• Nenhum resultado encontrado

121

Os resultados encontrados nessa dissertação permitem as seguintes conclusões:

1. Identificamos cinco kits comerciais como principais opções disponíveis para monitoramento de BCR-ABL1 na LMC. Avaliamos individualmente cada um deles, com relação as suas características analíticas e especificações técnicas. Abordamos ainda, vantagens, desvantagens e informações técnicas inerentes, que possibilitam a tomada de decisão na escolha de um teste para rotina laboratorial;

2. A partir da comparação da avaliação técnica e operacional entre os ensaios GeneXpert® BCR-ABL eBCR-ABL1 Quant RUO™ com a metodologia referência proposta por Susan Branford e Timothy Hughes para o monitoramento de DRM em pacientes com LMC, observamos que as metodologias apresentaram resultados adequados, com o ensaio BCR-ABL1 Quant RUO™ mostrando-se mais adequado para monitoramento de pacientes que atingiram RMM mais profundas;

3. Para alinhar os resultado à IS, determinamos um FC específico para o laboratório, através de uma das estratégias recomendadas para métodos de quantificação de BCR-ABL1, utilizando painéis de referência secundários disponíveis comercialmente. Ainda, confirmamos a estabilidade deste FC a fim de padronizar os resultados com a IS;

4. Determinamos as isoformas do transcrito BCR-ABL1 através da técnica de Eletroforese Capilar (EC) a partir do amplicon do kit da Asuragen identificando as isoformas mais prevalentes em pacientes com LMC. A partir disso, realizamos a comparação dos resultados concordantes e discordantes da metodologia de referência, não evidenciando um perfil característico entre os ensaios testados;

5. Diante dos aspectos técnicos e operacionais avaliados, observamos que o ensaio GeneXpert® BCR-ABL pode ser considerado um bom teste primário a ser

realizado em pacientes que iniciaram o tratamento recentemente ou em casos onde há suspeita da perda de RM devido a sintomas clínicos. Já o ensaio BCR-ABL1

Quant RUO™, por ter demonstrado melhor comparabilidade com RMM em análises

de respostas moleculares profundas, poderia ser um teste secundário, a fim de confirmar resultados abaixo de uma RMM ou resultados não detectados.

123

125

Diante dos resultados encontrados e visando o aprofundamento e melhor entendimento das relações estabelecidas para os ensaios avaliados, algumas perspectivas podem ser estabelecidas:

1. De maneira geral, aumentar o número amostral para as diferentes faixas de resposta molecular, a fim de avaliar de forma mais ampla o desempenho das metodologias. Uma das limitações impostas na análise de nossos resultados foi a não homogeneidade em todas as faixas de RMM, mesmo com uma coleta de amostras realizadas prospectivamente por quase dois anos;

2. A partir do desenvolvimento de novas metodologias mais sensíveis, como a PCR digital, avaliar novas amostras sem comparação com a metodologia referência, porém sempre com a mesma ótica apresentada neste trabalho, considerando uma relação de aplicabilidade para serviços locais;

3. Realizar o acompanhamento do paciente em relação ao ITQ utilizado, tempo de tratamento, alcance de RMM, monitoramento de DRM a partir da implantação do kit de escolha no serviço. A partir disso, observar junto aos clínicos sua funcionalidade, desempenho e ganho de qualidade na tomada de decisão.

127

129

BACCARANI, M. et al. A review of the European LeukemiaNet recommendations for the management of CML. Annals of hematology, v. 94, n. 2, p. 141-147, 2015. BACCARANI, M. et al. Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet. Journal of clinical

oncology, v. 27, n. 35, p. 6041-6051, 2009.

BACCARANI, M. et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood, v. 122, n. 6, p. 872-884, 2013.

BACCARANI, M. et al. Evolving concepts in the management of chronic myeloid leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood, v. 108, n. 6, p. 1809-1820, 2006.

