 h) e T. reesei produziu XOs em tempos mais curtos (6 a 24 h), sendo que o aumento do tempo favoreceu a produção de xilose. Os resultados mostram diferenças entre as xilanases, evidenciando diferenças nas propriedades bioquímicas e atividade específica, o que

consequentemente causam diferenças na eficiência e extensão da hidrólise.

A auto-hidrólise do bagaço de cana-de-açúcar gerou predominantemente xilose e uma baixa quantidade de XOs. Entre os XOs formados destacou-se a xilobiose, como na hidrólise enzimática, porém houve formação de furfural.

A produção de XOs pela auto-hidrólise do bagaço foi 5,8 vezes menor que na hidrólise enzimática da hemicelulose e desta forma etapas de concentração e purificação seriam necessárias para a obtenção de um produto final com as características desejadas. Por outro lado, o tempo de reação foi curto e a moagem foi a única operação realizada no bagaço antes do tratamento térmico.

Os melhores resultados de produção de XOs pelas enzimas de T. aurantiacus foram diferentes das enzimas de T. reesei. Deve ser levado em consideração o custo de cada etapa, enquanto a reação com enzimas de T. aurantiacus produz 41,6 % de XOs em 96 h, a reação com enzimas de T. reesei produz 20 % em 6 h. Entretanto, com T. reesei deve ser empregado mais substrato e enzima. Considerando o custo de extração de hemicelulose e de produção de enzima, T. aurantiacus seria mais indicado para esse processo.

Enfim, a produção de XOs se torna possível através de uma etapa de extração da hemicelulose e outra etapa de hidrólise enzimática. A primeira etapa deve ocorrer em meio alcalino com peróxido de hidrogênio, por gerar um polissacarídeo solúvel e passível de hidrólise enzimática. Na segunda etapa, destaca-se a ação das enzimas de T. aurantiacus, pela maior conversão da hemicelulose em XOs e também pela alta produção de xilanase no cultivo em meio sólido, fatores que contribuem para viabilidade econômica.

REFERÊNCIAS

AACHARY, A.A.; PRAPULLA, S.G. Value addition to corncob: Production and characterization of xylooligosaccharides from alkali pretreated lignin-saccharide complex using Aspergillus oryzae MTCC 5154. Bioresource Technology, v. 100, p. 991–995, 2009. AI, Z.; JIANG, Z.; LI, L.; DENG, W.; KUSAKABE, I.; LI, H. Immobilization of

Streptomyces olivaceoviridis E-86 xylanase on Eudragit S-100 for xylo-oligosaccharide

production. Process Biochemistry, v. 40, p. 2707–2714, 2005.

AKPINAR, O.; AK, O.; KAVAS, A.; BAKIR, U.; YILMAZ, L. Comparison of acid and enzymatic hydrolysis of tobacco stalk xylan for preparation of xylooligosaccharides. LWT - Food Science and Technology, v. 43, p. 119–125, 2010.

AKPINAR, O.; AK, O.; KAVAS, A.; BAKIR, U.; YILMAZ, L. Enzymatic Production of Xylooligosaccharides from Cotton Stalks. Journal of Agriculture and Food Chemistry, v. 55, p. 5544-5551, 2007.

AKPINAR, O.; ERDOGAN, K.; BOSTANCI, S. Enzymatic production of Xylooligosaccharide from selected agricultural wastes. Food and Bioproducts Processing, v. 87, p. 145-151, 2009.

ABATZOGLOU, N.; CHONET, E.; BELKACEMI K.; OVEREND, R.P. Phenomenological kinetics of complex systems: the development of a generalized severity parameter and its application to lignocellulosics fractionation. Chemical Engineering Science, v. 47, p. 1109– 1200, 1992.

ALAM, M.; GOMES, I.; MOHIUDDIN, G.; HOQ, M.M. Production and characterization of thermostable xylanases by Thermoascus lanuginosus and Thermoascus aurantiacus grown on lignocelluloses. Enzyme Microbial and Technology, v. 16, p. 298–302, 1994.

ANDO, H.; OHBA, H.; SASAKI, T.; TAKAMINE, K.; KAMINO, Y.; MORIWAKI, S. Hot- compressed-water decomposed products from bamboo manifest a selective cytotoxicity against acute lymphoblastic leukemia cells. Toxicol in vitro, v. 18, p. 765–71, 2004.

