• Nenhum resultado encontrado

Este estudo demonstrou que as enzimas amilolíticas comerciais, α-amilase e amiloglucosidase, são aplicáveis à hidrólise enzimática das frações residuais da extração das proteínas da biomassa de Spirulina platensis. A partir do hidrolisado das frações residuais foi possível produzir 8,06 g×L-1 de bioetanol com eficiência de 100%

e produtividade máxima de 0,533 g×L-1×h-1, o que indicou o potencial das frações

residuais para produção de bioetanol.

Os resultados deste trabalho indicam que é possível utilizar uma nova rota tecnológica para a aplicação integral da biomassa de S. platensis realizando-se inicialmente a extração de lipídios e proteínas, que são compostos de valor agregado, e posteriormente utilizando as frações residuais para aplicação em fermentação alcoólica, o que pode ser uma alternativa para melhorar a viabilidade dos sistemas de produção de bioetanol a partir de microalgas.

REFERÊNCIAS

ABD-RAHIM, F; WASOH, H.; ZAKARIA, M. R.; ARIFF, A.; KAPRI, R.; RAMLI, N.; SIEW-LING, L. Production of high yield sugars from Kappaphycus alvarezii using combined methods of chemical and enzymatic hydrolysis. Food Hydrocoll, v. 42, p. 309–15, 2014.

AIKAWA, S.; JOSEPH, A.; YAMADA R.; IZUMI, Y.; YAMAGISHI, T.; MATSUDA, F.; KAWAI, H., CHANG, J.; HASUNUMA, T.; KONDO, A. Direct conversion of Spirulina to ethanol without pretreatment or enzymatic hydrolysis processes. Energy &

Environmental Science, v. 6, p. 1844–1849, 2013.

AL ABDALLAH, Q.; NIXON, B. T.; FORTWENDEL, J. R. The Enzymatic Conversion of Major Algal and Cyanobacterial Carbohydrates to Bioethanol. Frontiers in Energy

Research, v. 4, n. November, p. 1–15, 2016.

ALVIM, J. C.; ALVIM, F. A. L. S.; SALES, V. H. G.; SALES, P. V. G.; OLIVEIRA, E. M.; COSTA, A. C. R. Biorrefinarias: Conceitos, classificação, matérias primas e produtos. Journal of Bioenergy and Food Science, v. 1, n. 3, p. 61–77, 2014. AOAC. Official Methods of Analysis of AOAC International. 16. ed. Estados Unidos: AOAC International, 1998.

ARAPOGLOU, D.; VARZAKAS, T.; VLYSSIDES, A.; ISRAILIDES, C. Ethanol production from potato peel waste (PPW). Waste Management, v. 30, p. 1898– 1902, 2010.

ASHOKKUMAR, V.; SALAM, Z.; TIWARI, O. N.; CHINNASAMY, S.; MOHAMMED, S.; ANI, F. N. An integrated approach for biodiesel and bioethanol production from Scenedesmus bijugatus cultivated in a vertical tubular photobioreactor. Energy

Conversion and Management, v. 101, p. 778–786, 2015.

ASTM – American Society for Testing Materials. ASTM E1758-01 - Standard Test

Method for Determination of Carbohydrates in Biomass by High Performance Liquid Chromatography. In: Annual Book of ASTM, 2007.

BABADZHANOV, A. S.; ABDUSAMATOVA, N.; YUSUPOVA, F. M.; FAIZULLAEVA, N.; MEZHLUMYAN, L. G.; MALIKOVA, M. K. H. Chemical composition of Spirulina platensis cultivated in Uzbekistan. Chemistry of Natural Compounds, v. 40, p. 276- 279, 2004.

BAEYENS, J.; KANG, Q.; APPELS, L.; DEWIL, R.; LV, Y.; TAN, T. Challenges and opportunities in improving the production of bio-ethanol. Progress in Energy and

Combustion Science, v. 47, p. 60–88, 2015.

BALAT, M.; BALAT, H.; ÖZ, C. Progress in bioethanol processing. Progress in

Energy and Combustion Science, v. 34, n. 5, p. 551–573, 2008.

BECKER, E. W. Micro algae as a source of protein. Biotechnology Advances, v. 25, p. 207–210, 2007.

