• Nenhum resultado encontrado

A análise dos resultados permite concluir que:

 O pré-tratamento com a ouabaína (0,56 mg/kg), mostrou uma ação anti- inflamatória uma vez que foi capaz de reduzir a migração de células para o sítio da inflamação;

 A ouabaína reduz a subpopulação de linfócitos T CD3+ no fluido do lavado broncoalveolar (BALF);

 A ouabaína atenuou a produção de citocinas características do fenótipo Th2, IL-4 e IL-13, porém não interferiu nos níveis de IFN- ;

 As alterações histopatológicas do modelo de inflamação pulmonar alérgica foram moduladas negativamente pela oubaína;

 A ouabaína reduziu a proporção do título de IgE-OVA específica presente no BALF.

Figura 12. Esquema representando os efeitos da ouabaína no processo inflamatório alérgico pulmonar obtidos neste trabalho

ANDERSON, G.P. Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet. v.372, p.1107 1119, 2008.

AGRAWAL, K. P.; REED, C. E.; HYATT, R. E.; et al. Airway responses to inhaled ouabain in subjects with and without asthma. Mayo Clinic

Proceedings, vol.61, n.10, p.778–784, 1986.

ATREYA, R.; MUDTER, J.; FINOTTO, S.; et al. Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: Evidence in Crohn disease and experimental colitis in vivo.

Nature Medicine, n. 6, p. 583 – 588, 2000.

BAGROV, A. Y.; SHAPIRO, J. I. Endogenous digitalis: pathophysiologic roles and therapeutic applications. Nature Clinical Practice Nephrology, v. 4, n. 7, p. 378-92, 2008.

BARNES, P. J. Immunology of asthma and chronic obstructive pulmonary disease. Nature Reviews Immunology, v. 8, p. 183-192, 2008.

BELLINI, A.; et al. Interleukin (IL)-4, IL-13, and IL-17A differentially affect the profibrotic and proinflammatory functions of fibrocytes from asthmatic patients.

Mucosal Immunology, V. 5, p. 140–149, 2011.

BEZERRA-SANTOS, C.; R., VIEIRA-DE-ABREU, A.; BARBOSA-FILHO, J.M.; et al. Anti-allergic properties of Cissampelos sympodialis and its isolated alkaloid warifteine. International Immunopharmacology. v. 6, p.1152–1160, 2006.

BEZERRA-SANTOS, C.; VIEIRA-DE-ABREU, A.; VIEIRA, G. C.; et al. Effectiveness of Cissampelos sympodialis and its isolated alkaloid warifteine in airway hyperreactivity and lung remodeling in a mouse model of asthma.

International Immunopharmacology, v. 13, p. 567-576, 2012.

BLAUSTEIN, M. P. Physiological effects of endogenous ouabain: control of intracellular Ca2+ stores and cell responsiveness. American Journal of

BLOEMEN, K.; et al., The allergic cascade: Review of the most important molecules in the asthmatic lung. Immunology Letters,v. 113, n. 31, p. 6–18, 2007.

BORTNER, C. D.; HUGHES, F. M., JR.; CIDLOWSKI, J. A. A primary role for K+ and Na+ efflux in the activation of apoptosis. Journal of Biological

Chemistry, v. 272, n. 51, p. 32436-42, 1997.

BORTNER, C. D.; GÓMEZ-ANGELATS, M.; CIDLOWSKI, J. A.Plasma membrane depolarization without repolarization is na early molecular event in anti-FAZ induced apoptosis. Journal of Biological Chemistry, v. 275, p. 4304- 14, 2001.

BOUSQUET, J.; CLARK, T.J.; HURD, S.; KHALTAEV, N.; LENFANT, C.; O’BYRNE, P. GINA guidelines on asthma and beyond. Allergy, v. 62(2), p. 102-112, 2007.

BRANDT, E. B.; et al. Diesel exhaust particle induction of IL-17A contributes to severe asthma. Journal of Allergy and Clinical Immunology, v. 132, p. 1194–1204, 2013.