AOYAMA, M.; SEKI, K.; SAITO, N. Solubilization of bamboo grass xylan by steaming treatment. Holzforschung, v. 49, p. 193–196, 1995.

ARO, N.; PAKULA, T.; PENTTILÄ, M. Transcriptional regulation of plant cell wall degradation by filamentous fungi. FMES Microbiology reviews, v. 29, p. 719-739, 2005. AUER, C.G.; KRUGNER, T.L.; BARRICHELO, L.E.G. Fungos termófilos em pilhas decavacos de Eucalyptus spp. com auto-aquecimento. IPEF, Piracicaba, n.38, p.28-32, 1988. BAILEY, M. J.; BIELY, P.; POUTANEN, K. Interlaboratory testing of methodos for assay of xylanase activity. Journal of Biotechnology, v. 23, p. 257-270, 1992.

BAILEY, M.J.; BUCHERT, J.; VIIKARI, L. Effect of pH on production of xylanase by

Biotechnology, v. 40, p. 224–9, 1993.

BARNET, D.; EXCOFFIER, G.; VIGNON, M. Valorisation de la biomasse lignocellulosique: autohydrolyse rapide de copeaux de Bois de peuplier. Bulletin de la Societe Chimiqye, v. 6, p. 836-843, 1989.

BAUCHER, M.; HALPIN, C.; PETIT-CONIL, M.; BOERJAN, W. Lignin: Genetic engineering and impact on pulping. Cr itical Reviews in Biochemistr y and Molecular Biology, v. 38, p. 305–350, 2003.

BEG, Q.K.; KAPOOR, M.; MAHAJAN, L.; HOONDAL, G.S. Microbial xylanase and their Applications: a review. Applied of Microbiology and Biotechnology, v. 56, p. 326-338, 2001.

BERLIN, A.; GILKES, N.; KILBURN, D.; BURA, R.; MARKOV, A.; SKOMAROVSKY, A.; OKUNEV, O.; GUSAKOV, A.; MAXIMENKO, V.; GREGG, D.; SINITSYN, A.; SADDLERA, J. Evaluation of novel fungal cellulase preparations for ability to hydrolyze softwood substrates; evidence for the role of accessory enzymes. Enzyme and Microbiol Technology, v. 37, p. 175-184, 2005.

BIELY, P.; VRSANSKH, M.; TENKANEN, M.; KLUEPFEL, D. Endo-β-1,4-xylanase families: differences in catalytic properties. Journal of Biotechnology, v. 57, p. 151-166, 1997.

BIELY, P. Biochemical aspects of the production of microbial hemicellulases. In: Hemicellulose and Hemicellulases, Ed. COUGHLAN, M. P.;HAZLEWOOD, G. P. Cambridge: Portland Press, 1993, p.29-51.

BIELY, P.; MACKENZIE, C. R.; PULS, J.; SCHNEIDER, H. Cooperativity of esterases and xylanases in the enzymatic degradation of acetyl xylan. Biotechnology, v. 4, p. 731-733, 1986.

BRILLOUET, J.M.; JOSELEAU, J.P. Investigation of the structure of a heteroxylans from the outer pericarp (Beeswing bran) of wheat kernel. Carbohydrate Researche, v. 159, p. 109–126, 1987.

CANILHA, L. Produção de xilitol no hidrolisado hemicelulósico de palha de trigo. Tese (Doutorado em Biotecnologia Industrial), Departamento de Biotecnologia, Escola de Engenharia de Lorena, Lorena-SP, 2006.

CAO, Y.; SHIBATA, S.; FUKUMOTO, I. Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkali treatments. Composites, v. 37, p. 423-429, 2006.

CARA, C.; RUIZ, E.; CASTRO, E.; CARVALHEIRO, F.; MOURA, P.; GÍRIO, F. Separation of olive tree pruning oligomers from liquid hot water hydrolyzates using preparative gel filtration chromatography. In press.

CARPITA, N.C.; GIBEAUT, D.M. Structural models of primary-cell walls in flowering growth. Plant Journal, v. 3, p. 1-30, 1993.

CARVALHO, W. Estudo da imobilização de Candida guilliermondii FTI 20037 para obtenção de xilitol em hidrolisado hemicelulósico de bagaço de cana-de-açúcar. Dissertação (Mestrado em Biotecnologia Industrial)-Departamento de Biotecnologia, Faenquil, Lorena-SP, 2000.

