• Nenhum resultado encontrado

Tomodon dorsatus apresenta uma complexidade de respostas que se manteve em diferentes temperaturas experimentais;

• Há uma grande variação individual no que se refere ao comportamento antipredador e essa diferença entre os indivíduos parece ser mais significante quando comparada com a variação eventualmente induzida pela temperatura;

• Alguns comportamentos agressivos, como a triangulação da cabeça e o achatamento do corpo, são mais sensíveis a temperaturas quando comparados aos comportamentos passivos ou de escape, como a fuga ou a imobilidade;

• Baixas temperaturas potencializam os comportamentos de enfrentamento nos animais que já são agressivos no habitat natural.

[1] ANGILLETTA, JR. M. J.; NIEWIAROWSKI, P. H.; NAVAS, C. A. The evolution of thermal physiology in ectotherms. Journal of Thermal Biology, 27: 249 - 268, 2002. [2] ANDRÉN, C. Effect of prey density on reproduction foraging and other activities in the

adder, Vipera berus. Amphibia - Reptilia 3: 81-96, 1982.

[3] ARNOLD, S. J; BENNETT, A. F. Behavioral variation in natural populations.III: Antipredator displays in the garter snake Thamnophis radix. Animal Behavior 32: 1108-1118, 1984.

[4] ARAÚJO, M.S. Comportamento defensivo em cinco espécies de jararacas (Bothrops spp.): um estudo comparativo. Dissertação de mestrado. Universidade de São Paulo, 1999.

[5] AYERS, M.P.; SHINE, R. Thermal influences on foraging ability: body size, posture and cooling rate of an ambush predator, the pyton Morelia spilota. Function Ecology, 11: 342 -347, 1997.

[6] BARTHOLOMEW, G. A. Physiological control of body temperature. In: Biology of Reptilia, Physiology C (Gans, C.; Pough, F.H., eds). Academic Press, London, 12: 167- 211, 1982.

[7] BENNETT, A. F. Thermal dependence of lizard behaviour. Animal Behaviour, 28: 752-762, 1980.

[8] BIZERRA, A. F. História natural de Tomodon dorsatus (Serpentes: Dipsadidae). Dissertação de mestrado, Universidade de São Paulo, São Paulo, 1998.

[9] BIZERRA, A. F, MARQUES, O. A. V. E SAZIMA, I. Reproduction and feeding of the colubrid snake Tomodon dorsatus from southeastern Brazil. Amphibia - Reptilia, 26: 33 -38, 2005.

[10] BOGERT, C. M. Thermoregulation in reptiles: a factor in evolution. Evolution, 3: 195 - 211, 1949.

[11] BOGERT, C. M. How reptiles regulate their body temperature. Scientific American, 200: 105 -120, 1959.

[12] BOWERS, B. B., BLEDSOE, A. E.; BURGHARDT, G. M. Responses to escalating predatory threat in garter and ribbon snakes (Thamnophis). Journal Comparative

Psychology, 107: 25-33, 1993.

[13] BRODIE JR., E. D., DUCEY, P. K. ; LEMOS-ESPINAL, J. Antipredator behavior of the salamander Bolitoglossa rufescens: effects of temperature and location of stimulus.

58

[14] BRODIE, E.D. III; RUSSELL, N.H. The consistency of individual differences in behaviour: temperature effects on antipredator behavior in garter snakes. Animal

Behaviour, 57: 445-451, 1999.

[15] BURGER, J. Antipredator behavior of hatchling snakes: effects of incubation temperature and simulated predators. Animal Behaviour, 56: 547-553, 1998.

[16] BURGHARDT, G. M. Cognitive ethology and critical anthropomorphism: a snake with two heads and hognose snakes that play dead. In: Cognitive Ethology: the Minds of

Other Animals (Ed. By C. A. Ristau), 53 - 90, 1991.

[17] BURGHARDT, G.M.; SCHWARTZ, J. M. Geographic variations on methodological themes in comparative ethology: A natricine snake perspective. Pp. 69-94. In S. A.

Foster and J. A. Endler (Eds.), Geographic Variation in Behavior: Perspectives on Evolutionary Mechanisms. Oxford University Press, Oxford, 1999.

[18] CAMPBELL, J. A; LAMAR, W. W. The venomous reptiles of the western hemisphere. Ithaca: Cornel University, 870 p, 2004.

[19] CARRIÈRE, Y.; BOIVIN, G. Evolution of thermal sensitivity of parasitization capacity in egg parasitoids. Evolution 51, 2028 – 2032, 1997.

[20] CARVALHO, M. A.; NOGUEIRA, F. Serpentes da área urbana de Cuiabá, Mato Grosso: aspectos ecológicos e acidentes ofídicos associados. Cad. Saúde Pública vol.14 n.4 Rio de Janeiro Out./Dec. 1998.

[21] CHRISTIAN, K.A.; TRACY, C.R. The effect of the thermal environment on the ability of hatchling Galapagos land iguanas to avoid predation during dispersal. Oecologia 49: 218 -223, 1981

[22] COOPER, WILLIAM E. JR.; VITT, L.J. Thermal dependence of tongue - flicking and comments on use of tongue -flicking as an index of squamate behavior. Ethology 71: 177-186, 1986.

[23] CROWLEY, S.R.; PIETRUSZKA, R.D. Aggressiveness and vocalization in the leopard lizard (Gambelia wislizennii): the influence of temperature. Animal Behaviour, 31: 1055 -1066, 1983.

[24] DODD, C. K., JR., BRODIE., E. D JR. Defensive mechanisms of neotropical salamanders with an experimental analysis of immobility and the effects of temperature on immobility. Herpetologica, 32: 269- 290, 1976.

[25] DUTTON, R.H.; FITZPATRICK, L.C.; HUGHES, J.L. Energetics of the rusty lizard

Sceloporus olivaceus. Ecology, 56, 1378 – 1387, 1975.

[26] DUVALL, D., KING, M. B, GUTZWILLER, K. J Behavioral ecology and ethology of the prairie rattlesnake. Nat. Geog. Res. 1:80-111, 1985.