BEMILLER, J. N.; HUBER, K. C. Carboidratos. In: DAMORARAN, S.; PARKIN, K. L.; FENNEMA, O. R. Química de Alimentos de Fennema. 4 ed. Porto Alegre: Artmed, 2010. p. 75–130.

BIBI, R.; AHMAD, Z.; IMRAN, M.; HUSSAIN, S.; DITTA, A.; MAHMOOD, S.; KHALID, A. Algal bioethanol production technology: A trend towards sustainable development.

Renewable and Sustainable Energy Reviews, v. 71, p. 976–985, 2017.

BRASIL. Lei n. 9.478, de 6 de agosto de 1997. Dispõe sobre a política energética

nacional, as atividades relativas ao monopólio do petróleo, institui o Conselho Nacional de Política Energética e a Agência Nacional do Petróleo e dá outras providências.Brasília Presidência da República, Casa Civil, Subchefia de assuntos

júridicos, , 1997.

BRETHAUER, S.; WYMAN, C. E. Review: Continuous hydrolysis and fermentation for cellulosic ethanol production. Bioresource Technology, n. 101, p. 4862-4874, 2010.

BROWN, M. R.; JEFFREY, S.W.; VOLKMAN, J.K.; DUNSTAN, G.A. Nutritional properties of microalgae for mariculture. Aquaculture, v. 151, n. 1–4, p. 315–331, 1997.

CARVALHO, D. W. DE; LEITE, J. R. M.; CAETANO, M. A. O biocombustível etanol: uma análise a partir da teoria da sociedade de risco. In: Biocombustíveis - fonte de

energia sustentável? : Considerações júridicas, técnicas e éticas. São Paulo:

Saraiva, 2010. p. 313.

CHAIKLAHAN, R.; CHIRASUWAN, N.; TRIRATANA, P.; LOHA, V.; TIA, S.; BUNNAG, B. Polysaccharide extraction from Spirulina sp. and its antioxidant

capacity. International Journal of Biological Macromolecules, v. 58, p. 73–78, 2013.

CHEN, C. Y.; ZHAO, X.; YEN, H.; HO, S.; CHENG, C.; LEE, D.; BAI, F.; CHANG, J. Microalgae-based carbohydrates for biofuel production. Biochemical Engineering

Journal, v. 78, p. 1–10, 2013.

CHISTI, Y. An unusual hidrocarbon. Ramsay Society, v. 27–28, p. 24–26, 1980. CHISTI, Y. Biodiesel from microalgae. Biotechnology Advances, v. 25, p. 294–306, 2007.

CHNG, L. M.; CHAN, D. J. C.; LEE, K. T. Sustainable production of bioethanol using lipid-extracted biomass from Scenedesmus dimorphus. Journal of Cleaner

Production, v. 130, p. 68-73, 2016.

CHNG, L. M.; LEE, K. T.; CHAN, D. J. C. Synergistic effect of pretreatment and fermentation process on carbohydrate-rich Scenedesmus dimorphus for bioethanol production. Energy Conversion and Management, v. 141, p. 410–419, 2017. CHOI, S. P.; NGUYEN, M. T.; SIM, S. J. Bioresource Technology Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production.

Bioresource Technology, v. 101, n. 14, p. 5330–5336, 2010.

CHRONAKIS, I. S.; GALATANU, A. N.; NYLANDER, T.; LINDMAN, B. The behaviour of protein preparations from blue-green algae (Spirulina platensis strain Pacifica) at the air/water interface. Colloids and Surfaces A: Physicochemical and

Engineering Aspects, v. 173, n. 1–3, p. 181–192, 2000.

CONDON, N.; KLEMICK, H.; WOLVERTON, A. Impacts of ethanol policy on corn prices: A review and meta-analysis of recent evidence. Food Policy, v. 51, p. 63–73, 2015.

DEMIRBAS, M. F. Biorefineries for biofuel upgrading: A critical review. Applied

Energy, v. 86, n. SUPPL. 1, p. S151–S161, 2009.

DISMUKES, G. C; CARRIERI, D.; BENNETTE, N.; ANANYEV, G. M.; POSEWITZ, M. C. Aquatic phototrophs: efficient alternatives to land-based crops for biofuels.

FERREIRA, L. V.; AMORIM, H. V.; BASSO, L.C. Fermentação de trealose e glicogênio endógenos em Saccharomyces cerevisiae. Food Science and

Technology, v. 19, p. 29–32. 1999.