CÉSAR, T.; MRSA, V. Purification and properties of the xylanase produced by Thermomyces

lanuginosus. Enzyme and Microbial Technology, v. 19, p. 289-296, 1996.

CHANG, V. S.; HOLTZAPPLE, M. T. Fundamental factors affecting biomass enzymatic reactivity. Applied Biochemistry and Biotechnology, v. 84-86, p. 5-37, 2000.

CHURMS, S. Recent progress in carbohydrate separation by high-performance liquid chromatography based on hydrophilic interaction. Journal of Chromatography A, v. 720, p. 75-91, 1996.

CLARK, E.M.; TENKANEN, M.; NAKARI-SETÄLÄ T.; PENTTILA, M. Cloning of Genes Encoding a-L-Arabinofuranosidase and b-Xylosidase from Trichoderma reesei by Expression in Saccharomyces cerevisiae. Applied and Environmental Microbiology, p. 3840–3846, 1996.

CLOETENS, L.; SWENNEN, K.; DE PRETER, V.; BROEKAERT, W.F.; COURTIN, C.M.; DELCOUR, J.A.; RUTGEERTS, P.; VERBEKE, K. Effect of arabinoxylo-oligosaccharides on proximal gastrointestinal motility and digestion in healthy volunteers. European Journal of Clinical Nutrition and Metabolism, v. 3, p. 220-225, 2008.

COBOS A.; ESTRADA, P. Effect of polyhydroxylic cosolvents on the thermostability and activity of xylanase from Trichoderma reesei QM 9414. Enzyme and Microbial Technology, v. 33, p. 810–818, 2003.

COLLINS, T.; GERDAY, C.; FELLER, G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiology review, v. 29, p. 3-23, 2005.

Companhia Nacional de Abastecimento (CONAB). 3º Levant. de cana-de-açucar Nov/2009 Disponível na internet:<http://www.conab.gov.br/conabweb/download/safra/BoletimCana- Novembro2009-07.pdf> Acesso em 07/2009.

CONNER, A.H.; LORENZ, L.F. Kinetic modeling of hardwood prehydrolysis. Part III. Water and dilute acetic acid prehydrolysis of southern red oak. Wood and Fiber Science, v. 18, p. 248–263, 1986.

CONVERSE, A.; OOSHIMA, H.; BURNS, D. Kinetics of enzymatic hydrolysis of lignocellulosic materials based on surface area of cellulose accessible to enzyme and enzyme adsorption on lignin and cellulose. Applied Biochemistry and Biotechnology, v. 24/25, p. 67-73, 1990.

CONTAT, J.; JOSELEAU, J.P. Mode of action a xylanase and its significance for the structural investigation of the branched L-arabino-D-glucurono-D-xylan from redwood (Sequoia sempervirens). Carbohydrate Resources, v. 95, p. 101-112, 1981.

COONEY, D.G., EMERSON, R. Thermophilic fungi. An account of their biology, activities and classification. Enzyme and Microbial Technology, v. 11, p. 220–229, 1964.

COUGHLAN, M.P., HAZLEWOOD, G.P. β-1,4-d-Xylan-degrading systems: biochemistry,

molecular biology and applications. Biotechnology and Applied Biochemistry, v. 17, p. 259–289, 1993.

COURI, S.; TERZI, S.C.; PINTO, G.A.S.; FREITAS, S.P.; DA COSTA, A.C.A. Hydrolytic enzyme production in solid-state fermentation by Aspergillus niger 3T5B8. Process Biochemistry, v. 36, p. 255–261, 2000.

CRITTENDEN, R. G.; PLAYNE, M. J. Production, properties and applications of food-grade oligosaccharides. Trends in Food Science and Technology, v. 7, p. 353-361, 1996.

CURRELI, N.; FADDA, M.B.; RESCIGNO, A.; RINALDI, A.C.; SODDU, G.; SOLLAI, F.; VACCARGIU, S.; SANJUST, E.; RINALDI, A. Mild alkaline/oxidative pretreatment of wheat straw. Process Biochemistry, v. 32, p. 665-670, 1997.