[28] ENDLER, J. A. Defense against predators. In Predator-Prey Relationships:

Perspectives and Approaches from the Study of Lower Vertebrates (Feder, M.E.;

Lauder, G. V., eds.), pp 109-134. Univ. Chicago Press, Chicago, 1986.

[29] FITCH, H. S. An ecological study of the garter snake, Thamnophis sirtalis. Univ. Kansas Publ. Mus.Nat. Hist. 15:493-564, 1965.

[30] GEHLBACH, F.R Death feigning and erratic behavior in Leptotyphlopid, colubrid and elapid snakes. Herpetologica, 26:24-34, 1970.

[31] GITTLEMAN, J.L E HARVEY, P.H. Why are distasteful preys no criptic? Nature 286: 149 -150, 1980.

[32] GOODE, M.J . ; DUVALL, D. Body temperature and defensive behaviour of free- ranging prairie rattlesnakes, Crotalus viridis viridis. Animal Behaviour, 38,360-362, 1989.

[33] GOMES, F.R.; BEVIER, C.R.; NAVAS, C.A. Environmental and Physiological Factors Influence Antipredator Behavior in Scinax hiemalis (Anura:Hylidae). Copeia, vol4:994- 1005, 2002.

[34] GREENE, H.W. Antipredator mechanisms in reptiles. In: Biology of the reptilia, vol16 (Gans C, Huey R.B., eds).New York: Alan R.Liss, 1-152, 1988.

[35] GREENWALD, O.E. Thermal Dependence of Striking and Prey Capture by Gopher Snakes. Copeia, 141-148, 1974.

[36] GREGORY,P.T. Bluffing and Waiting: Handling Effects and Post-Release Immobility in a Death- Feigning Snake (Natrix natrix). Ethology, vol114, 768-774, 2008.

[37] HAILEY, A.; DAVIES, P.M.C. Effects of size, temperature and condition on activity metabolism and defence behaviour of the viperine snake, Natrix maura. — J.

Zool.,Lond. 208: 541-558, 1986.

[38] HERCKROTTE, C. Relations of body temperature, size and crawling speed of the common garter snake, Thamnophis s.sirtalis. Copeia, 759-763, 1967.

[39] HERREL, A.; JAMES, R.S.; VAN DAMME, R. Fight versus flight: physiological basis for temperature-dependent behavioral shifts in lizards. The Journal of Experimental

Biology, 210, 1762- 1767, 2007.

[40] HERTZ, P.E.; HUEY, R. B.; NEVO, E. Fight versus flight: body temperature influences defensive responses of lizards. Animal Behaviour, 30:676- 679, 1982.

[41] HERTZ, P. E., HUEY, R. B.; NEVO, E. Homage to Santa Anita: thermal sensitivity of sprint speed in agamid lizards. Evolution, 37, 1075-1084, 1983.

[42] HERZOG HA, BAILEY BB, Development of antipredator responses in snakes. II. Effects of recent feeding on defensive behaviors of juvenile garter snakes (Thamnophis

60

[43] HERZOG, H. A. JR; SCHWARTZ, J.M. Geographical variation in the anti-predator behavior of neonate garter snakes, Thamnophis sirtalis Animal Behaviour, 40: 597-598. 1990.

[44] HIRANO, M.; ROME, L.C. Jumping performance of frogs (Rana pipiens) as a function of temperature. J.Exp.Biol.108, 429 – 439, 1984.

[45] HUEY, R.B.; STEVENSON, R.D. Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. American Zoology,19,357-366, 1979.

[46] HUEY, R.B; PIANKA, E.R. Ecological consequences of foraging mode. Ecology 62: 991-999, 1981.

[47] HUEY, R.B. Temperature, physiology, and the ecology of reptiles.In: Gans C.C.,

Pough,F.H.(Eds).Biology of the reptilia, vol 12, Physiology.Academic Press, New

York, 25-74, 1982.

[48] HUEY, R.B.; BENNETT, A.F., JOHN-ALDER, H; NAGY, K.A. Locomotor capacity and foraging behavior of Kalahari lacerdid lizards. Animal Behaviour, 32: 41-50, 1984. [49] HUEY, R.B.; SLATKIN, M. Costs and benefits of lizard thermoregulation. Quarterly

Review of Biology, 51: 363-384, 1976.

[50] KEOGH, J.S.; DESERTO, F.P. Temperature Dependent Defensive Behavior in Three Species of North American Colubrid Snakes. Journal of Herpetology, 28:258-261, 1994.

[51] KINGSOLVER, J.G.; WOODS, H.A. Thermal sensitivity of growth and feeding in Manduca sexta caterpillars. Physiol. Biochem.Zool. 70, 631 - 638, 1997.

[52] KOHLSDORF,T.Locomoção em areia e rocha: respostas evolutivas em lagartos

tropidurídeos. Tese de doutorado. Universidade de São Paulo, 249 p, 2003.

[53] LAYNE, J.R.; FORD, N.B. Flight distance of the queen snake Regina septemvittata. J.

Herpetol. 18: 496 - 498, 1984.

[54] LILLYWHITE, H. B. Temperature, energetic, and physiological ecology. Pp. 422 – 477

In: Seigel, R.A., J.T. Collins, and S.S. Novak (eds.), Snakes: ecology and evolutionary biology. Macmillan, NY, 1987.

[55] MARQUES, O.A.V.; ETEROVIC, A.; SAZIMA, I. Serpentes da Mata Atlântica: Guia Ilustrado. Editora Holos, Ribeirão Preto, Brasil, 2001.

[56] MARQUES, O.A.V.; SAZIMA I. História natural das serpentes. In: Animais peçonhentos do Brasil : Biologia, Clínica e Terapêutica dos acidentes, pag 62-71, 2003.

[57] MARTINS, M. História Natural e Ecologia de uma Taxocenose de Serpentes de

Mata na Região de Manaus, Amazônia Central, Brasil. Tese de Doutorado, Instituto

[58] MATTISON, C. The Encyclopedia of Snakes. London, Cassel Paperbacks. 256p, 1995. [59] MAUTZ, W.J.; DANIELS, C.B.; BENNETT, A.F. Thermal dependence of locomotion

and aggression in xantusiid lizard. Herpetologica 48:271-279, 1992.

