• Nenhum resultado encontrado

Com a realização da presente dissertação foi possível retirar as seguintes conclusões:

• A preparação metalográfica das amostras a analisar deve ser feita até aos panos com suspensão de diamante de 1 µm de forma a conduzir uma quantificação eficaz da porosidade;

• Valores baixos de ID são indicadores da presença de microrechupes na estrutura das amostras, uma vez que o hidrogénio dissolvido no banho não é suficiente para contrariar a contração natural da liga;

• Existe uma correlação linear positiva entre o valor da porosidade média e o valor de ID da mesma amostra;

• Com a análise em profundidade foi possível concluir que o valor médio da porosidade, obtido pelo método de quantificação desenvolvido, é igual por toda a amostra, assumindo um erro de 5%;

• O método desenvolvido e descrito no procedimento experimental é válido e permite obter uma estimativa aceitável para a quantificação da porosidade originada pela absorção de hidrogénio em ligas de alumínio fundidas.

5.1. Trabalhos futuros

No seguimento do trabalho realizado nesta dissertação, seria interessante abordar os seguintes tópicos em trabalhos futuros:

• Realização de um estudo mais detalhado sobre o fenómeno do aparecimento de microrechupe em amostras com baixo valor de ID. Seria interessante encontrar o valor mínimo de ID para que este fenómeno deixe de ocorrer;

• Aplicar o método experimental definido nesta dissertação a uma amostragem maior e aumentar o número de campos analisados por amostras de maneira a diminuir a dispersão de dados.

50

Referências bibliográficas

1. Totten, G.E. and D.S. MacKenzie, Handbook of Aluminum: Vol. 1:

Physical Metallurgy and Processes. 2003: CRC Press.

2. Totten, G.E. and D.S. MacKenzie, Handbook of Aluminum: Volume 2:

Alloy Production and Materials Manufacturing. 2003: CRC Press.

3. Smith, W.F. and J. Hashemi, Fundamentos de Engenharia e Ciência dos

Materiais. 2013: McGraw Hill Brasil.

4. Vasudevan, A.K. and R.D. Doherty, Aluminum Alloys--Contemporary

Research and Applications: Contemporary Research and Applications.

2012: Elsevier Science.

5. Kaufman, J.G., Introduction to aluminum alloys and tempers. 2000: ASM International.

6. Kissell, J.R. and R.L. Ferry, Aluminum structures: a guide to their

specifications and design. 2002: John Wiley & Sons.

7. Gruzleski, J.E., B.M. Closset, and A.F.s. Society, The Treatment of

Liquid Aluminum-silicon Alloys. 1990: American Foundrymen's Society,

Incorporated.

8. Kaufman, J.G. and E.L. Rooy, Aluminum alloy castings: properties,

processes, and applications. 2004: Asm International.

9. Zolotorevsky, V.S., N.A. Belov, and M.V. Glazoff, Casting aluminum

alloys. Vol. 12. 2007: Elsevier Oxford.

10. Esgandari, B.A., et al., Effect of Mg and semi solid processing on

microstructure and impression creep properties of A356 alloy.

Transactions of Nonferrous Metals Society of China, 2013. 23(9): p. 2518- 2523.

11. SHELBY®, C. Shelby 427 FE Bare Block. 2017 [cited 2017 12/06/2017]; Available from: https://www.shelbyengines.com/.

12. Ramey, J. Audi Space Frame comes full circle at Frankfurt motor show. 2013 [cited 2017; Available from: http://autoweek.com/article/car- news/audi-space-frame-comes-full-circle-frankfurt-motor-show.

13. Lu, S.-Z. and A. Hellawell, Growth mechanisms of silicon in Al-Si alloys. Journal of Crystal Growth, 1985. 73(2): p. 316-328.

51

14. Dinnis, C.M., et al., The influence of strontium on porosity formation in

Al-Si alloys. Metallurgical and Materials Transactions A, 2004. 35(11): p.

3531-3541.

15. Qigui, L.H.W.Y.F.R.W., Effect of Sr content on porosity formation in

directionally solidified Al-12.3wt.%Si alloy. 2014. 11(5).

16. Liu, L., et al., Influence of oxides on porosity formation in Sr-treated

Al-Si casting alloys. Journal of Materials Science, 2003. 38(6): p. 1255-

1267.

17. Emadi, D., J.E. Gruzleski, and J.M. Toguri, The effect of na and Sr

modification on surface tension and volumetric shrinkage of A356 alloy and their influence on porosity formation. Metallurgical Transactions B,

1993. 24(6): p. 1055-1063.