DALIMOVA, G.N. Oxidation of hydrolyzed lignin from cotton-seed husks by hydrogen peroxide. Chemistry of Natural Compounds, v. 41, p. 85-87, 2005.

DA SILVA, R.; LAGO, E.L.; MERHEB, C.W.; MACCHIONE, M.M.; PARK, Y.K.; GOMES, E. Production of xylanase and CMCase on solid state fermentation in different residues by Thermoascus aurantiacus. Brazilian Journal of Microbiology, v. 36, p. 235- 241, 2005.

DEKKER, R.F.H.; WALLIS, A.F.A. Autohydrolyses-explosion as pretreatment for the enzymic saccharification of sunflower seed hulls. Biotechnology Letter, v. 5, p. 311-316, 1983.

DENCE, C.W. The determination of Lignin. In: LIN, Y.L.; DENCE, C.W. Methods in Lignin Chemistry. Berlin: Ed. Springer, 1992, p. 33-62.

DEPLOEY, J.J. Some factors affecting the germination of Thermoascus aurantiacus ascospores. Mycologia, v. 87, p. 362-365, 1995.

DOBREV, G.T.; PISHTIYSKI, I.G.; STANCHEV, V.S.; MIRCHEVA, R. Optimization of nutrient medium containing agricultural wastes for xylanase production by Aspergillus niger B03 using optimal composite experimental design. Bioresource Technology, v. 98, p. 2671– 2678, 2007.

DUBOIS, M.; GILES, K.; HAMILTON, J.K.; REBES, P.A.; SMITH, F. Colorimetric method for determination of sugars and relates substances. Analytical Chemistry v. 28, p. 350-356, 1956.

DURAND, H.; BARON, M.; CALMELS, T.; TIRABY, G. Classical and molecular genetics applied to Trichoderma reesei for the selection of improved cellulolytic industrial strains. In: Aubert, J.-P.; Beguin, P.; Millet, J. Editors, Biochemistry and Genetics of Cellulose Degradation, San Diego: Academic Press, 1988, pp. 135–151.

EBRINGEROVÁ, A.; Z. HROMÁDKOVÁ, Z.; HEINZE, T. Hemicellulose. In: HEINZE, T. Polysaccharydes I. Structure, Characterization and Uses. Heidelberg: Springer Berlin, 2005, v. 186, p. 1-67, Advances in Polymer Science.

El MANSOURI, N-E.; SALVADÓ, J. Structural characterization of technical lignins for the production of adhesives: Application to lignosulfonate, kraft, soda-anthraquinone, organosolv and ethanol process lignins. Industrial Crops and Products, v. 24, 8-16, 2006.

EVELEIGH, D.E. Trichoderma. In: DEMAIN, A.L.; SOLOMON, N.A. Editors, Biology of Industrial Microorganisms. Menlo Park, CA: Benjamin/Cummings, 1985, p. 487–509. FANG, J. M.; SUN, R. C.; SALISBURY, D.; FOWLER, P.; TOMKINSON, J. Comparative study of hemicelluloses from wheat straw by alkali and hydrogen peroxide extractions. Polymer Degradation and Stability, v. 66, p. 423–432, 1999.

FENEL, F.; ZITTINGA, A.; KANTELINEN, A. Increased alkali stability in Trichoderma

reesei endo-1,4-β-xylanase II by site directed mutagenesis. Journal of Biotechnology, v.

121, p. 102-107, 2006.

FENGEL, D.; WEGENER, G. Wood: Chemistry, Ultrastructure reactions. New York: W. De Gruyter, 1984, p. 613.

FERNÁNDEZ-ESPINAR, M.; PIÑAGA, F.; DE GRAAFF, L.; VISSER, J.; RAMÓN, D.; VALLÉS, S. Purification, characterization and regulation of the synthesis of an Aspergillus

nidulans acidic xylanase. Applied Microbiology Biotechnology, v.42, p. 555-562, 1994.

FOOKS, L. J.; GIBSON, G. R. In vitro investigations of the effect of probiotics and prebiotics on selected human intestinal pathogens. FEMS Microbiology Ecology, v. 39, p. 67, 2002.

FOURNIER, R.A.; FREDERICK, M.M; FREDERICK, J.R.; REILLY, P.J. Purification and characterization of endo-xylanases from Aspergillus niger. III. An enzyme of pI 3.65. Biotechnology and Bioengineering, v. 27, p. 539–546, 1985.