[60] MCCONNELL, E.; RICHARDS, A.G. How fast can a cockroach run? Bull. Brooklyn

Entomol. Soc.50, 36 -43, 1955.

[61] MONDAL, S.; RAI, U. In vitro effect of temperature on phagocytic and cytotoxic activities of splenic phagocytes of the wall lizard, Hemidactylus flaviviridis. Comp.

Biochem. Physiol. A, 129:391-398, 2001.

[62] MORI, A., LAYNE, D. & BURGHARDT, G. M. Description and preliminary analysis of antipredator behavior of Rhabdophis tigrinus tigrinus, a colubrid snake with nuchal glands. Jpn. J. Herpetol. 16: 94 -107, 1996.

[63] MORI, A.; BURGHARDT, G.M.Temperature Effects on Anti-Predator Behaviour in

Rhabdophis tigrinus, a Snake with Toxic Nuchal Glands. Ethology 107,795-811, 2001.

[64] NAVAS, C.A.; BEVIER, C. Thermal dependency of calling performance in the eurythermic frog Colostethus subpunctatus. Herpetologica, 57, 384 -395, 2001.

[65] OJANGUREN, A.F.; BRANA, F. Thermal dependence of swimming endurance in juvenile brown trout. J.Fish Biol.56, 1342 – 1347, 2000.

[66] OLIVEIRA, M. E; MARTINS, M. When and where to find a pitviper: Activity patterns and habitat use of the lancehead, Bothrops atrox, in central Amazonia, Brazil.

Herpetological Natural History, 8: 101-110, 2002.

[67] PASSEK, K.M. AND GILLINGHAM, J.C. Thermal influence on defensive behaviours of the Eastern garter snake, Thamnophis sirtalis. Animal Behaviour, 54: 629-633, 1997. [68] RAND, A.S. Inverse relationship between temperature and shyness in the lizard Anolis

lineatopus. Ecology 45: 863-864, 1964.

[69] ROTH, E.D; JOHNSON, J.A. Size-based variation in antipredator behavior within a snake (Agkistrodon piscivorus) population. Behavioral Ecology, 15:365 – 370, 2004. [70] SAZIMA, I. Experimental Predation on the Leaf-Frog Phyllomedusa rohdei by the

Water Snake Liophis miliaris. Journal of Herpetology, 8: 376-377, 1974.

[71] SAZIMA, I. Um estudo da biologia comportamental da jararaca, Bothrops jararaca, com uso de marcas naturais. Memórias do Instituto Butantan, 50:83-89, 1988. [72] SAZIMA, I. ; HADDAD, C. F. B. Répteis da Serra do Japi: notas sobre história natural.

In: História Natural da Serra do Japi: Ecologia e Preservação de uma Área Florestal no Sudeste do Brasil (L. P. C. Morellato, org.), pp. 28-49, Campinas:

Editora da Universidade Estadual de Campinas/Fundação de Apoio à Pesquisa do Estado de São Paulo, 1992.

62

[73] SCHIEFFLIN, C.D.; DE QUEIROZ, A. Temperature and defense in the common garter snake: warm snakes are more aggressive than cold snakes. Herpetologica, 47:230- 237, 1991.

[74] LILLYWHITE, H.B. The biology and conservation of acrochordid snakes. Hamadryad, 16: 1-9, 1991.

[75] SCRIBNER S.J., WEATHERHEAD P. J. Locomotion and antipredator behavior in three species of semi-aquatic snakes. Can J Zool 73:321–329, 1995.

[76] SCUDDER, R.M.; BURGHARDT, G.M. A comparative study of defensive behavior in three sympatric species of water snakes (Nerodia). Z. Tierpsychol. 63: 17- 26, 1983. [77] SHINE, R. A new hypothesis for the evolution of viviparity in reptiles. Am. Nat, 145:

809 – 823, 1995.

[78] SHINE, R; OLSSON M.M., LEMASTER, M. P. ; MOORE, I.T.; MASON, R.T. Effects of sex, body size, temperature, and location on the antipredator tactics of free-ranging gartersnakes (Thamnophis sirtalis, Dipsadidae), Biological Journal of the Linnean

Society 76:71-77, 2000.

[79] SINERVO, B.; HUEY, R.B. Allometric Engineering: An Experimental Test of the Causes of Interpopulational Differences in Performance. Science, 248: 1106-1109, 1990.

[80] STEVENSON, R.D.; PETERSON, C.R.; TSUJI, J.S. The thermal dependence of locomotion, tongue flicking, digestion, and oxygen consumption in the wandering garter snake. Physiol. Zool. 58: 46 – 57, 1985.

[81] STRUSSMANN, C. Riqueza, abundância relativa e distribuição de espécies de serpentes ao longo da Rodovia MT-060, nos cerrados de Mato Grosso. III Congresso

Latino-Americano de Herpetologia, Resumos. Campinas: Universidade Estadual de

Campinas, 1992.

[82] VAN BERKUN, F.H. Evolutionary patterns of the thermal sensitivity of sprint speed in

Anolis lizards. Evolution, 40: 594-604, 1986.

[83] WARREN, C.E., DAVIS, G.E. Laboratory studies on the feeding, bioenergetics, and growth of fish. In: Gerking, S.D. (Ed.), The Biological Basis of Freshwater Fish

Production. Blackwell Scientific Publications, Oxford, pp. 175–214, 1967.

[84] WEBB, J.K. ; SHINE, R. Thermoregulation by a Nocturnal Elapid Snake (Hoplocephalus bungaroides) in Southeastern Australia. Physiological and

Biochemical Zoology 71:680– 692. 1998.

[85] WEINSTEIN, R.B. Effects of temperature and water loss on terrestrial locomotor performance in land crabs: integrating laboratory and field studies. Am.Zool, 38, 518 - 527, 1998.

[86] WERNER, Y.L. Optimal temperatures for inner-ear performance in gekkonid lizards.

J.Exp. Zool, 195: 319 - 352, 1976.

[87] WHITAKER, P. B.; SHINE, R. Responses of free-ranging brownsnakes (Pseudonaja

textilis: Elapidae) to encounters with humans. Wildl. Res. 26, 689 - 704, 1999.