BRASIL. Ministério da Saúde. DATASUS. Informações de saúde. [Citado em 23 de janeiro de 2015. Disponível em: http://www.blog.saude.gov.br/570- perguntas-e-respostas/35040-asma-atinge-6-4-milhoes-de-brasileiros, 2015. BRUSSELLE, G.G.; KIPS, J.C.; TAVERNIER, J.H.; et al. Attenuation of allergic airway inflammation in IL-4 deficient mice. Clinical , Experimental Allergy. v.24, p.73–80, 1994.

CHAUSSABEL, D.; PASCUAL, V.; BANCHEREAU, J. Assessing the human immune system through blood transcriptomics. BMC Biology, v. 8, p. 84, 2010. CHENG, D. et al. Epithelial interleukin-25 is a key mediator in TH2-high, corticosteroid-responsive asthma. The American Journal of Respiratory and

Critical Care Medicine, vol. 190, p.639–648, 2014.

CORRY, D.B.; FOLKESSON, H.G.; WARNOCK, M.L.; et al. Interleukin 4, but not interleukin 5 or eosinophils, is required in a murine model of acute airway

hyperreactivity. The Journal of Experimental Medicine. v.183, p.109–117, 1996.

COSTA, H.F.; BEZERRA-SANTOS, C.R.; BARBOSA FILHO, J.M.; MARTINS, M.A.; PIUVEZAM, M.R. Warifteine, a bisbenzylisoquinoline alkaloid, decreases immediate allergic and thermal hyperalgesic reactions in sensitized animals.

International Immunopharmacology, v. 8, p. 519–525, 2008.

COYLE, A.J., PERRETTI, F., MANZINI, S. , IRVIN, C.G. Cationic protein- induced sensory nerve activation: role of substance P in airway hyperresponsiveness and plasma protein extravasation. The Journal of

Clinical Investigation. v.94, p.2301–2306, 1994.

COYLE, A.J., ACKERMAN, S.J., BURCH, R., PROUD, D. , IRVIN, C.G. Human eosinophil-granule major basic protein and synthetic polycations induce airway hyperresponsiveness in vivo dependent on bradykinin generation. The Journal

of Clinical Investigation. v.95, p.1735–1740, 1995.

DA SILVA, J. M. C.; AZEVEDO, A. N., BARBOSA, R. P. S., et al. Dynamics of murine B lymphocytes is modulated by in vivo treatment with steroid ouabain.

Immunobiology, v. 221, p. 368-376, 2016.

DE MONCHY, J. G. R.; et al. Bronchoalveolar eosinophilia during allergen- induced late asthmatic reactions. American Review of Respiratory Disease, vol. 131, p. 373–376, 1985.

DE MORAES, V. L.; OLEJ, B.; DE LA ROCQUE, L.; RUMJANEK, V. M. Lack of sensitivity to ouabain in natural killer activity. The Journal of the Federation of

American Societies for Experimental Biology, v. 3, n. 12, p. 2425-9, 1989.

DE PAIVA, L. S.; COSTA, K. M.; CANTO, F. B.; et al. Modulation of mature B cells in mice following treatment with ouabain. Immunobiology, v. 216, n. 9, p. 1038-43, 2011.

DE REZENDE CORREA, G.; ARAUJO DOS SANTOS, A.; FREDERICO LEITE FONTES, C.; GIESTAL DE ARAUJO, E. Ouabain induces an increase of retinal ganglion cell survival in vitro: the involvement of protein kinase C. Brain

DE WARDENER, H. E. The hypothalamus and hypertension. Physiological

Reviews, v. 81, n. 4, p. 1599-658, 2001.

DE WARDENER, H. E.; MILLS, I. H.; CLAPHAM, W. F.; HAYTER, C. J. Studies on the efferent mechanism of the sodium diuresis which follows the administration of intravenous saline in the dog. Clinical Science, v. 21, p. 249- 58, 1961.

DOE, C.; BAFADHEL, M.; SIDDIQUI, S.; DESAI, D.; et al. Expression of the T helper 17–associated cytokines IL-17A and IL-17F in asthma and COPD. Chest

Journal. v.38, p.1140–1147, 2010.

ECHEVARRIA-LIMA, J.; RUMJANEK, V. M. Effect of Ouabain on the immunesystem. Current Hypertension Reviews. v. 2 p.83-95, 2006.