BAUER, S.; ROMVARI, E. Interpreting Molecular Monitoring Results and International Standardization in Chronic Myeloid Leukemia. Journal of the

advanced practitioner in oncology, v. 3, n. 3, p. 151, 2012.

BEILLARD, E. et al. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using ‘real-time’quantitative reverse- transcriptase polymerase chain reaction (RQ-PCR)–a Europe against cancer program. Leukemia, v. 17, n. 12, p. 2474-2486, 2003.

BENNOUR, A. et al. Analysis of the clinico-hematological relevance of the breakpoint location within M-BCR in chronic myeloid leukemia. Medical oncology, v. 30, n. 1, p. 1-6, 2013.

BENNOUR, A.; SAAD, A.; SENNANA, H. Chronic myeloid leukemia: Relevance of cytogenetic and molecular assays. Critical reviews in oncology/hematology, v. 97, p. 263-274, 2016.

BERGER, U. et al. Gender aspects in chronic myeloid leukemia: long-term results from randomized studies. Leukemia, v. 19, n. 6, p. 984-989, 2005.

BRAEKELEER, M. D. BCR‐ABL1 b3a2 AND b2a2 TRANSCRIPTS IN CHRONIC MYELOID LEUKEMIA: DOES IT MATTER? European journal of haematology, 2015.

BRANFORD, S. et al. Rationale for the recommendations for harmonizing current methodology for detecting BCR-ABL transcripts in patients with chronic myeloid leukaemia. Leukemia, v. 20, n. 11, p. 1925-1930, 2006.

130

BRANFORD, S.; HUGHES, T. Diagnosis and monitoring of chronic myeloid leukemia by qualitative and quantitative RT-PCR. Myeloid Leukemia: Methods and

Protocols, p. 69-92, 2006.

BRANFORD, S.; HUGHES, T.; RUDZKI, Z. Monitoring chronic myeloid leukaemia therapy by real-time quantitative PCR in blood is a reliable alternative to bone marrow cytogenetics. British journal of haematology, v. 107, n. 3, p. 587-599, 1999.

BRASIL. Ministério da Saúde - ESTIMATIVA 2016 - Incidência de Câncer no

Brasil. Rio de Janeiro.: Instituto Nacional de Câncer José Alencar Gomes da Silva:

45-46 p. 2015.

BROWN, J. et al. Establishment of a standardized multiplex assay with the analytical performance required for quantitative measurement of BCR–ABL1 on the international reporting scale. Blood cancer journal, v. 1, n. 3, p. e13, 2011.

CAYUELA, J.-M. et al. Cartridge-based automated BCR-ABL1 mRNA quantification: solving the issues of standardization, at what cost? Haematologica, v. 96, n. 5, p. 664-671, 2011.

CHEREDA, B.; MELO, J. V. Natural course and biology of CML. Annals of

hematology, v. 94, n. 2, p. 107-121, 2015.

CORTES, J. Natural history and staging of chronic myelogenous leukemia.

Hematology/oncology clinics of North America, v. 18, n. 3, p. 569-584, 2004.

CORTES, J.; GOLDMAN, J. M.; HUGHES, T. Current issues in chronic myeloid leukemia: monitoring, resistance, and functional cure. Journal of the National

Comprehensive Cancer Network, v. 10, n. Suppl 3, p. S-1-S-13, 2012.

CROSS, N. et al. Laboratory recommendations for scoring deep molecular responses following treatment for chronic myeloid leukemia. Leukemia, v. 29, n. 5, p. 999-1003, 2015.

CROSS, N. C.; HOCHHAUS, A.; MÜLLER, M. C. Molecular monitoring of chronic myeloid leukemia: principles and interlaboratory standardization. Annals of

hematology, v. 94, n. 2, p. 219-225, 2015.