[88] WHITAKER, P.B.; ELLIS, K; SHINE, R. The defensive strike of The Eastern Brownsnake Pseudonaja textilis (Elapidae). Functional Ecology, 14: 25 - 31, 2000.

APÊNDICE 1- Comportamentos

(a) Temperatura de 20°C

Im obilide Im obilide

PS TC AC EB B I ECP F Dir Traj Dir X Tra Agress CoefAg PS TC AC EB B I ECP F Dir Traj Dir X Tra Agress CoefAg A3 1 1 0 0 0 0 0 0 1 21,0 21,0 3 3 A33 0 0 0 0 0 0 0 1 1 27,6 27,6 0 -2 A4 1 1 1 1 0 0 0 0 1 5,0 5,0 10 10 A34 1 1 1 0 0 0 0 0 1 24,3 24,3 6 6 A5 0 0 0 0 0 0 0 1 -1 20,0 -20,0 0 -2 A35 0 0 0 0 0 0 0 1 -1 18,4 -18,4 0 -2 A6 1 1 0 1 1 0 0 0 1 13,1 13,1 12 12 A36 1 1 1 0 1 0 0 0 1 40,8 40,8 11 11 A7 1 1 1 1 0 0 0 0 1 8,2 8,2 10 10 A37 1 1 0 0 0 0 0 0 1 27,3 27,3 3 3 A9 1 1 1 1 1 0 0 0 1 20,1 20,1 15 15 A38 0 0 0 0 0 0 0 1 -1 15,3 -15,3 0 -2 A10 1 1 1 0 0 0 0 0 1 21,4 21,4 6 6 A39 1 0 0 0 0 0 0 0 1 40,8 40,8 1 1 A11 0 0 0 0 0 0 0 1 -1 39,5 -39,5 0 -2 A40 0 0 0 0 0 0 0 1 -1 27,4 -27,4 0 -2 A12 0 0 0 0 0 1 0 0 0 0,0 0,0 0 0 A41 1 1 1 1 1 0 0 0 1 28,2 28,2 15 15 A13 1 0 0 0 0 0 0 0 -1 21,1 -21,1 1 1 A42 1 1 1 0 1 0 0 0 1 35,8 35,8 11 11 A14 0 0 0 0 0 1 0 0 0 0,0 0,0 0 0 A43 0 0 0 0 0 0 0 1 -1 11,7 -11,7 0 -2 A15 0 0 0 0 0 0 1 0 -1 4,1 -4,1 0 -1 A44 1 0 0 0 0 0 0 0 1 27,3 27,3 1 1 A16 1 0 0 0 0 0 0 0 -1 7,2 -7,2 1 1 A45 0 0 0 0 0 0 0 1 -1 8,9 -8,9 0 -2 A17 1 1 1 0 0 0 0 0 1 28,5 28,5 6 6 A46 1 1 0 0 0 0 0 0 1 22,7 22,7 3 3 A18 0 0 0 0 0 0 0 1 1 5,7 5,7 0 -2 A48 1 1 0 0 0 0 0 0 1 12,1 12,1 3 3 A22 0 0 0 0 0 0 0 1 -1 4,5 -4,5 0 -2 A49 0 0 0 0 0 0 0 1 -1 7,2 -7,2 0 -2 A23 0 0 0 0 0 0 0 1 -1 21,9 -21,9 0 -2 A50 0 0 0 0 0 0 0 1 -1 17,9 -17,9 0 -2 A24 1 1 1 0 0 0 0 0 1 22,2 22,2 6 6 A51 1 0 0 0 0 0 0 0 1 25,1 25,1 1 1 A25 0 0 0 0 0 0 0 1 -1 11,7 -11,7 0 -2 A53 1 1 0 0 0 0 0 0 1 19,9 19,9 3 3 A26 1 1 0 0 0 0 0 0 1 8,0 8,0 3 3 A54 1 1 0 0 1 0 0 0 1 20,2 20,2 8 8 A27 1 1 0 0 0 0 0 0 1 16,1 16,1 3 3 A57 0 0 0 0 0 0 0 1 -1 50,7 -50,7 0 -2 A28 1 1 1 0 1 0 0 0 1 71,2 71,2 11 11 A58 0 0 0 0 0 0 0 1 -1 32,6 -32,6 0 -2 A29 1 1 1 0 1 0 0 0 1 55,2 55,2 11 11 A59 0 0 0 0 0 0 0 1 -1 11,3 -11,3 0 -2 A30 0 0 0 0 0 0 0 1 -1 9,4 -9,4 0 -2 A60 1 1 0 0 0 0 0 0 1 29,3 29,3 3 3 A32 1 0 0 0 0 0 0 0 1 15,6 15,6 1 1 Agressivos Passivos