EDWARDS, M. R.; BARTLETT, N. W.; HUSSELL, T.; OPENSHAW, P.; JOHNSTON, S. L. The microbiology of asthma. Nature Reviews Microbiology. v.10, p.459-471, 2012.

ELENKOV, I. J.; CHROUSOS, G. P. Stress Hormones, Th1/Th2 patterns, Pro/Anti-inflammatory Cytokines and Susceptibility to Disease. Trends in

Endrocrinology & Metabolism, v. 10, n. 9, p. 359-368, 1999

ESPOSITO, A. L.; POIRIER, W. J.; CLARK, C. A. The Cardiac Glycoside Digoxin Disrupts Host Defense in Experimental Pneumococcal Pneumonia by Impairing Neutrophil Mobilization. American Review of Respiratory Disease, v. 140, n. 6, p. 1590-1594, 1989.

FERRANDI, M.; MANUNTA, P.; BALZAN, S.; et al. Ouabain-like factor quantification in mammalian tissues and plasma: comparison of two independent assays. Hypertension, v. 30, n. 4, p. 886-96, 1997.

FIMBEL, S. M.; MONTGOMERY, J. E.; BURKET, C. T.; HYDE, D. R. Regeneration of inner retinal neurons after intravitreal injection of ouabain in zebrafish. The Journal of Neuroscience, v. 27, n. 7, p. 1712-24, 2007.

FINKELMAN, F. D.; et al. Importance of Cytokines in Murine Allergic Airway Disease and Human Asthma. The Journal of Immunology, v. 184, n. 4, p. 1663-1674 , 2010.

GAVETT, S.H.; O'HEARN, D.J.; LI, X.; HUANG, S.K.; et al. Interleukin 12 inhibits antigen-induced airway hyperresponsiveness, inflammation, and TH2 cytokine expression in mice. The Journal of Experimental Medicine. v.182, p.1527–1536, 1995.

GOTO, A.; YAMADA, K., NAGOSHI, H., et al. Stress-induced elevation of ouabain like compound in rat plasma and adrenal. Hypertension, vol. 26, p.1173-1176, 1995.

HALDAR, P.;PAVORD, I.D.; SHAW, D.E.; BERRY, M.A.; THOMAS, M.; BRIGHTLING, C.E.; WARDLAW, A.J.;GREEN, R.H. Cluster analysis and clinical asthma phenotypes. American Journal of Respiratory and Critical

Care Medical, v.178, p. 218–224, 2008.

HAMLYN, J. M.; BLAUSTEIN, M. P.; BOVA, S.; et al. Identification and characterization of a ouabain-like compound from human plasma. Proc Natl

Acad Sci U S A, v. 88, n. 14, p. 6259-63, 1991.

HERBERT, C.; SCOTT, M. M.; SCRUTON, K. H.; KEOGH, R. P.; et al. Alveolar macrophages stimulate enhanced cytokine production by pulmonary CD4+ Tlymphocytes in an exacerbation of murine chronic asthma. The American Journal of Pathology, vol. 177, p.1657–64, 2010.

HOGAN, S. P.; MATTHAEI, K. I., YOUNG, J. M., et al. A Novel T Cell- Regulated Mechanism Modulating Allergen-Induced Airways Hyperreactivity in BALB/c Mice Independently of IL-4 and IL-5. The Journal of Immunology. vol. 161, n. 3, p. 1501-1509, 1998.

HOLGATE, S. T.; POLOSA, R. Treatment strategies for allergy and asthma.

Nature Reviews Immunology, v. 8, p. 116-124, 2008.

HUANG, M. T.; et al. Regulatory T cells negatively regulate neovasculature of airway remodeling via DLL4-Notch signaling. The Journal of Immunology, v. 183, p. 4745–4754, 2009.

JACOB, P. L.; LEITE, J. A., ALVES, A. K. A., et al. Immunomodulatory activity of ouabain in Leishmania leishmania amazonensis infected Swiss mice.

JOSEFOWICZ, S. Z.; et al. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature, v. 482, p. 395–399, 2012.

KAWAMURA, A., GUO, J., ITAGAKI, Y.; et al. On the structure of endogenous ouabain. Proc Natl Acad Sci U S A, vol.96, p.6654–6659, 1999.