FREDERICK, M.M., FREDERICK, J.R.; FRAYZKE, A.R; REILLY, P.J. 1981. Purification and characterization of a xylobiose- and xylose-producing endo-xylanase from Aspergillus

niger. Carbohydrate, v. 97, p. 87–103, 1981.

FROLLINI, E.; PIMENTA, M.J.A. Lignin: Utilization as a macromonomer in the synthesis of phenolic type resins. Anais Associação Brasileira de Química, v. 46, p. 43–49, 1997.

FURUKAWA, T.; SHIDA, Y.; KITAGAMI, N.; MORI, K.; KATO, M.; KOBAYASHI, T.; OKADA, H.; OGASAWARA, W.; MORIKAWA, Y. Identification of specific binding sites for XYR1, a transcriptional activator of cellulolytic and xylanolytic genes in Trichoderma

reesei. Fungal Genetics and Biology, v. 46 ,p. 564-574, 2009.

GABRIELII, I.; GATENHOLM, P.; GLASSER, W.G.; JAIN, R.K.; KENNE, L. Separation, characterization and hydrogel-formation of hemicellulose from aspen wood. Carbohydrate Polymers, v. 43, p. 367–374, 2000.

GARROTE, G.; DOMÍNGUEZ, H.; PARAJÓ, J. C. Mild autohydrolysis: an environmentally friendly technology for xylooligosaccharide production from wood. Journal of Chemical Technology and Biotechnology, v. 74, p. 1101–1109, 1999.

GARROTE, G.; FALQUÉ, E.; DOMÍNGUEZ, H.; PARAJÓ, J.C. Autohydrolysis of agricultural residues: Study of reaction byproducts. Bioresource Technology, v. 98, p.1951– 1957, 2007.

GARROTE, G.; DOMÍNGUEZ, H.; PARAJÓ, J.C. Interpretation of deacetylation and hemicellulose hydrolysis during hydrothermal treatments on the basis of the severity factor. Process Biochemistry, v. 37, p. 1067-1073, 2002a.

GARROTE, G.; DOMÍNGUEZ, H.; PARAJÓ, J.C. Autohydrolysis of corncob: study of non- isothermal operation for xylooligosaccharide production. Journal of Food Engineering, v. 52, p. 211–218, 2002b.

GASPAR, A.; COSSON, T.; ROQUE, C.; THONART. Study on the production of a xylanolytic complex from Penicillium canescens 10-10c. Applied Biochemistry and Biotechnology, v.67, p.45-67, 1997.

GASPAR, M.; JUHÁSZ, T.; SZENGYEL, Z.S.; RÉCZEY, K. Fractionation and utilisation of corn fibre carbohydrates. Process Biochemistry, v. 40, p. 1183–1188, 2005.

GIBSON, G.R. Fibre and effects on probiotics (the prebiotic concept). Clinical nutritional Supplements, v. 1, p. 25-31, 2004.

GIBSON, G.R.; ROBERFROID, M.B. Dietary modulation ofthe human colonic microbiota: introducing the concept of prebiotics. The journal of Nutrition, v. 125, p. 1401-1412, 1995. GIERER, J. Chemical aspects of kraft pulping. Wood Science and Tecnology, v.14, p. 241- 266, 1980.

GOMES, D.J.; GOMES, J.; STEINER, W. Factors influencing the induction of endo-xylanase by Thermoascus aurantiacus. Journal of Biotechnology, v.33, p. 87–94, 1994.

GOMES, I.; GOMES, J.; GOMES, D.J.; STEINER, W. Simultaneous production of high

activities of thermostable endoglucanase and β-glicosidase by the wild thermphilic fungus Thermoascus aurantiacus. Applied Microbiology and Biotechnology. v. 53, p. 461–468,

2000.

GOMES, J., TERLER, K.; KRATZER, R.; KAINZ, E.; STEINER, W. Production of

thermostable β-mannosidase by a strain of Thermoascus aurantiacus: Isolation, partial

purification and characterization of the enzyme. Enzyme and Microbial Technology, v. 40, p. 969–975, 2007.

GOMIDE, J.L; OLIVEIRA, R.C. Eficiência da antraquinona na polpação alcalina de eucalipto. Revista Árvore, p. 203-214, 1979.