Com portam entos Com portam entos

66

(b) Temperatura de 25°C

Im obilide Im obilide

PS TC AC EB B I ECP F Dir Traj Dir X Tra Agress CoefAg PS TC AC EB B I ECP F Dir Traj Dir X Tra Agress CoefAg A3 1 1 0 0 0 0 0 0 1,0 11,7 11,7 3 3 A33 1 0 0 0 0 0 0 0 1,0 35,1 35,1 1 1 A4 1 0 0 0 0 0 0 0 1,0 11,1 11,1 1 1 A34 1 1 0 0 0 0 0 0 1,0 10,0 10,0 3 3 A5 0 0 0 0 0 0 0 1 1,0 27,9 27,9 0 -2 A35 0 0 0 0 0 0 0 1 1,0 27,9 27,9 0 -2 A6 1 1 0 0 0 0 0 0 1,0 42,9 42,9 3 3 A36 1 1 0 1 1 0 0 0 1,0 20,5 20,5 12 12 A7 0 0 0 0 0 1 0 0 0,0 0,0 0,0 0 0 A37 1 1 1 0 1 0 0 0 1,0 42,5 42,5 11 11 A9 1 0 0 0 0 0 0 0 1,0 6,7 6,7 1 1 A38 0 0 0 0 0 0 0 1 1,0 14,7 14,7 0 -2 A10 0 0 0 0 0 0 0 1 -1,0 31,9 -31,9 0 -2 A39 1 0 0 0 0 0 0 0 1,0 37,1 37,1 1 1 A11 0 0 0 0 0 0 0 1 -1,0 16,5 -16,5 0 -2 A40 0 0 0 0 0 0 0 1 1,0 13,6 13,6 0 -2 A12 0 0 0 0 0 0 0 1 -1,0 17,2 -17,2 0 -2 A41 1 0 0 0 0 0 1 0 1,0 13,1 13,1 1 1 A13 0 0 0 0 0 0 1 0 -1,0 10,8 -10,8 0 -1 A42 1 1 1 1 1 0 0 0 1,0 22,3 22,3 15 15 A14 0 0 0 0 0 0 1 0 1,0 32,2 32,2 0 -1 A43 0 0 0 0 0 0 0 1 -1,0 15,7 -15,7 0 -2 A15 0 0 0 0 0 0 1 0 1,0 28,3 28,3 0 -1 A44 1 1 0 0 0 0 0 0 1,0 15,6 15,6 3 3 A16 1 1 0 0 0 0 0 0 1,0 17,1 17,1 3 3 A45 0 0 0 0 0 0 0 1 -1,0 10,0 -10,0 0 -2 A17 1 1 0 0 0 0 0 0 1,0 41,3 41,3 3 3 A46 1 1 0 0 0 0 0 0 1,0 23,4 23,4 3 3 A18 0 0 0 0 0 0 0 1 -1,0 6,4 -6,4 0 -2 A48 1 1 0 0 1 0 0 0 1,0 23,3 23,3 8 8 A22 0 0 0 0 0 0 0 1 -1,0 8,5 -8,5 0 -2 A49 0 0 0 0 0 0 0 1 -1,0 16,0 -16,0 0 -2 A23 0 0 0 0 0 0 1 0 1,0 26,3 26,3 0 -1 A50 0 0 0 0 0 0 0 1 -1,0 15,2 -15,2 0 -2 A24 0 0 0 0 0 0 0 1 1,0 16,3 16,3 0 -2 A51 0 0 0 0 0 0 0 1 -1,0 14,1 -14,1 0 -2 A25 0 0 0 0 0 0 0 1 -1,0 14,1 -14,1 0 -2 A53 1 1 0 0 0 0 0 0 1,0 25,2 25,2 3 3 A26 0 0 0 0 0 0 1 0 1,0 12,6 12,6 0 -1 A54 1 1 0 0 0 0 0 0 1,0 35,5 35,5 3 3 A27 0 0 0 0 0 0 1 0 -1,0 21,6 -21,6 0 -1 A57 1 0 0 0 0 0 0 0 1,0 29,9 29,9 1 1 A28 1 1 1 0 0 0 0 0 1,0 28,2 28,2 6 6 A58 0 0 0 0 0 0 0 1 -1,0 56,5 -56,5 0 -2 A29 1 1 1 0 1 0 0 0 1,0 31,3 31,3 11 11 A59 1 1 0 0 0 0 0 0 1,0 8,2 8,2 3 3 A30 0 0 0 0 0 0 0 1 -1,0 21,1 -21,1 0 -2 A60 1 1 1 0 0 0 0 0 -1,0 12,6 -12,6 6 6 A32 0 0 0 0 0 0 0 1 -1,0 25,1 -25,1 0 -2

Agressivos Passivos Agressivos Passivos

(c) Temperatura de 30°C

Im obilide Im obilide

PS TC AC EB B I ECP F Dir Traj Dir X Tra Agress CoefAg PS TC AC EB B I ECP F Dir Traj Dir X Tra Agress CoefAg A3 1 1 0 0 0 0 0 0 1,0 35,3 35,3 3 3 A33 0 0 0 0 0 0 0 1 -1,0 10,8 -10,8 0 -2 A4 1 0 0 0 0 0 0 0 1,0 17,8 17,8 1 1 A34 1 1 1 0 0 0 0 0 1,0 32,3 32,3 6 6 A5 0 0 0 0 0 0 0 1 1,0 30,6 30,6 0 -2 A35 1 0 0 0 0 0 0 0 1,0 16,8 16,8 1 1 A6 0 0 0 0 0 0 0 1 1,0 23,4 23,4 0 -2 A36 1 0 0 0 0 0 0 0 1,0 46,7 46,7 1 1 A7 0 0 0 0 0 1 0 0 0,0 0,0 0,0 0 0 A37 1 1 1 0 1 0 0 0 1,0 56,2 56,2 11 11 A9 1 0 0 0 0 0 0 0 1,0 15,2 15,2 1 1 A38 0 0 0 0 0 0 0 1 -1,0 8,5 -8,5 0 -2 A10 0 0 0 0 0 0 0 1 -1,0 6,1 -6,1 0 -2 A39 0 0 0 0 0 0 0 1 1,0 43,9 43,9 0 -2 A11 0 0 0 0 0 0 0 1 -1,0 12,5 -12,5 0 -2 A40 0 0 0 0 0 0 0 1 -1,0 31,1 -31,1 0 -2 A12 0 0 0 0 0 0 0 1 -1,0 12,5 -12,5 0 -2 A41 1 1 0 1 0 0 0 0 1,0 36,3 36,3 7 7 A13 0 0 0 0 0 0 1 0 1,0 4,0 4,0 0 -1 A42 1 1 0 0 0 0 0 0 1,0 43,2 43,2 3 3 A14 0 0 0 0 0 0 1 0 -1,0 8,0 -8,0 0 -1 A43 1 0 0 0 0 0 0 0 1,0 31,6 31,6 1 1 A15 0 0 0 0 0 0 1 0 1,0 26,5 26,5 0 -1 A44 1 1 0 0 1 0 0 0 1,0 46,2 46,2 8 8 A16 1 0 0 0 0 0 0 0 -1,0 12,0 -12,0 1 1 A45 0 0 0 0 0 0 0 1 -1,0 12,3 -12,3 0 -2 A17 0 0 0 0 0 0 0 1 1,0 17,9 17,9 0 -2 A46 1 1 1 0 1 0 0 0 1,0 15,8 15,8 11 11 A18 0 0 0 0 0 0 0 1 -1,0 12,4 -12,4 0 -2 A48 1 1 0 0 1 0 0 0 1,0 38,2 38,2 8 8 A22 0 0 0 0 0 0 1 0 1,0 5,0 5,0 0 -1 A49 1 0 0 0 0 0 0 0 1,0 30,2 30,2 1 1 A23 0 0 0 0 0 0 1 0 1,0 23,2 23,2 0 -1 A50 0 0 0 0 0 0 0 1 -1,0 11,7 -11,7 0 -2 A24 0 0 0 0 0 0 0 1 1,0 21,0 21,0 0 -2 A51 0 0 0 0 0 0 0 1 1,0 19,3 19,3 0 -2 A25 1 1 0 0 1 0 0 0 1,0 38,8 38,8 8 8 A53 0 0 0 0 0 0 0 1 -1,0 14,6 -14,6 0 -2 A26 1 1 0 0 0 0 0 0 1,0 14,1 14,1 3 3 A54 1 1 0 0 1 0 0 0 1,0 87,3 87,3 8 8 A27 0 0 0 0 0 0 0 1 1,0 40,5 40,5 0 -2 A57 0 0 0 0 0 0 0 1 -1,0 12,5 -12,5 0 -2 A28 1 1 0 0 0 0 0 0 1,0 47,1 47,1 3 3 A58 0 0 0 0 0 0 0 1 -1,0 42,6 -42,6 0 -2 A29 1 1 0 0 0 0 0 0 1,0 19,0 19,0 3 3 A59 1 0 0 0 0 0 0 0 1,0 28,4 28,4 1 1 A30 0 0 0 0 0 0 0 1 1,0 5,7 5,7 0 -2 A60 1 1 0 0 0 0 0 0 1,0 24,3 24,3 3 3 A32 0 0 0 0 0 0 0 1 1,0 49,4 49,4 0 -2