KUMAR, R. K.; HERBERT, C.; FOSTER, P. S. The “classical” ovalbumin challengemodel of asthma inmice. Current Drug Targets, v. 9, p. 485–94, 2008.

LAGO, J.; ALFONSO, A.; VIEYTES, M. R.; BOTANA, L. M. Ouabain-induced enhancement of rat mast cells response. Modulation by protein phosphorylation and intracellular pH. Cellular Signalling, vol. 13, n. 7, pp. 515–524, 2001. LAMBRECHT, B. N.; HAMMAD, H. The immunology of asthma. Nature

Immunology, vol. 16, n. 1, 2015.

LEITE, J. A., ALVES, A. K., GALVÃO, J. G. M, et al. Ouabain Modulates Zymosan-Induced Peritonitis in Mice. Mediators of Inflammation, v. 2015, p. 1-12, 2015.

LINGREL, J. B. The physiological significance of the cardiotonic steroid/ouabain-binding site of the Na,K-ATPase. Annual Review of

Physiology, v. 72, p. 395-412, 2010.

LLOYD, C.M.; HESSEL, E.M. Functions of T cells in asthma: more than Just Th2 cells. Nature, v. 10, p. 838-848, 2010.

LÖTVALL, J.; AKDIS, C.A.; BACHARIER, L.B.; et al. Asthma endotypes: a new approach to classification of disease entities within the asthma syndrome.

Journal of Allergy and Clinical Immunology. v.127, p.355–360, 2011.

MCKAY, A.; LEUNG, B. P; MCINNES, I .B.; THOMSON, N. C.; LIEW, F. Y. A Novel Anti-Inflammatory Role of Simvastatin in a Murine Model of Allergic Asthma. The Journal of Immunology, v. 172, p. 2903-2908, 2004.

MALOY, K. J.; POWRIE, F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature, v. 474, p. 298-306, 2011.

MANN, C. L.; BORTNER, C. D.; JEWELL, C. M.; CIDLOWSKI, J. A. Glucocorticoid-induced plasma membrane depolarization during thymocyte apoptosis: association with cell shrinkage and degradation of the Na(+)/K(+)- adenosine triphosphatase. Endocrinology, v. 142, n. 12, p. 5059-68, 2001. MANNA, S. K.; SREENIVASAN, Y.; SARKAR, A. Cardiac glycoside inhibits IL- 8-induced biological responses by downregulating IL-8 receptors through altering membrane fluidity. Journal of Cellular Physiology, v. 207, p. 195– 207, 2006.

MAZZARELLA, G.; et al. Th1/Th2 lymphocyte polarization in asthma. Allergy, v. 55, p. 6–9, 2002.

MEDZHITOV, R. Origin and physiological roles of inflammation. Nature, v. 454, n. 7203, p. 428-35, 2008.

MOORE, W.C.; MEYERS, D.A.; WENZEL,S.E.; TEAGUE, W.G.; et al. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Americam Journal of Respiratory and Critic Care

Medical, v.181, p. 315–323, 2010.

MOSMANN, T. R.; CHERWINSKI, H.; BOND, M. N.; GIELDIN, M. A.; COFFMAN, R. L. Two tipes of murine helper T cell clone. I. Definition accordingnto profiles of lymphokine activities and secreted proteins. Journal of

Immunology, v. 136, p. 2348-2355, 1986.

MONTEIRO, T. M; COSTA, H. F.; VIEIRA, G.C.; et al. Anti-asthmatic and anxiolytic effects of Herissantia tiubae, a Brazilian medicinal plant. Immunity,

Inflammation and Disease, v. 10, p. 1002-1014, 2016

MURDOCH, J. R; LLOYD, C.M. Chronic inflammation and asthma. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, v. 690,

p. 24–39, 2010

NICHOLS, J. R.; MALDONADO, H. S. Comparison of the inhibitory effect of ouabain and dihydroouabain on the Na(+)-K+ ATPase from frog skin. General

NOBEL, C. S.; ARONSON, J. K.; van den DOBBELSTEEN; SLATER, A . F. Inhibition of Na+/K+ATPase may be one mechanism contributing to potassium efflux and cell shrinkage in CD95-induced apoptosis. Apoptosis, v. 5, p. 153- 163, 2000.