GONÇALVES, A.R.; OVIEDO, M.A.S. Production of chelating agents through the enzymatic oxidation of acetosolv sugarcane bagasse lignin. Applied Biochemistry and

Biotechnology, v. 98-100, p. 365-371, 2002.

GONÇALVES, A.R.; ESPOSITO, E.; BENAR, P. Evaluation of Panus tigrinus in the delignification of sugarcane. Journal of Biotechnology, v. 66, p. 177–185, 1998.

GORBACHEVA, I.V.; RODIONOVA, N.A. Studies on xylan degrading enzymes. I. Purification and characterization of endo-β-1,4-xylanase from Aspergillus niger. Biochim. Biophys, v. 484, p. 79–93, 1997.

GRABBER, J.H; JOHN, R.; RONALD, H.D.; Model studies of ferulate-coniferyl alcohol cross-product formation in primary maize walls: implications for lignification in grasses. Journal of agricultural and food chemistry, v. 50, p. 6008-6016, 2002.

GRISHUTIN, S.G.; GUSAKOV, A.V.; MARKOV, A.V.; USTINOV, B.B.; SEMENOVA, M.; SINITSYN, A.P. Specific xyloglucanases as a new class of polysaccharide-degrading enzymes. Biochimica at Biophysica Acta, v. 16, p. 268–281, 2004.

GUAY, D.F.; COLE, B.J.W.; FORT, R.C.; HAUSMAN, M.C.; GENCO, J.M.; ELDER, T.J.; OVERLY, K.R. Mechanisms of oxidative degradation of carbohydrates during oxygen delignification. ii. Reaction of photochemically generated hydroxyl radicals with methyl-β- cellobioside. Journal of Wood Chemistry and Technology, v. 21, p. 67–79, 2001.

HALTRICH, D.; NIDETZKY, B.; KULBE, K. D.; STEINER, W.; ZUPANCIC, S. Production of fungal xylanases. Bioresource Technology, v.58, p.137-161, 1996.

HAMIL, A., YASMEEN, A., RAJOKA, M. I. Induction, production, repression and de- repression of exoglucanase synthesis in Aspergillus niger. Bioresouse Technology, v. 94, p. 311-319, 2004.

HAYASHI, N.; SAKAKI, T.; DOI, K. Carbohydrate-based food having radical scavenging activity and its manufacture. Patent JP 2.005.021.111, 2005(b).

HAYASHI, N.; SAKAKI, T.; DOI, K. Water-soluble saccharides useful as health foods and their manufacture by hydrolysis of hemicellulose-containing plants with pressurized hot water. Patent JP 2.005.023.041, 2005(a).

HEITZ, M.; CAPEK-MÉNARD, E.; KOEBERLE, P. G.; GAGNÉ, J.; CHORNET, E.; OVEREND, R.P.; TAYLOR, J.D.; YU, E. Fractionation of Populus tremuloides at the pilot plant scale: Optimization of steam pretreatment conditions using the STAKE II technology. Bioresource Technology, v.35, p. 23–32, 1991.

HENDRIKS, A.T.W.M.; ZEEMAN, G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, v. 100, p. 10–18, 2009.

HERMANN, M.C.; VRSANSKA, M.; JURICKOVA, M.; HIRSCH, J.; BIELY, P.; KUBICEK, C.P. The beta-D-xylosidase of Trichoderma reesei is a multifunctional beta-D- xylan xylohydrolase. Biochemical Journal, v. 321, p. 375–381, 1997.

HIGUCHI, T. Look back over the studies of lignin biochemistry. Journal of Wood Science, v. 52, p. 2-8, 2006.

HOFFMAN, R.A.; GEIJTENBEEK , T.; KAMERLING, J.P.; VLIEGENTHART, J.F.G. 1H- NMR study of enzymically generated wheat-endosperm arabinoxylan oligosaccharides: structures of hepta- to tetradecasaccharides containing two or three branched xylose residues. Carbohydrate Resource, v. 223, p. 19-44, 1992.

HOWARD, R.L.; ABOTSI, E.; VAN RENSBURG, J.E.L.; HOWARD S. Lignocellulose biotechnology: issues of bioconversion and enzyme production. African Journal of Biotechnology, v. 2, p. 602-619, 2003.