Agressivos Passivos Agressivos Passivos

68

(d) Temperatura de 35°C

Im obilide Im obilide

PS TC AC EB B I ECP F Dir Traj Dir X Tra Agress CoefAg PS TC AC EB B I ECP F Dir Traj Dir X Tra Agress CoefAg A3 0 0 0 0 0 0 1 0 1,0 44,6 44,6 0 -1 A33 1 0 0 0 0 0 0 0 1,0 31,3 31,3 1 1 A4 1 0 0 0 0 0 0 0 1,0 5,5 5,5 1 1 A34 1 1 1 0 0 0 0 0 1,0 39,1 39,1 6 6 A5 0 0 0 0 0 0 0 1 -1,0 16,4 -16,4 0 -2 A35 0 0 0 0 0 0 0 1 1,0 21,8 21,8 0 -2 A6 0 0 0 0 0 0 0 1 -1,0 10,0 -10,0 0 -2 A36 1 1 0 1 1 0 0 0 1,0 34,2 34,2 12 12 A7 0 0 0 0 0 1 0 0 0,0 0,0 0,0 0 0 A37 1 1 0 0 1 0 0 0 1,0 40,2 40,2 8 8 A9 1 0 0 0 0 0 0 0 1,0 16,0 16,0 1 1 A38 1 0 0 0 0 0 0 0 1,0 22,7 22,7 1 1 A10 0 0 0 0 0 0 0 1 -1,0 23,4 -23,4 0 -2 A39 0 0 0 0 0 0 0 1 -1,0 10,0 -10,0 0 -2 A11 0 0 0 0 0 0 0 1 -1,0 41,6 -41,6 0 -2 A40 0 0 0 0 0 0 1 0 1,0 33,1 33,1 0 -1 A12 0 0 0 0 0 0 0 1 -1,0 21,2 -21,2 0 -2 A41 1 1 0 0 1 0 0 0 1,0 23,4 23,4 8 8 A13 0 0 0 0 0 0 1 0 1,0 10,0 10,0 0 -1 A42 1 1 1 0 1 0 0 0 1,0 50,0 50,0 11 11 A14 0 0 0 0 0 1 0 0 0,0 0,0 0,0 0 0 A43 0 0 0 0 0 0 0 1 1,0 38,2 38,2 0 -2 A15 0 0 0 0 0 0 0 1 -1,0 19,0 -19,0 0 -2 A44 1 1 0 0 0 0 0 0 1,0 17,9 17,9 3 3 A16 1 0 0 0 0 0 0 0 1,0 13,0 13,0 1 1 A45 0 0 0 0 0 0 1 0 1,0 13,2 13,2 0 -1 A17 0 0 0 0 0 0 0 1 -1,0 20,1 -20,1 0 -2 A46 1 1 0 0 0 0 0 0 1,0 15,2 15,2 3 3 A18 0 0 0 0 0 1 0 0 0,0 0,0 0,0 0 0 A48 1 1 0 0 0 0 0 0 1,0 33,4 33,4 3 3 A22 1 0 0 0 0 0 0 0 1,0 41,9 41,9 1 1 A49 0 0 0 0 0 0 0 1 -1,0 22,7 -22,7 0 -2 A23 0 0 0 0 0 1 0 0 0,0 0,0 0,0 0 0 A50 0 0 0 0 0 0 0 1 1,0 41,2 41,2 0 -2 A24 0 0 0 0 0 0 0 1 -1,0 12,0 -12,0 0 -2 A51 0 0 0 0 0 0 0 1 1,0 37,4 37,4 0 -2 A25 0 0 0 0 0 0 0 1 1,0 26,0 26,0 0 -2 A53 0 0 0 0 0 0 1 0 1,0 8,5 8,5 0 -1 A26 0 0 0 0 0 0 0 1 1,0 10,2 10,2 0 -2 A54 1 0 0 0 0 0 0 0 1,0 43,9 43,9 1 1 A27 1 1 0 0 0 0 0 0 1,0 20,4 20,4 3 3 A57 1 0 0 0 0 0 0 0 1,0 20,4 20,4 1 1 A28 1 1 1 0 1 0 0 0 1,0 42,3 42,3 11 11 A58 0 0 0 0 0 0 0 1 -1,0 23,6 -23,6 0 -2 A29 1 0 0 0 1 0 0 0 1,0 41,8 41,8 6 6 A59 1 1 0 0 0 0 0 0 1,0 20,6 20,6 3 3 A30 0 0 0 0 0 0 1 0 1,0 29,8 29,8 0 -1 A60 1 0 0 0 0 0 0 0 1,0 22,4 22,4 1 1 A32 1 0 0 0 0 0 0 0 1,0 37,9 37,9 1 1