DE, I.; URA, T. HELVÉCIO MIRANDA MAGALHÃES JÚNIOR ANEXO PROTOCOLO CLÍNICO E DIRETRIZES TERAPÊUTICAS LEUCEMIA MIELOIDE CRÔNICA DO ADULTO 1. METODOLOGIA DE BUSCA E AVALIAÇÃO DA LI.

131

DEININGER, M. W.; GOLDMAN, J. M.; MELO, J. V. The molecular biology of chronic myeloid leukemia. Blood, v. 96, n. 10, p. 3343-3356, 2000.

DMYTRENKO, I. et al. Assessment of response to imatinib therapy in patients with chronic myeloid leukemia with e13a2 and e14a2 transcripts of BCR/ABL1 gene.

Problemy radiatsiinoi medytsyny ta radiobiolohii, v. 20, p. 328-340, 2015.

DONNÉ, A. Cours de microscopie complémentaire des études médicales:

anatomie microscopique et physiologie des fluides de l'économie. JB Bailliére,

1844.

DRUKER, B. J. et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl j Med, v. 2001, n. 344, p. 1031- 1037, 2001.

DUFRESNE, S. D. et al. Quantitative assessment of the BCR-ABL transcript using the Cepheid Xpert BCR-ABL Monitor assay. Archives of pathology & laboratory

medicine, v. 131, n. 6, p. 947-950, 2007.

EGAN, D.; RADICH, J. Monitoring disease burden in chronic myeloid leukemia: Past, present, and future. American Journal of Hematology, 2016.

FORONI, L. et al. Guidelines for the measurement of BCR‐ABL1 transcripts in chronic myeloid leukaemia. British journal of haematology, v. 153, n. 2, p. 179- 190, 2011.

GEARY, C. The story of chronic myeloid leukaemia. British journal of

haematology, v. 110, n. 1, p. 2-11, 2000.

GLOBOCAN. Cancer Incidence and Mortality Worldwide: IARC Cancer Base.

International Agency for Research on Cancer. Lyon, France.:

http://www.wcrf.org/int/cancer-facts-figures/worldwide-data p. 2014.

HAYHOE, F. G. J. Leukaemia: research and clinical practice. Little, Brown, 1960. HUANG, X.; CORTES, J.; KANTARJIAN, H. Estimations of the increasing prevalence and plateau prevalence of chronic myeloid leukemia in the era of tyrosine kinase inhibitor therapy. Cancer, v. 118, n. 12, p. 3123-3127, 2012.

132

HUET, S. et al. Major molecular response achievement in CML patients can be predicted by BCR-ABL1/ABL1 or BCR-ABL1/GUS ratio at an earlier time point of follow-up than currently recommended. PloS one, v. 9, n. 9, p. e106250, 2014. HUGHES, T. et al. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood, v. 108, n. 1, p. 28-37, 2006.

JABBOUR, E.; KANTARJIAN, H. Chronic myeloid leukemia: 2016 update on diagnosis, therapy, and monitoring. American Journal of Hematology, v. 91, n. 2, p. 252-265, 2016.

JIANG, H. et al. Allogeneic hematopoietic SCT in combination with tyrosine kinase inhibitor treatment compared with TKI treatment alone in CML blast crisis. Bone

marrow transplantation, v. 49, n. 9, p. 1146-1154, 2014.

JINAWATH, N. et al. A rare e14a3 (b3a3) BCR-ABL fusion transcript in chronic myeloid leukemia: diagnostic challenges in clinical laboratory practice. The Journal

of Molecular Diagnostics, v. 11, n. 4, p. 359-363, 2009.

JOBBAGY, Z. et al. Evaluation of the Cepheid GeneXpert BCR-ABL assay. The

Journal of Molecular Diagnostics, v. 9, n. 2, p. 220-227, 2007.

JOHANSSON, B.; FIORETOS, T.; MITELMAN, F. Cytogenetic and molecular genetic evolution of chronic myeloid leukemia. Acta haematologica, v. 107, n. 2, p. 76-94, 2002.