OLEJ, B.; DE LA ROCQUE, L.; CASTILHO, F. P.; et al. Effect of ouabain on lymphokine-activated killer cells. International Journal of Immunopharmacology, v. 16, n. 9, p. 769-74, 1994.

OLEJ, B.; DOS SANTOS, N. F.; LEAL, L.; RUMJANEK, V. M. Ouabain induces apoptosis on PHA-activated lymphocytes. Bioscience Reports, v. 18, n. 1, p. 1-7, 1998.

OSTROUKHOVA, M.; et al. Tolerance induced by inhaled antigen involves CD4+ T cells expressing membrane-bound TGF- and FOXP3. The Journal of

Clinical Investigation, v. 114, p. 28–38, 2004.

ORLOV, S. N.; THORIN-TRESCASES, N.; KOTELEVTSEV, S. V.; et al. Inversion of the intracellular Na+/K+ ratio blocks apoptosis in vascular smooth muscle at a site upstream of caspase-3. The Journal of Biological Chemistry, v. 4, p. 16545-52, 1999.

QUASTEL, M. R.; KAPLAN, J. G. Inhibition by ouabain of human lymphocyte transformation induced by phytohaemagglutinin in vitro. Nature, v. 219, n. 5150, p. 198-200, 1968.

QIU, L. Y.; KOENDERINK, J. B.; SWARTS, H. G.; et al. Phe783, Thr797, and Asp804 in transmembrane hairpin M5-M6 of Na+,K+- ATPase play a key role in ouabain binding. The Journal of Biological Chemistry. 21:47240-4, 2003. PALMQVIST, C.; WARDLAW, A.J.; BRADDING, P. Chemokines and their receptors as potential target for the treatment of asthma. British Journal of

Pharmacollogy, v.151, p. 725-736, 2007.

PAMNANI, M. B.; BUGGY, J.; HUOT, S. J.; HADDY, F. J. Studies on the role of a humoral sodium-transport inhibitor and the anteroventral third ventricle (AV3V) in experimental low-renin hypertension. Clinical Science, v. 61 Suppl 7, p. 57s-60s, 1981.

PORTER, D. L.; et al. Chimeric Antigen Receptor–Modified T Cells in Chronic Lymphoid Leukemia. The New England Journal of Medicine, v. 365, p. 725- 733, 2011.

RACKEMANN, F. A working classification of asthma. American Journal of

Medicine, v. 3, p. 601–606, 1947.

RAMOS, R. G.; TALBOTT, E. O.; YOUK, A.; KAROL, M. H. Community urbanization and hospitalization of adults for asthma. Journal of

Environmental Health, v. 68, p. 26-32, 2006.

ROBINSON, D. S.; et al. Predominant Th2-like bronchoalveolar T lymphocyte population in atopic asthma. The New England Journal of Medicine, v.326, p. 298–304, 1992.

RODRIGUES MASCARENHAS, S.; ECHEVARRIA-LIMA, J.; FERNANDES DOS SANTOS, N.; RUMJANEK, V. M. CD69 expression induced by thapsigargin, phorbol ester and ouabain on thymocytes is dependent on external Ca2+ entry. Life Sciences, v. 73, n. 8, p. 1037-51, 2003.

RODRIGUES-MASCARENHAS,S.; DOS SANTOS, N.; RUMJANEK, V. Synergistic Effect Between Ouabain and Glucocorticoids for the Induction of Thymic Atrophy. Bioscience Reports, v. 26, p. 159–169, 2006.

RODRIGUES-MASCARENHAS, S.; BLOISE, F. F.; MOSCAT, J.; RUMJANEK, V. M. Ouabain inhibits p38 activation in thymocytes. Cell Biology

International, v. 32, n. 10, p. 1323-8, 2008.

RODRIGUES-MASCARENHAS, S.; DE OLIVEIRA, A. S.; AMOEDO, N. D.; et al. Modulation of the immune system by ouabain. Annals of the New York

Academy of Sciences, v. 1153, p. 153-163, 2009.