HRMOVÁ, M.; BIELY, P.; VRSANSKA, M. Specificity of cellulase and xylanase induction in Trichoderma reesei QM 9414. Archives of Microbiology, v. 144, p. 307-311, 1986. HURLBERT, J.C.; PRESTON, J.F. Functional characterization of a novel xilanase from corn strain of Erwinia chrysanthemi. Journal of Bacteriology, v. 183, p. 2093-2100, 2001.

INAFUKU, M.; FUJINO, T.; KASHIWAGI, Y.; OHARA, S. Antioxidant dietary fiber, its manufacture, and processed food using it. Patent JP 2.002.204.674, 2002.

ISHIHARA, M.; NOJIRI, M.; HAYASHI, N.; NISHIMURA, T.; SHIMIZU, K. Screening of fungal xylanases for production of acidic xylooligosaccharides using in situ reduced 4-O- methylglucuronoxylanas substrate. Enzyme and Microbial Technology, v. 21, p. 170-175, 1997.

ITO, M.; YAMAGUCHI, K.; IZUMI, K. Xylooligosaccharide compositions, and cancer cell apoptosis inducers containing them. Patent JP 2.001.086.999, 2001.

IWAMOTO, T.; SASAKI, T.; INAOKA, M. Purification and some properties of xylanase from Aspergillus niger. Mem. Coll. Agriculture Ehime University, v. 17, p. 185-197, 1973. IZUMI, K.; AZUMI, N. Xylooligosaccharide compositions useful as food and feed additives. Patent JP 2001226409, 2001.

JUHÁSZ, T.; SZENGYEL, Z.; RECZEY, K.; SIIKA-AHO, M.; VIIKARI, L. Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochemistry, v. 40, p. 3519-3525, 2005.

KABEL, M.A.; CARVALHEIRO, F., GARROTE, G.; AVGERINOS, E.; KOUKIOS, E. PARAJÓ, J.C.; GÍRIO, F.M.; SCHOLS, A.G.J.; VORAGEN, A.G.J. Hydrothermally treated xylan rich by-products yield different classes of xylo-oligosaccharides. Carbohydrate Polymers, v. 50, p. 47-56, 2002.

KABEL, M.A.; VAN DEN BORNE, H.; VINCKEN, J.P.; VORAGEN, A.G.J.; SCHOLS, H.A. Structural differences of xylans affect their interaction with cellulose. Carbohydrate Polymers, v. 69, p. 94 – 105, 2007.

KADLA, J.F.; CHANG, H. The reaction of peroxides with lignin and lignin model compounds, In: ARGYROPOULOS, D.S. Oxidative delignification chemistry: Fundamentals and catalysis. Washington: Ed. McGill University, American Chemical Society, 2001, p. 108-129. ACS Symposium series 785.

KALOGERIS, E.; CHRISTAKOPOULOS, P.; ALEXIOU, A.; VLACHOU, S.; KEKOS, D.; MACRIS, B.J. Production and characterization of cellulolytic enzyme from the thermophilic fungus T. aurantiacus under solid state cultivation of agricultural wastes. Process Biochemistry, v. 38, p. 1099-1104, 2003.

KALOGERIS, E.; CHRISTAKOPOULOS, P.; KEKOS, D.; MACRIS, B.J. Studies on the solid-state production of thermostable endoxylanases from Thermoascus aurantiacus: Characterization of two isozymes. Journal of Biotechnology, v. 60, p. 155-163, 1998.

KALOGERIS, E.; CHRISTAKOPOULOS, P.; VRSANSKÁ, M.; KEKOS, D.; BIELY, P. Catalytic properties of the endoxilanase I from Thermoascus aurantiacus. Journal of Molecular Catalysis B: Enzymatic, v. 11, p. 491-501, 2001.

KALOGERIS, E.; FOUNTOUKIDES, G.; KEKOS, D.; MACRIS, B.J. Design of a solid-state bioreactor for thermophilic microorganisms. Short Communication. Bioresource Technology, v. 67, p. 313-315, 1999.

KANG, S.W.; PARK, Y.S.; LEE, J.S.; HONG, S.I.; KIM, S.W. Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresource Technology, v. 91, p. 153-156, 2004.

KATAPODIS, P.; CHRISTALOPOULOS, P. Induction and partial characterization of

intracellular β-fructofuranosidase from Thermoascus aurantiacus and its application in the

synthesis of 6-kestose. World Journal of Microbiology & Biotechnology, v. 20, p. 667– 672, 2004.