KALEEM, B. et al. Chronic Myeloid Leukemia-Prognostic Value of Mutations. Asian

Pacific Journal of Cancer Prevention, v. 16, n. 17, p. 7415-7423, 2015.

KOLIBABA, K. S. Molecular monitoring of response in patients with chronic myeloid leukemia. Manag Care, v. 22, n. 7, p. 40, 50-61, Jul 2013.

LICHTMAN, M. A. Williams hematology. McGraw-Hill New York, 2006. ISBN 0071435913.

LIMSUWANACHOT, N. et al. Multiplex RT-PCR Assay for Detection of Common Fusion Transcripts in Acute Lymphoblastic Leukemia and Chronic Myeloid Leukemia Cases. Asian Pacific Journal of Cancer Prevention, v. 17, n. 2, p. 677-684, 2016.

133

LUCAS, C. M. et al. Chronic myeloid leukemia patients with the e13a2 BCR-ABL fusion transcript have inferior responses to imatinib compared to patients with the e14a2 transcript. Haematologica, v. 94, n. 10, p. 1362-1367, 2009.

MARUM, J. E.; BRANFORD, S. Current developments in molecular monitoring in chronic myeloid leukemia. Therapeutic Advances in Hematology, v. 7, n. 5, p. 237, 2016.

MATSUMURA, I. et al. Odk-1201, One-Step RT-qPCR Major BCR-ABL/ABL mRNA Kit for the International Scale, with High Sensitivity to Detect Deeper MR. Blood, v. 124, n. 21, p. 1805-1805, 2014.

MELO, J. V.; BARNES, D. J. Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nature Reviews Cancer, v. 7, n. 6, p. 441-453, 2007. MOROTTI, A.; FAVA, C.; SAGLIO, G. Milestones and monitoring. Current

hematologic malignancy reports, v. 10, n. 2, p. 167-172, 2015.

MUGHAL, T. I. et al. Chronic myeloid leukemia: reminiscences and dreams.

Haematologica, v. 101, n. 5, p. 541-558, 2016.

MÜLLER, M. et al. Harmonization of molecular monitoring of CML therapy in Europe.

Leukemia, v. 23, n. 11, p. 1957-1963, 2009.

NOWELL, P. C. A minute chromosome in human granulocytic leukemia. Science, v. 132, p. 1497-1501, 1960.

O’DWYER, M. E. et al. Nilotinib 300mg BID as frontline treatment of CML: Prospective analysis of the Xpert BCR-ABL Monitor system and significance of 3- month molecular response. Leukemia research, v. 38, n. 3, p. 310-315, 2014. PAIETTA, E. Assessing minimal residual disease (MRD) in leukemia: a changing definition and concept? Bone marrow transplantation, v. 29, n. 6, p. 459-465, 2002.

PFIRRMANN, M. et al. No influence of BCR-ABL1 transcript types e13a2 and e14a2 on long-term survival: results in 1494 patients with chronic myeloid leukemia treated with imatinib. Journal of Cancer Research and Clinical Oncology, p. 1-8, 2017.

PICON, P. D.; BELTRAME, A. Protocolos clínicos e diretrizes terapêuticas. CD-ROM

134

RADICH, J. P. How I monitor residual disease in chronic myeloid leukemia. Blood, v. 114, n. 16, p. 3376-3381, 2009.

REA, D. et al. Long term follow-up after imatinib cessation for patients indeep molecular response: the update results of the STIM1 study. Blood, v. 122, n. 21, p. 255-255, 2013.

ROHRBACHER, M.; HASFORD, J. Etiology and epidemiology of chronic myeloid leukemia. In: (Ed.). Neoplastic Diseases of the Blood: Springer, 2013. p.11-17. ROSS, D. M. et al. Safety and efficacy of imatinib cessation for CML patients with stable undetectable minimal residual disease: results from the TWISTER study.

Blood, v. 122, n. 4, p. 515-522, 2013.

ROWLEY, J. D. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. 1973.