FOX, R. D. Spirulina: Production & Potential. Aix-en-Province, France: Edisud, 1996.

GERSHWIN, M. E.; BELAY, A. Spirulina in Human Nutrition and Health, 2008. GONG, Y.; JIANG, M. Biodiesel production with microalgae as feedstock: From strains to biodiesel. Biotechnology Letters, v. 33, n. 7, p. 1269–1284, 2011. GÜNERKEN, E.; D'HONDT, E.; EPPINK, M.H.M.; GARCIA-GONZALEZ, L.; ELST, K.; WIJFFELS, R.H. Cell disruption for microalgae biorefineries. Biotechnology

Advances, v. 33, p. 243–260, 2015.

GUPTA, R.; GIGRAS, P.; MOHAPATRA, H.; GOSWAMI, V. K.; CHAUHAN, B.

Microbial a-amylases: A biotechnological perspective. Process Biochemistry, v. 38,

n. 11, p. 1599–1616, 2003.

HABIB, M. A. B.; PARVIN, M.; HUNTINGTON, T. C.; HASAN, M. R. A review on

culture , production and use of Spirulina as food for humans and feeds for.

FAO Fisheries and Aquaculture Circular No. 1034. 33 p. Rome, 2008.

HARUN, R.; DANQUAH, M. K. Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochemistry, v. 46, p. 304–309, 2011.

HARUN, R.; SINGH, M.; FORDE, G. M; DANQUAH, M. K. Bioprocess engineering of microalgae to produce a variety of consumer products. Renewable and Sustainable

Energy Reviews, v. 14, p. 1037–1047, 2010.

HARUN, R.; YIP, J. W. S.; THIRUVENKADAM, S.; GHANI, W. A. W. A. K.;

CHERRINGTON, T.; DANQUAH M. K. Algal biomass conversion to bioethanol – a step-by-step assessment. Biotechnology Journal, v. 9, p. 73-86, 2014.

HERNÁNDEZ, D.; RIAÑO, B.; COCA, M.; GARCÍA-GONZÁLEZ, M.C.

Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production. Chemical

HO, S.; HUANG, S.; CHEN, C.; HASUNUMA, T.; KONDO, A.; CHANG, J. Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresource

Technology, v. 135, p. 191–198, 2013.

JOHN, R. P.; ANISHA, G.S.; NAMPOOTHIRI, K. M.; PANDEY, A. Micro and

macroalgal biomass: A renewable source for bioethanol. Bioresource Technology, v. 102, n. 1, p. 186–193, 2011.

KHAN, M. I.; LEE, M. G.; SHIN, J. H.; KIM, J. D. Pretreatment optimization of the biomass of Microcystis aeruginosa for eficiente bioethanol production. AMB

Express, v. 7, p. 1-9, 2017.

KIM, H. M.; OH, C. H.; BAE, H. Bioresource Technology Comparison of red

microalgae ( Porphyridium cruentum ) culture conditions for bioethanol production.

Bioresource Technology, v. 233, p. 44–50, 2017.

KOBLITZ, M. G. B. Carboidrases. In: Bioquímica de Alimentos. Rio de Janeiro: Guanabara Koogan, 2008. p. 242.

KORU, E. Earth Food Spirulina ( Arthrospira ): Production and Quality Standarts.

Food Additive, p. 191–203, 2012.

KUMAR, S.; GUPTA, R.; KUMAR, G. SAHOO, D.; KUHAD, R. C. Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach.

Bioresource Technology, v. 35, p. 150–156, 2013.

LAM, M. K.; LEE, K. T. Microalgae biofuels: A critical review of issues, problems and the way forward. Biotechnology Advances, v. 30, p. 673–690, 2012.

LEÓN, I. A. A. Estudo do cultivo de Spirulina platensis por processo contínuo com uréia como fonte de nitrogênio. 2010. 99 f. Dissertação (Mestrado Tecnologia Bioquímica-Farmacêutica), Universidade de São Paulo, São Paulo, 2010.

LOURENÇO, S. O. Cultivo de microalgas marinhas - princípios e aplicações. São Carlos: Editora RiMa, 2006.