Agressivos Passivos Agressivos Passivos

APÊNDICE 2 – Dados morfológicos

MASSA SEXO CRC LOCALIDADE MASSA SEXO CRC LOCALIDADE

(gr) (cm) (gr) (cm)

A3 25 0 48,5 Embu-Guaçu A33 22 1 38 São Roque

A4 28 1 43 Vargem Gde Paulista A34 20 1 42,5 Itapecerica da Serra

A5 30 1 43 Mairinque A35 30 1 49 Santana do Parnaíba

A6 40 1 48 Sem procedência A36 29 1 50 Santana do Parnaíba

A7 31 1 41,5 Cajamar A37 12 1 34 Santana do Parnaíba

A9 19 0 37 Ibiúna A38 46 0 51 Itu

A10 50 1 54,5 Piedade A39 40 0 49 Embu das Artes

A11 26 1 37,5 Itapevi A40 51 0 51 Embu -Guaçu

A12 20 1 42 Itapecerica da Serra A41 23 1 41 Ibiúna

A13 16 1 37 Ibiúna A42 25 0 43,5 São Paulo

A14 29 1 45,5 Santana do Parnaíba A43 58 0 51,5 Osasco

A15 25 1 42,5 São Caetano do Sul A44 20 1 40 Juquitiba

A16 50 0 46 Mairinque A45 56 0 52,5 Santana do Parnaíba

A17 25 1 38 São Roque A46 50 0 52,5 Cotia

A18 31 1 44,5 Cajamar A48 42 1 49 São Paulo

A22 44 0 52 São Paulo A49 95 0 57 Mairiporã

A23 49 1 60,5 Embu-Guaçu A50 29 1 43 Embu das Artes

A24 29 1 49 Embu-Guaçu A51 80 0 49,5 Itu

A25 31 1 44,5 Embu-Guaçu A53 48 0 44 Vargem Gde Paulista

A26 49 0 53 Cotia A54 25 0 41,5 Cotia

A27 29 0 40 Cotia A57 90 0 50,5 São Paulo

A28 46 0 48,5 Itapevi A58 75 0 59,5 Parelheiros

A29 53 0 52 Ibiúna A59 70 1 59 Mairiporã

A30 61 1 61 Araçariguama A60 30 1 54 São Bernardo do Campo

70

APÊNDICE 3 – Dados referentes ao bote

Animal

Bote 20C

Altura Distância Duração Velocidade CRC (cm) (cm) (s) (cm/s) (cm) A6 6,20 16,20 0,34 53,28 48,00 A9 5,00 15,00 0,46 32,89 37,00 A28 6,00 38,20 0,15 251,31 48,50 A29 5,00 36,40 0,38 95,78 52,00 A36 6,00 22,36 0,23 98,07 50,00 A41 4,00 13,41 0,15 88,22 41,00 A42 6,00 23,40 0,08 307,89 43,50 A54 3,00 8,90 0,15 58,55 41,50 média 5,15 21,73 0,24 123,25 45,19 desv.padr 1,15 10,69 0,13 100,25 5,20 erro padrão 0,41 3,78 0,05 35,44 1,84 Animal Bote 25C

Altura Distância Duração Velocidade CRC (cm) (cm) (s) (cm/s) (cm) A29 4,00 21,50 0,15 141,44 52,00 A36 5,00 10,70 0,23 46,92 50,00 A37 4,00 12,00 0,15 78,94 34,00 A42 4,00 12,00 0,08 157,89 43,50 A48 4,20 16,12 0,23 70,70 49,00 média 4,24 14,46 0,17 99,18 45,70 desv.padr 0,43 4,43 0,06 47,92 7,26 erro padrão 0,19 1,98 0,03 21,43 3,25 Animal Bote 30C

Altura Distância Duração Velocidade CRC (cm) (cm) (s) (cm/s) (cm) A25 8,00 10,19 0,23 44,69 44,50 A37 5,00 30,46 0,23 133,59 34,00 A44 4,00 24,00 0,23 105,26 40,00 A48 3,00 34,00 0,15 223,68 49,00 A54 6,00 46,60 0,15 310,66 41,50 média 5,20 29,05 0,20 163,58 41,80 desv.padr 1,92 13,38 0,04 104,50 5,55 erro padrão 0,86 5,98 0,02 46,73 2,48 Animal Bote 35C

Altura Distância Duração Velocidade CRC (cm) (cm) (s) (cm/s) (cm) A28 4,00 18,20 0,15 119,73 48,50 A29 3,00 29,73 0,08 391,18 52,00 A41 4,00 16,49 0,15 108,46 41,00 A42 6,00 17,20 0,23 75,43 43,50 média 4,25 20,41 0,15 173,70 46,25 desv.padr 1,26 6,26 0,06 146,20 4,94 erro padrão 0,63 3,13 0,03 73,10 2,47

APÊNDICE 4- Cálculo da média individual ajustada

Temperaturas Temperaturas

Ind(n) 20C 25C 30C 35C MI(n) MMI = 1,45 Ind(n) 20C 25C 30C 35C CoefAg CoefAg CoefAg CoefAg Fc(n) CoefAgAj CoefAgAj CoefAgAj CoefAgAj