RODRIGUEZ-PALMERO, M.; HARA, T.; THUMBS, A.; HUNIG, T. Triggering of T cell proliferation through CD28 induces Gata-3 and promotes T helper type 2 differentiation in vitro and in vivo. European Journal of Immunology, v. 29, p. 3914-3924, 1999.

ROSSONI, L. V.; DOS SANTOS, L.; BARKER, L. A.; VASSALLO, D. V. Ouabain changes arterial blood pressure and vascular reactivity to

phenylephrine in L-NAME-induced hypertension. Journal of Cardiovascular

Pharmacology, v. 41, n. 1, p. 105-16, 2003.

SERHAN, C. N.; SAVILL, J. Resolution of inflammation: the beginning programs the end. Nature Immunology, v. 6, p. 1191-1197, 2005.

SICHERER, S. H.; SAMPSON, H. A. Peanut allergy: Emerging concepts and approaches for an apparent epidemic. Journal of Allergy and Clinical

Immunology. v. 120, n. 3, p. 491–503, 2007.

SIEGLE, J. S.; HANSBRO, N.; HERBERT, C.; YANG, M. Airway hyperreactivity in exacerbation of chronic asthma is independent of eosinophilic inflammation.

American Journal of Respiratory Cell and Molecular Biology, v. 35, p. 565– 70, 2006.

SIMPSON, J.L.; SCOTT, R.J.; BOYLE, M.J.; GIBSON, P.G. Differential proteolytic enzyme activity in eosinophilic and neutrophilic asthma. American

Journal of Respiratory and Critical Care Medical, v. 172, p. 559–565, 2005. SCHONER, W. Ouabain, a new steroid hormone of adrenal gland and hypothalamus. Experimental and Clinical Endocrinology & Diabetes, v. 108, n. 7, p. 449-54, 2000.

SCHONER, W.; BAUER, N.; MULLER-EHMSEN, J.; KRAMER, U.; et al. Ouabain as a mammalian hormone. Annals of the New York Academy of

Sciences, v. 986, p. 678-84, 2003.

SENOL, M.; OZEROL, I. H.; PATEL, A. V.; SKONER, D.P. The effect of Na+-K+ ATPase inhibition by ouabain on histamine release from human cutaneous mast cells. Molecular and Cellular Biochemistry, v. 294, n. 1-2, p. 25–29, 2007. SHAKOORY, B.; FITZGERALD, S.M.; LEE, S.A.; CHI, D.S.; KRISHNASWAMY, G.The role of human mast cell-derived cytokines in eosinophil biology. Journal

Interferon Cytokine Resersh, v.24, p. 271-281, 2004.

SHAW, D. E.; et al. Association between neutrophilic airway inflammation and airflow limitation in adults with asthma. Chest, v. 132, p. 1871–1875, 2007.

SHERWOOD, E. R.; TOLIVER-KINSKY, T. Mechanisms of the inflammatory response. Best Practice & Research Clinical Anaesthesiology, v. 18, n. 3, p. 385-405, 2004.

SILVERSTEIN, F. E.; FAICH, G.; GOLDSTEIN, J. L.; et al. Gastrointestinal Toxicity With Celecoxib vs Nonsteroidal Anti-inflammatory Drugs for Osteoarthritis and Rheumatoid Arthritis The CLASS Study: A Randomized Controlled Trial. The Journal of the American Medical Association, v. 284, n. 10, p. 1247-1255, 2000.

SLAGER, R.E.; LI, H.; MOORE, W.; HAWKINS, G.; et al. Predictive model of severe atopic asthma phenotypes using interleukin-4/13 pathway polymorphisms. American Journal of Respiratory and Critical Care

Medicine. v.183, A1332, 2011.

SOUSA, H.F.; CARDOSO, I.R.; PASSOS, L.S.; COSTA M.R.S.R. Prevalência de comorbidades e classificação de nível de controle em pacientes com asma grave. Revista Pesquisa Saúde, v. 12, p. 27-31, 2011.