LOWRY, O. H.; ROSEBROUGH, N. J.; FARR, A. L.; RANDALL, R. J. Protein measurement with the folin phenol reagent. Journal Biologic and Chemistry, v. 193, p. 265–275, 1951.

LUPATINI, A. L. Extração de proteínas e carboidratos da biomassa de Spirulina

platensis e caracterização da fração proteica. 2016. 118p. Dissertação. (Mestrado

em Tecnologia de Alimentos). Universidade Tecnológica Federal do Paraná. Medianeira, 2016.

LUPATINI, A. L.; BISPO, L. O.; COLLA, L. M.; COSTA, J. A. V.; CANAN, C.; COLLA, E. Protein and carbohydrate extraction from S. platensis biomass by ultrasound and mechanical agitation. Food Research International, v. 99, p. 1028–1035, 2017. MAGRO, F. G.; DECESARO, A.; BERTICELLI, R.; COLLA, L. M. Produção de Bioetanol Utilizando Microalgas: Uma Revisão. Semina: Ciências Exatas e

Tecnológicas, v. 37, n. 1, p. 159, 2016.

MARGARITES, A. C. F. Síntese de carboidratos por microalgas e produção de

bioetanol. 2014. 93 p. Tese (Doutorado em Engenharia e Ciência de Alimentos),

Universidade Federal do Rio Grande, Rio Grande, 2014.

MARKOU, G. Alteration of the biomass composition of Arthrospira (Spirulina)

platensis under various amounts of limited phosphorus. Bioresource Technology, v. 116, p. 533–535, 2012.

MARKOU, G.; ANGELIDAKI, I.; NERANTZIS, E.; GEORGAKAKIS, D. Bioethanol production by carbohydrate-enriched biomass of Arthrospira (Spirulina) platensis.

Energies, v. 6, n. 8, p. 3937–3950, 2013.

MILANO, J.; ONG, H. C.; MASJUKI, H. H.; CHONG, W. T.; LAM, M. K.; LOH, P. K.; VELLAYAN, V. Microalgae biofuels as an alternative to fossil fuel for power

generation. Renewable and Sustainable Energy Reviews, v. 58, p. 180–197, 2016. MILLER, G.L. Use of de dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, v. 31, n. 3, p. 426-428, 1959.

MIRANDA, J. R.; PASSARINHO, P. C.; GOUVEIA, L. Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresource

Technology, v. 104, p. 342–348, 2012.

MOSIER, N.; WYMAN, C.; DALE, B.; ELANDER, R.; HOLTZAPPLE, Y. Y. L. M.; LADISCH, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, v. 96, p. 673–686, 2005.

MUSSATTO, S. I.; DROGONE, G.; GUIMARÃES, P. M. R.; SILVA, J. P. A.;

CARNEIRO, L. M.; ROBERTO, I. C.; VICENTE, A.; DOMINGUES, L.; TEIXEIRA, J. A. Technological trends, global market, and challenges of bio-ethanol production.

Biotechnology Advances, v. 28, n. 6, p. 817–830, 2010.

NAIK, S. N.; GOUD, V. V.; ROUT, P.K.; DALAI, A. K.Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy

Reviews, v. 14, n. 2, p. 578–597, 2010.

NELSON, N. A photometric adaptation of Somogyi Method for the determination of glucose. The Journal of Biological Chemistry, v. 3, n. 2, p. 375–380, 1944. NGUYEN, Q. D; REZESSY-SZABÓ, J. M.; CLAEYSSENS, M.; STALS, I.; HOSCHKE, Á.Purification and characterisation of amylolytic enzymes from

thermophilic fungus Thermomyces lanuginosus strain ATCC 34626. Enzyme and

Microbial Technology, v. 31, n. 3, p. 345–352, 2002.

NOVOZYMES. Efficient liquefaction of starch. Disponível em:

<https://dokumen.tips/documents/efficient-liquifaction.html>. Acesso em: 10 de jan. 2018.

NOVOZYMES. Ficha Técnica AMG 300 L. Disponível

em:<http://www.emporiodolupulo.com.br/upload/download/index/upload/34/>. Acesso em: 10 de jan. 2018.

OH, H. M.; CHOI, A.; MHEEN, T. I. High-value materials from microalgae. Korean

Journal of Microbiology and Biotechnology, v. 31, n. 2, p. 95–102, 2003.