SAWYERS, C. L. Chronic myeloid leukemia. New England Journal of Medicine, v. 340, n. 17, p. 1330-1340, 1999.

SHAH, K.; PARIKH, S.; RAWAL, R. Tyrosine Kinase Inhibitors in Ph+ Chronic Myeloid Leukemia Therapy: a Review. Asian Pacific journal of cancer prevention:

APJCP, v. 17, n. 7, p. 3025, 2016.

SWEET, K. L.; HAZLEHURST, L. A.; PINILLA-IBARZ, J. The one-two punch: combination treatment in chronic myeloid leukemia. Crit Rev Oncol Hematol, v. 88, n. 3, p. 667-79, Dec 2013.

TASHFEEN, S. et al. Real time polymerase chain reaction in diagnosis of chronic myeloid leukemia. Journal of the College of Physicians and Surgeons Pakistan, v. 24, n. 3, p. 190-193, 2014.

TATAR, K.; IONITA, H. Particularities of Real-Time Polymerase Chain Reaction Technique (RT-PCR) in the Monitoring of Chronic Myeloid Leukemia Patients–A Brief Overview. 2009.

TEFFERI, A. Myeloproliferative neoplasms: A decade of discoveries and treatment advances. American Journal of Hematology, v. 91, n. 1, p. 50-58, 2016.

135

VAN DER VELDEN, V. et al. Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia, v. 17, n. 6, p. 1013-1034, 2003.

VERMA, D. et al. Chronic myeloid leukemia (CML) with P190BCR-ABL: analysis of characteristics, outcomes, and prognostic significance. Blood, v. 114, n. 11, p. 2232- 2235, 2009.

WANG, Y. L. et al. Molecular monitoring of chronic myelogenous leukemia: identification of the most suitable internal control gene for real-time quantification of BCR-ABL transcripts. The Journal of Molecular Diagnostics, v. 8, n. 2, p. 231-239, 2006.

WEISSER, M. et al. The use of housekeeping genes for real-time PCR-based quantification of fusion gene transcripts in acute myeloid leukemia. Leukemia, v. 18, n. 9, p. 1551-1553, 2004.

WHALE, A. S. et al. Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation. Nucleic acids research, v. 40, n. 11, p. e82-e82, 2012.

WHITE, H. E. et al. Establishment and validation of analytical reference panels for the standardization of quantitative BCR-ABL1 measurements on the international scale. Clinical chemistry, v. 59, n. 6, p. 938-948, 2013.

WHITE, H. E. et al. Establishment of the 1st World Health Organization International Genetic Reference Panel for quantitation of BCR-ABL mRNA. Blood, p. blood-2010- 06-291641, 2010.

YEUNG, C. C.; EGAN, D.; RADICH, J. New Methodologies in the Molecular Monitoring of CML. Current hematologic malignancy reports, v. 11, n. 2, p. 94- 101, 2016.

YEUNG, D. T.; PARKER, W. T.; BRANFORD, S. Molecular methods in diagnosis and monitoring of haematological malignancies. Pathology, v. 43, n. 6, p. 566-579, 2011.

YOSHIDA, C. et al. Validation of a rapid one-step high sensitivity real-time quantitative PCR system for detecting major BCR-ABL1 mRNA on an International Scale. SpringerPlus, v. 5, n. 1, p. 1-7, 2016.

136

ZHEN, C.; WANG, Y. L. Molecular monitoring of chronic myeloid leukemia: international standardization of BCR-ABL1 quantitation. The Journal of Molecular

137

139 10.1 Anexo I

Parecer Consubstanciado do Comitê de Ética - Hospital de Clínicas de Porto Alegre – HCPA/ UFRGS – Projeto 1.

145 10.2 Anexo II

Parecer Consubstanciado do Comitê de Ética - Hospital de Clínicas de Porto Alegre – HCPA/ UFRGS – Projeto 2.

Documentos relacionados