18. Denton, J. and J. Spittle, Solidification and susceptibility to hydrogen

absorption of Al–Si alloys containing strontium. Materials Science and

Technology, 1985. 1(4): p. 305-311.

19. Brown, J., Foseco Non-Ferrous Foundryman's Handbook. 1999: Elsevier Science.

20. Monroe, R., Porosity in castings. AFS Transactions, 2005. 113: p. 519- 546.

21. Dispinar, D., et al., Degassing, hydrogen and porosity phenomena in

A356. Materials Science and Engineering: A, 2010. 527(16–17): p. 3719-

3725.

22. Anson, J.P. and J.E. Gruzleski, The Quantitative Discrimination between

Shrinkage and Gas Microporosity in Cast Aluminum Alloys Using Spatial Data Analysis. Materials Characterization, 1999. 43(5): p. 319-335.

23. Gunasegaram, D., D. Farnsworth, and T. Nguyen, Identification of

critical factors affecting shrinkage porosity in permanent mold casting using numerical simulations based on design of experiments. Journal of

materials processing technology, 2009. 209(3): p. 1209-1219.

24. Puga, H., Desenvolvimento de uma técnica de fundição de ligas de

alumínio de alta resistência, in Engenharia Mecânica 2011, Universidade

52

25. Dispinar, D., Determination of metal quality of aluminium and its alloys. 2006, University of Birmingham.

26. Abel, L.A. and W.L. Jackson, Asm Handbook: Metals Handbook. 1989: Asm International.

27. Warke, V., S. Shankar, and M. Makhlouf, Mathematical modeling and

computer simulation of molten aluminum cleansing by the rotating impeller degasser: Part II. Removal of hydrogen gas and solid particles.

Journal of materials processing technology, 2005. 168(1): p. 119-126. 28. Samuel, A. and F. Samuel, Various aspects involved in the production of

low-hydrogen aluminium castings. Journal of Materials Science, 1992. 27(24): p. 6533-6563.

29. Wu, R., et al., Effects of spray degassing parameters on hydrogen

content and properties of commercial purity aluminum. Materials

Science and Engineering: A, 2007. 456(1): p. 386-390.

30. Mahanti, R., et al., A novel technique for hyper eutectic aluminium-

silicon alloy melt treatment. Materials Transactions, JIM, 1993. 34(12):

p. 1207-1211.

31. Shih, T.-S. and K.-Y. Weng, Effect of A Degassing Treatment on the

Quality of Al-7Si and A356 Melts. Materials transactions, 2004. 45(6): p.

1852-1858.

32. Puga, H., et al., Influence of indirect ultrasonic vibration on the

microstructure and mechanical behavior of Al–Si–Cu alloy. Materials

Science and Engineering: A, 2013. 560: p. 589-595.

33. Puga, H., et al., Low pressure sand casting of ultrasonically degassed

AlSi7Mg0. 3 alloy: modelling and experimental validation of mould filling. Materials & Design, 2016. 94: p. 384-391.

34. Puga, H., et al. New Trends in Aluminium Degassing–A Comparative

Study. in Fourth International Conference on Advances and Trends in Engineering Materials and their Applications. 2009.

35. Xu, H., et al., Degassing of molten aluminum A356 alloy using ultrasonic

vibration. Materials letters, 2004. 58(29): p. 3669-3673.

36. Eskin, G., Cavitation mechanism of ultrasonic melt degassing. Ultrasonics Sonochemistry, 1995. 2(2): p. S137-S141.

53

37. CES Edupack 2016. 2016, Granta Design Limited.

38. Tan, E.T., AR; Dışpınar, D; Çolak, M; Kayıkçı, R. Reproducibility of

reduced pressure test results in testing of liquid aluminum gas levels.

in 6 th International Advanced Technologies Symposium. 2011.

39. Azevedo dos Anjos, V.E., Use of Thermal Analysis to Control the

Solidification Morphology of Nodular Cast Irons and Reduce Feeding Needs. 2015, Duisburg, Essen, Universität Duisburg-Essen, Diss., 2015.

40. Microsystems, L., Leica Application Suite LAS User Manual. 2015, Leica Microsystems.

41. Hills, M., et al., In-situ measurement of dissolved hydrogen during low

pressure die casting of aluminium. 2010, Minerals, Metals and Materials

Society/AIME, 420 Commonwealth Dr., P. O. Box 430 Warrendale PA 15086 USA.

Documentos relacionados