PARKIN, K. L. Enzimas. In: DAMODARAN, S.; PARKIN, K. L.; FENNEMA, O. R.

Química de Alimentos de Fennema. 4. ed. Porto Alegre: Artmed, 2010. p. 263–

342.

PELÁEZ, F. The historical delivery of antibiotics from microbial natural products - Can history repeat? Biochemical Pharmacology, v. 71, n. 7, p. 981–990, 2006.

REMPEL, A.; MACHADO, T.; TREICHEL, H.; COLLA, E.; MARGARITES, A. C.; COLLA, L. M. Saccharification of Spirulina platensis biomass using free and immobilized amylolytic enzymes. Bioresource Technology, v. 263, p. 163–171, 2018.

RICHMOND, A. Handbook of microalgal culture: biotechnology and applied

phycology. Blackwell Science Ltd, 2004.

RIZZA, L. S.; SMACHETTI, M. E. S.; DO NASCIMENTO, M.; SALERNO, G. L.; CURATTI, L.Bioprospecting for native microalgae as an alternative source of sugars for the production of bioethanol. Algal Research, v. 22, p. 140–147, 2017.

RODRIGUES, M. S.; FERREIRA, L. S.; CONVERTI, A.; SATO, S.; CARVALHO, J. C. M. Influence of ammonium sulphate feeding time on fed-batch Arthrospira

(Spirulina) platensis cultivation and biomass composition with and without pH control.

Bioresource Technology, v. 102, n. 11, p. 6587–6592, 2011.

ROSEGRANT, M. W.; MSANGI, S. Consensus and Contention in the Food Versus Fuel Debate. Annual Review of Environment and Resources, 2014.

SALLA, A. C. V.; MARGARITES, A. C.; SEIBEL, F. I.; HOLZ, L. C.; BRIÃO, V. B.; BERTOLIN, T. E.; COLLA, L. M.Increase in the carbohydrate content of the

microalgae Spirulina in culture by nutrient starvation and the addition of residues of whey protein concentrate. Bioresource Technology, v. 209, p. 133–141, 2016. SASSANO, C. E. N.; GIOIELLI, L. A.; FERREIRA, L. S.; RODRIGUES, M. S.; SATO, S.; CONVERTI, A.; CARVALHO, J. C. M.Evaluation of the composition of

continuously-cultivated Arthrospira (Spirulina) platensis using ammonium chloride as nitrogen source. Biomass and Bioenergy, v. 34, n. 12, p. 1732–1738, 2010.

SCHMIDELL, W.; LIMA, A. U.; AQUARONE, E.; BORZANI, W. Biotecnologia

Industrial. v. 2. São Paulo: E. Blücher, 2001. 254 p.

SHUBA, E. S.; KIFLE, D. Microalgae to biofuels: ‘Promising’ alternative and

renewable energy, review. Renewable and Sustainable Energy Reviews, v. 81, p. 743–755, 2018.

SOMOGYI, M. A new reagent for the determination of sugars. The Journal of

Biological Chemistry, v. 160, p. 61–68, 1945.

SUBHADRA, B.; EDWARDS, M. An integrated renewable energy park approach for algal biofuel production in United States. Energy Policy, v. 38, n. 9, p. 4897–4902, 2010.

SUN, Y.; CHENG, J. Hydrolysis of lignocellulosic materials for ethanol production : a review q. Bioresource technology, v. 83, n. 1, p. 1–11, 2002.

TALEBNIA, F.; KARAKASHEV, D.; ANGELIDAKI, I. Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation.

Bioresource Technology, v. 101, n. 13, p. 4744–4753, 2010.

VANTHOOR-KOOPMANS, M.; WIJFFELS, R. H.; BARBOSA, M. J.; EPPINK, M. H. M. Biorefinery of microalgae for food and fuel. Bioresource Technology, v. 135, 2013.

VELAZQUEZ-LUCIO, J.; RODRÍQUEZ-JASSO, R. M.; COLLA, L. M.; SÁENZ- GALINDO; CERVANTES-CISNEROS, D. E.; AGUILAR, C. N.; FERNANDES, B. D.; RUIZ, H. A. Microalgal biomass pretreatment for bioethanol production: a review, Biofuel Research Journal, v. 17, p. 780-791, 2018.