KATAPODIS, P.; VARDAKOU, M.; KALOGERIS, E.; KEKOS, D.; MACRIS, B.J.; CHRISTAKOPOULOS, P. Enzymatic production of a feruloylated oligosaccharide with antioxidant activity from wheat flour arabinoxylan. European Journal of Nutrition, v. 42, p. 55–60, 2003.

KAYA, F.; HEITMAM, J.A.; JOYCE, T.W. Influence of lignin and its degradation products on enzymatic hydrolysis of xylan. Journal of Biotechnology, v. 80, p. 241-247, 2000. KAYSERILIOGLU, B.S.; KAYSERILIOGLU, U.; BAKIR, L.; AKKAS, N. Use of xylan, an agricultural by-product, in wheat gluten based biodegradable films: Mechanical, solubility and water vapor transfer rate properties. Bioresource Technology, v. 87, p. 239–246, 2003. KHANDKE, K.M.; VITHAYATHIL, P.J.; MURTHY, S.K. Purification and characterization

of an α-D-Glucuronidase from a thermophilic fungus, Thermoascus aurantiacus. Archives of

Biochemistry and Biophysics, v. 274, p. 511-517, 1989a.

KHANDKE, K.M.; VITHAYATHIL, P.J.; MURTHY, S.K. Purification of Xylanase, β-

Glucosidase, Endocellulase, and Exocellulase from a Thermophilic Fungus, Thermoascus

aurantiacus. Archives of Biochemistry and Biophysics, v. 274, p. 491-500, 1989b.

KHENG, P.P,; IBRAHIM, C.O. Xylanase production by a local fungal isolate, Aspergillus

niger USM AI 1 via solid state fermentation using palm kernel cake (PKC) as substrate.

KITPREECHAVANICH, V.; HAYASHI, M.; NAGAI, S. Purification and properties of endo-1,4-β-xylanase from Humicola lanuginosa. Journal of Fermentation and Technology, v. 5, p. 415–420, 1984.

KOLENOVÁ, K.; VRSANSKÁ, M.; BIELY, P. Mode of action of endo-β-1,4-xylanases of families 10 and 11 on acidic xylooligosaccharides. Journal of Biotechnology, v. 121, p. 338– 345, 2006.

KOVAC, P.; HIRSCH, J. C-NMR spectra of xylo-oligosaccharides and their application to the elucidation of xylan structures. Carbohydrate Resource, v. 85, p. 177-185, 1980.

KUBIKOVA, J.; ZEMANN, A.; KRKOSKA, P.; BOBLETER, O. Hydrothermal pretreatment of wheat straw for the production of pulp and paper. Tappi J., v. 79, p. 63–9, 1996.

KULKARNI, N.; SHENDYE, A.; RAO, A. Molecular and biotechnological aspects of xylanases. FEMS Microbiology Reviews, v. 23, p. 411-456, 1999.

LADISCH, M.; BREWER, R. HENDRICKSON, R. Pretreatment of lignocellulosic materials by pressure cooking in water: experimental results and engineering analysis, In: SYMPOSIUM ON BIOTECHNOLOGY FOR FUELS AND CHEMICALS, 19, 1997, May 4-8, Colorado Springs, CO.

LAPIERRE, L.; BERRY, R.; BOUCHARD, J.R. The effect of magnesium ions and chelants on peroxide bleaching. Hollzforschung, v. 57, p. 627–633, 2003.

LASER, M.; SCHULMAN, D.; ALLEN, S.G.; LICHWA, J.; ANTAL, M.J.; LYND, L.R. A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresource Technology, v. 81, p. 33-44, 2002.

LAWOKO, M.; HENRIKSSON, G.; GELLERSTEDT, G. New method for quantitative preparation of lignin-carbohydrate complex from unbleached softwood kraft pulp: lignin- polysaccharide networks I. Holzforschung, v. 57, p. 69–74, 2003.

LEE, Y.C. Carbohydrate analysis with high-performance anion-exchange chromatography. Journal of Chromatography A, v. 720, p. 137-149, 1996.

LI, K.; AZADIC, P.; COLLINS, R.; TOLAN, J.; KIM, J.S.; ERIKISSOM, K.L.