STOCK, P.; KALLINICH, T.; AKBARI, O.; et al. CD8(+) T cells regulate imune responses in a murine model of allergen-induced sensitization and airway inflammation. European Journal of Immunology. v.34, p.1817–1827, 2004. STOECK, M.; NORTHOFF, H; e RESCH, K. Inhibition of mitogen-induced lymphocyte proliferation by Ouabain: interference with interleukin 2 production and interleukin 2 action. Journal of Immunology. 1313: 1433 – 1437, 1983. SZAMEL, M.; SCHNEIDER, S.; RESCH, K. Functional interrelationship between Na+/K+-ATPase and lysolecithin acyltransferase in plasma membranes of mitogen-stimulated rabbit thymocytes. The Journal of

Biological Chemistry, v. 256, n. 17, p. 9198-204, 1981.

TANG, Y.; GUAN, S. P.; CHUA, B.Y.; et al. Antigen-specific effector CD8 T cells regulate allergic responses via IFN- and dendritic cell function. The Journal of

Allergy and Clinical Immunology. v.129, p.1611-1620, 2012.

TODO-BOM, A. E PINTO, A.M. Fisiopatologia da Asma Grave. Revista

TSUCHIYA, K.; ISOGAI, S.; TAMAOKA, M.; et al. Depletion of CD8+ T cells enhances airway remodelling in a rodent model of asthma. Immunology. v.126, p.45–54, 2009.

TYMIAK, A. A.; NORMAN, J.; Bolgar, A. M.; et al. Physicochemical characterization of a ouabain isomer isolated from bovine hypothalamus. Proc

Natl Acad Sci U S A, v. 90, p. 8189–8193, 1993.

VAKKURI, O.; ÁRNASON, S. S.; POUTA, A.; et al. Radioimmunoassay of plasma ouabain in healthy and pregnant individuals. Journal of

Endocrinology, v. 165, p. 669–677, 2000.

VALENTE, R. C.; NASCIMENTO, C. R.; ARAUJO, E. G.; RUMJANEK, V. M. mCD14 expression in human monocytes is downregulated by ouabain via transactivation of epithelial growth factor receptor and activation of p38 mitogen-activated protein kinase. Neuroimmunomodulation, v. 16, n. 4, p. 228-36, 2009.

VAN RIJT, L.S.; VOS, N.; HIJDRA, D.; DE VRIES, V.C.; HOOGSTEDEN, H.C.; LAMBRECHT, B.N. Airway eosinophils accumulate in the mediastinal lymph nodes but lack antigen-presenting potential for naive T cells. The Journal of

Immunology. v.171, p.3372–3378, 2003.

VASCONCELOS, R. M.; LEITE, F. C.; LEITE, J. A.; et al. Anti-inflammatory and antinociceptive activity ofouabain in mice. Mediators of Inflammation, p.1–11, 2011.

WAKASHIN, H.; et al. IL-23 and TH17 cells enhance TH2-cell-mediated eosinophilic airway inflammation in mice. The American Journal of Respiratory and Critical Care Medicine, v. 178, p. 1023–1032, 2008.

WENCESLAU, C. F.; DAVEL, A. P.; XAVIER, F. E.; ROSSONI, L. V. Long-term ouabain treatment impairs vascular function in resistance arteries. Journal of

Vascular Research, v. 48, n. 4, p. 316-26, 2011.

WENZEL, S. E. Asthma: defining of the persistent adult phenotypes. Lancet, v. 368, p. 804-813, 2006.

WENZEL, S. E. Asthma phenotypes: the evolution from clinical to molecular approaches. Nature America, v. 18, p. 716-725, 2012.

WILD, J. S.; SIGOUNAS, A.; NILANJANA, S., et al. IFN- -Inducing Factor (IL- 18) Increases Allergic Sensitization, Serum IgE, Th2 Cytokines, and Airway Eosinophilia in a Mouse Model of Allergic Asthma. The Journal of

Immunology, v. 164, n. 5, p. 2701-2710, 1999.

WILLS-KARP, M.; LUYIMBAZI, J.; XU, X.; SCHOFIELD, B.; NEBEN, T.Y.; KARP, C.L.; DONALDSON, D.D. Interleukin-13: central mediator of allergic asthma. Science. v.282, p.2258–2261, 1998.

WOODRUFF, P. G.; MODREK, B.; CHOY, D. F.; et al. T-helper type 2-driven inflammation defines major subphenotypes of asthma. American Journal of

Respiration and Critic Care Medical, v. 180, p. 388–395, 2009.