VONSHAK, A. Spirulina Platensis Arthrospira: Physiology, Cell-Biology And

Biotechnology. Taylor & Francis e-Library, 2002.

WANG, X.; LIU, X.; WANG, G. Two-stage Hydrolysis of Invasive Algal Feedstock for Ethanol Fermentation. Journal of Integrative Plant Biology, v. 53, n. 3, p. 246–252, 2011.

WEINGRILL, N. Quais as diferenças entre o álcool de cana e o milho ?. Super

Intereante. 2016. Disponível em: <https://super.abril.com.br/saude/quais-as-

diferencas-entre-o-alcool-de-cana-e-o-de-milho/>. Acesso em: 15 de jul. 2018. WIJFFELS, R. H.; BARBOSA, M. J. An outlook on microalgal biofuels. Science. v. 329, p. 796-799, 2010.

YANG, S. Bioprocessing – from Biotechnology to Biorefinery. In: YANG, S.

Bioprocessing for Value-Added Products from Renewable Resources. Elsevier

B.V., p. 1–24, 2007.

YEN, H. W.; HU, I. C.; CHEN, C. Y.; HO, S. H.; LEE, D. J.; CHANG, J. S.Microalgae- based biorefinery - From biofuels to natural products. Bioresource Technology, v. 135, p. 166–174, 2013.

ZABED, H.; SAHU, J.N.; SUELY, A.; BOYCE, A.N.; FARUQ, G. Bioethanol production from renewable sources: Current perspectives and technological

ZAMOR, Fernando. Biochemistry of Alcoholic Fermentation in Wine Chemistry

and Biochemistry. Moreno-Arribas, Spain: M.C. Polo, 2009. 437p.

ZARROUK, C. Contribuition à I étude d une Cyanophycée: influence de divers

facteurs physiques et chimiques sur la croissance et la photosynthèse de Spirulina Máxima. 1966. Thesis (Ph.D) - Université Des Paris, Paris, 1966.

ZHU, L. D. HILTUNEN, E.; ANTILA, E.; ZHONG, J. J.; YUAN, Z. H.; WANG, Z. M. Microalgal biofuels: Flexible bioenergies for sustainable development. Renewable

APÊNDICES APÊNDICE A y = 6,5801x + 0,1982 R² = 0,99787 0 1 2 3 4 5 6 7 0 0,2 0,4 0,6 0,8 1

[G

li

c

o

s

e

]

(g

×L

-1

)

Absorbância (540 nm)

Curva Padrão de Glicose

y = 485,77x - 11,091 R² = 0,99742 0 100 200 300 400 500 0 0,2 0,4 0,6 0,8 1

[A

lb

u

m

in

a

]

g

×mL

-1

)

Absorbância (750 nm)

Curva Padrão de Albumina

APÊNDICE B y = 0,5668x - 0,0302 R² = 0,99838 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,00 0,10 0,20 0,30 0,40 0,50 0,60

[B

io

m

a

s

s

a

]

(

g

×

L

-1

)

Absorbância (600 nm)

Curva padrão de biomassa para C1 e C2

y = 0,4806x - 0,0262 R² = 0,99962 0 0,05 0,1 0,15 0,2 0,25 0,3 0,00 0,20 0,40 0,60

[B

io

m

a

s

s

a

]

(g

×L

-1

)

Absorbância (600 nm)

APÊNDICE C y = 1,0272x - 0,0245 R² = 0,99733 0,00 0,20 0,40 0,60 0,80 1,00 0,00 0,20 0,40 0,60 0,80 1,00

[G

li

c

o

s

e

]

(g

×L

-1

)

Absorbância (540 nm)

Curva padrão de Glicose

y = 3,2814x + 0,0405 R² = 0,99626 0,00 0,50 1,00 1,50 2,00 2,50 3,00 0,00 0,20 0,40 0,60 0,80

[S

a

c

a

ro

s

e

]

(g

×L

-1

)

Absorbância (540 nm)

Curva padrão de Sacarose

APÊNDICE D y = 0,4753x + 0,619 R² = 0,99971 0 20 40 60 80 100 120 0,00 50,00 100,00 150,00 200,00 250,00

[E

ta

n

o

l]

(g

×L

-1

)

Área (µRIU)

Curva padrão de Etanol

Documentos relacionados