A3 3 3 3 -1 2,00 0,55 A3 2,45 2,45 2,45 -1,55 A4 10 1 1 1 3,25 1,80 A4 8,20 -0,80 -0,80 -0,80 A5 -2 -2 -2 -2 -2,00 -3,45 A5 1,45 1,45 1,45 1,45 A6 12 3 -2 -2 2,75 1,30 A6 10,70 1,70 -3,30 -3,30 A7 10 0 0 0 2,50 1,05 A7 8,95 -1,05 -1,05 -1,05 A9 15 1 1 1 4,50 3,05 A9 11,95 -2,05 -2,05 -2,05 A10 6 -2 -2 -2 0,00 -1,45 A10 7,45 -0,55 -0,55 -0,55 A11 -2 -2 -2 -2 -2,00 -3,45 A11 1,45 1,45 1,45 1,45 A12 0 -2 -2 -2 -1,50 -2,95 A12 2,95 0,95 0,95 0,95 A13 1 -1 -1 -1 -0,50 -1,95 A13 2,95 0,95 0,95 0,95 A14 0 -1 -1 0 -0,50 -1,95 A14 1,95 0,95 0,95 1,95 A15 -1 -1 -1 -2 -1,25 -2,70 A15 1,70 1,70 1,70 0,70 A16 1 3 1 1 1,50 0,05 A16 0,95 2,95 0,95 0,95 A17 6 3 -2 -2 1,25 -0,20 A17 6,20 3,20 -1,80 -1,80 A18 -2 -2 -2 0 -1,50 -2,95 A18 0,95 0,95 0,95 2,95 A22 -2 -2 -1 1 -1,00 -2,45 A22 0,45 0,45 1,45 3,45 A23 -2 -1 -1 0 -1,00 -2,45 A23 0,45 1,45 1,45 2,45 A24 6 -2 -2 -2 0,00 -1,45 A24 7,45 -0,55 -0,55 -0,55 A25 -2 -2 8 -2 0,50 -0,95 A25 -1,05 -1,05 8,95 -1,05 A26 3 -1 3 -2 0,75 -0,70 A26 3,70 -0,30 3,70 -1,30 A27 3 -1 -2 3 0,75 -0,70 A27 3,70 -0,30 -1,30 3,70 A28 11 6 3 11 7,75 6,30 A28 4,70 -0,30 -3,30 4,70 A29 11 11 3 6 7,75 6,30 A29 4,70 4,70 -3,30 -0,30 A30 -2 -2 -2 -1 -1,75 -3,20 A30 1,20 1,20 1,20 2,20 A32 1 -2 -2 1 -0,50 -1,95 A32 2,95 -0,05 -0,05 2,95 A33 -2 1 -2 1 -0,50 -1,95 A33 -0,05 2,95 -0,05 2,95 A34 6 3 6 6 5,25 3,80 A34 2,20 -0,80 2,20 2,20 A35 -2 -2 1 -2 -1,25 -2,70 A35 0,70 0,70 3,70 0,70 A36 11 12 1 12 9,00 7,55 A36 3,45 4,45 -6,55 4,45 A37 3 11 11 8 8,25 6,80 A37 -3,80 4,20 4,20 1,20 A38 -2 -2 -2 1 -1,25 -2,70 A38 0,70 0,70 0,70 3,70 A39 1 1 -2 -2 -0,50 -1,95 A39 2,95 2,95 -0,05 -0,05 A40 -2 -2 -2 -1 -1,75 -3,20 A40 1,20 1,20 1,20 2,20 A41 15 1 7 8 7,75 6,30 A41 8,70 -5,30 0,70 1,70 A42 11 15 3 11 10,00 8,55 A42 2,45 6,45 -5,55 2,45 A43 -2 -2 1 -2 -1,25 -2,70 A43 0,70 0,70 3,70 0,70 A44 1 3 8 3 3,75 2,30 A44 -1,30 0,70 5,70 0,70 A45 -2 -2 -2 -1 -1,75 -3,20 A45 1,20 1,20 1,20 2,20 A46 3 3 11 3 5,00 3,55 A46 -0,55 -0,55 7,45 -0,55 A48 3 8 8 3 5,50 4,05 A48 -1,05 3,95 3,95 -1,05 A49 -2 -2 1 -2 -1,25 -2,70 A49 0,70 0,70 3,70 0,70 A50 -2 -2 -2 -2 -2,00 -3,45 A50 1,45 1,45 1,45 1,45 A51 1 -2 -2 -2 -1,25 -2,70 A51 3,70 0,70 0,70 0,70 A53 3 3 -2 -1 0,75 -0,70 A53 3,70 3,70 -1,30 -0,30 A54 8 3 8 1 5,00 3,55 A54 4,45 -0,55 4,45 -2,55 A57 -2 1 -2 1 -0,50 -1,95 A57 -0,05 2,95 -0,05 2,95 A58 -2 -2 -2 -2 -2,00 -3,45 A58 1,45 1,45 1,45 1,45 A59 -2 3 1 3 1,25 -0,20 A59 -1,80 3,20 1,20 3,20 A60 3 6 3 1 3,25 1,80 A60 1,20 4,20 1,20 -0,80

72

APÊNDICE 5 - regressão linear multivariada para verificar a influência dos

fatores sexo, massa e CRC

Foi observado que, para todas as temperaturas testadas, o valor de R2 foi próximo de zero,

o que indica um baixo grau de ajuste das variáveis - CRC (Comprimento Rostro-Cloacal), sexo, massa - ao modelo. Esta baixa adequação se confirma através do teste F, cujo valor da estatística está abaixo do crítico com confiança de 95%.

Temperatura 20C

Estatísticas CRC sexo massa constante R2 F n k F Crítico

Valor -0,006 -2,413 -0,117 8,931

0,146 2,561 49 3 4,2 Erro padrão 0,166 1,675 0,064 6,225

Temperatura 25C

Estatísticas CRC sexo massa constante R2 F n k F Crítico

Valor 0,075 -1,862 -0,086 2,153

0,074 1,204 49 3 4,2 Erro padrão 0,141 1,416 0,054 5,264

Temperatura 30C

Estatísticas CRC sexo massa constante R2 F n k F Crítico

Valor 0,054 -1,165 -0,074 1,993

0,070 1,198 49 3 4,2 Erro padrão 0,127 1,280 0,049 4,759

Temperatura 35C

Estatísticas CRC sexo massa constante R2 F n k F Crítico

Valor 0,050 -1,541 -0,073 2,383

0,074 1,198 49 3 4,2 Erro padrão 0,125 1,258 0,048 4,677

Documentos relacionados