WOOLLEY, K.L.; GIBSON, P.G.; CARTY, K.; WILSON, A.J.; TWADDELL, S.H.; WOOLLEY, M.J. Eosinophil apoptosis and the resolution of airway inflammation in asthma. American Journal of Respiratory and Critical Care Medicine. v.154, p.237–243, 1996.

YOUSEFI, S.; SIMON, D.; SIMON, H.U. Eosinophil extracellular DNA traps: molecular mechanisms and potential roles in disease. Current Opinion in

Immunology. v.24, p.736–739, 2012.

XAVIER, F. E.; ROSSONI, L. V.; ALONSO, M. J.; et al. Ouabain-induced hypertension alters the participation of endothelial factors in alpha-adrenergic responses differently in rat resistance and conductance mesenteric arteries.

British Journal of Pharmacology, v. 143, n. 1, p. 215-25, 2004.

ZOU, Y.; DONG, C.; YUAN, M.; GAO, G.; et al. Instilled air promotes lipopolysaccharide‑induced acute lung injury. Experimental and Therapeutic

APÊNDICE A - Substâncias e sais Ácido acétido glacial (C2H4O2) – VETEC Ácido clorídrico (HCl) –VETEC

Ácido fosfotunguístico (H3PW12O40) – VETEC Ácido periódico (HIO4) – VETEC

Álcool metílico (CH3OH) – VETEC Aldeído fórmico (CH2O) – MERCK

Alúmen de potássio (KAI(SO4)2) – MERCK Anticorpo Monoclonal: anti-CD3

Bissulfito de sódio (NaHSO3) – MERCK Carvão ativado – VETEC

Cloral hidratado – VETEC

Cloreto de potássio (KCl) – MERCK Cloreto de sódio (NaCl) – SIGMA Cloridrato de quetamina – VETBRANDS Clorofórmio (CHCl3) – LTF

Corante azul de evans – VETEC Corante cromotropo 2R – VETEC Corante eosina Y – VETEC Corante hematoxilina – VETEC Corante Panóptico – NEWPROV Corante test-green F.C.F. – VETEC Corante violeta de genciana – VETEC

Dexametasona – Aché ®

D-gluxose (C6H12O6) – SIGMA Etanol (C2H5OH) – CBiotec Ficoeritrina

Fosfato de potássio (KH2PO4) – REAGEN Fosfato de sódio anidro (Na2HPO4) – MERCK Formaldeído – MERCK

Glicerina (C3H3(OH)3) – VETEC

Hidróxido de alumínio (Al(OH)3) – VETEC Hidróxido de sódio (NaOH) – REAGEN Metabissulfito de sódio (Na2S2O5) – MERCK Ouabaína – SIGMA

OVA grade II – SIGMA OVA grade V – SIGMA

Óxido de mercúrio amarelo (Hg2O) – LAFAN Parafina para Histologia – COAL

Timol (C10H14O) – VETEC Xilol (C6H4(CH3)2) – VETEC

APÊNDICE B - Aparelhos e equipamentos

Agitador Vortex – VWR – Scientific Pro ducts Autoinclusor – Leica EG 120

Balança analítica – Sartorius Banho histológico – ANCAP

Centrífuga refrigerada - Centra MP4R – International Equipement Company (IEC)

Citômetro – FACS Callibur Estufa – ICAMO – modelo 3

Histotécnico processador automático de tecidos – OMA – DM – 40 Microscópio óptico – Nikon

Micrótomo – Leica RM 2125 – RT

ANEXOS

ANEXO B – Artigo em colaboração publicado em 2015 (Mediators of Inflammation - WebQualis CAPES: B2; Fator de impacto: 3,236; Online ISSN: 0962-9351).

ANEXO C - Artigo em colaboração publicado em 2015 (frontiers in Physiology - WebQualis CAPES: B1; Fator de impacto: 3,534; Online ISSN: 1664-042X).

ANEXO D – Artigo submetido com os resultados desta dissertação (Immunobiology - WebQualis CAPES: B1; Fator de impacto: 3,044; Online ISSN: 0171-2985).

Documentos relacionados