• Nenhum resultado encontrado

Scaffolds contendo uma fase, HAp, e duas fases cristalinas, C-HAp e β-TCP foram obtidos por impressão 3D e colagem, respectivamente, utilizando cristais de gesso como material de partida. Para ambos os casos, a transformação completa do precursor pode ser alcançada depois de 3 horas de síntese. Para os scaffolds bifásicos, a razão entre as fases constituintes (C- HAp e β-TCP) pode ser variada ajustando o tempo de síntese, ou seja, quanto maior for o tempo de reação, será favorecido a formação da β-TCP. Ademais, a presença não prevista do β-TCP confere um caráter inédito do resultado, visto que não há relatos anteriores da cristalização do β-TCP pela proposta descrita neste trabalho. Forma e dimensões não foram significativamente afetados durante o processamento e os scaffolds resultantes eram suficientemente fortes para suportar o manuseio e imersão em água (ou SBF). Os scaffolds desenvolveram uma camada de apatita sob sua superfície após 1 dia de imersão em SBF, o que sugerem que eles podem ser bioativos in vivo. A via de processamento proposta é eficaz para a fabricação de scaffolds bifásicos (C- HAp/β-TCP) a partir de corpos de prova de gesso.

REFERÊNCIAS

ACTON, Q. A. Issues in Biomedical Engineering Research and Application. [s.l.] Scholarly Editions, 2013.

ASTM. Technologies, ASTM Committee F42 on Additive Manufacturing. Disponível em: <http://www.astm.org/COMMITTEE/F42.htm>. Acesso em: 26 fev. 2015.

BEST, S. M. et al. Bioceramics: Past, present and for the future. Journal of the

European Ceramic Society, v. 28, n. 2008, p. 1319–1327, 2008.

BINGÖL, O. R.; DURUCAN, C. Hydrothermal Synthesis of Hydroxyapatite from Calcium Sulfate Hemihydrate. American Journal of Biomedical Sciences, v. 4, n. 1, p. 50–59, 2012.

BOCCACCINI, A. R.; BLAKER, J. J. Bioactive composite materials for tissue engineering scaffolds. Expert Rev Med Devices, v. 2, p. 303–312, 2005.

BREDT, J. F.; ANDERSON, T. C.; RUSSELL, D. B. Three dimensional

printing material system and method.United States, 2003.

BUTSCHER, A. et al. Structural and material approaches for bone tissue engineering in powder based 3D printing. Acta Biomaterialia, n. 7, p. 907–920, 2011.

BYRAPPA, K.; YOSHIMURA, M. Handbook of Hydrothermal Technology. New Jersey: Noyes Publications, 2001.

BYRNE, D. P. et al. Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: application of mechanobiological models in tissue engineering. Biomaterials, v. 28, n. 36, p. 5544–54, dez. 2007.

CARLO, E. C. et al. Comparison of In Vivo Properties of Hydroxyapatite- Polyhydroxybutyrate Composites Assessed for Bone Substitution. JOURNAL

OF CRANIOFACIAL SURGERY, v. 20, n. 3, p. 853–859, maio 2009.

CARRODEGUAS, R. G.; DE AZA, S. α-Tricalcium phosphate: synthesis, properties and biomedical applications. Acta biomaterialia, v. 7, n. 10, p. 3536–46, out. 2011.

CARVALHO, P. S. P. DE et al. Biomateriais aplicados a Implantodontia Biomaterials applied to Implantology. v. 7, p. 56–65, 2010.

CASTILHO, M. et al. Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Biofabrication, v. 6, n. 1, p. 015006, mar. 2014.

CHEUNG, L.K.; WONG, M.C.M; WONG, L. L. S. The applications of stereolithography in facial reconstructive surgery. IEEE, Advancing Technology for Humanity., p. 10–15, 2001.

CHOW, L. C.; EANES, E. D. Octacalcium Phosphate: Volume 18 de

Monographs in oral science. ilustrated ed. [s.l.] Karger Medical and Scientific

Publishers, 2001.

DACULSI, G. et al. Current state of the art of biphasic calcium phosphate bioceramics. J Mater Sci Mater Med., v. 14, p. 195–200, 2003.

DEE, K. C. et al. Tissue - Biomaterial Interactions An Introduction To

Tissue- Biomaterial Interactions. New Jersey: John Wiley & Sons, 2002. v. 4

DOROZHKIN, S. Medical Application of Calcium Orthophosphate Bioceramics.

Bio, v. 1, n. 1, p. 1–51, 21 fev. 2011.

DOROZHKIN, S. Calcium Orthophosphate-Containing Biocomposites and Hybrid Biomaterials for Biomedical Applications. Journal of Functional

Biomaterials, v. 6, n. 3, p. 708–832, 2015.

DOROZHKIN, S. V. Calcium orthophosphate-based biocomposites and hybrid biomaterials. Journal of Materials Science, v. 44, n. 9, p. 2343–2387, 15 jan. 2009.

ELLIOT, J. C. Structure and Chemistry of the Apatites and other Calcium Orthophosphates. In: ELSEVIER (Ed.). . Studies in Inorganic Chemistry. [s.l: s.n.].

FIELDING, G.; BANDYOPADHYAY, A.; SUSMITA, B. Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dental Materials, v. 28, p. 113–122, 2012.

FISHER, R. D.; WALTON, R. I. Time and position resolved in situ X-ray diffraction study of the hydrothermal conversion of gypsum monoliths to hydroxyapatite. Dalt Trans, p. 8079–86, 2009.

GIBSON, I.; ROSEN, D.; STUCKER, B. 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. Additive Manufacturing Technologies, 2014. GISEP, A. et al. Resorption patterns of calcium-phosphate cements in bone.

Journal of biomedical materials research. Part A, v. 66, n. 3, p. 532–540,

2003.

GOLDBERG, M. A. et al. Thermochemical gypsum conversion forming calcium phosphates. Inorg Mater Appl Res, p. 356–361, 2013.

HABIBOVIC, P.; BARRÈRE, F.; VAN BLITTERSWIJK, C. A. Biomimetic Hydroxyapatite Coating on Metal Implants. J Ame Cer Soc., v. 85, p. 517–522, 2002.

HAK, D. J. The use of osteoconductive bone graft substitutes in orthopaedic trauma. J Am Acad Orthop Surg, v. 15, p. 525–536, 2007.

HENCH, L. L.; WILSON, J. Introduction to bioceramics. [s.l.] Word Scientific Publishing Co., 1993.

HENCH, L.L.; BEST, S. Ceramics, Glasses and Glass-Ceramics. In:

Biomaterials science: an introduction to materials in medicine. [s.l.] Ratner

B.D., 2004.

HENRIKSEN, S. S. et al. Mechanical strength of ceramic scaffolds reinforced with biopolymers is comparable to that of human bone. Journal of materials

science. Materials in medicine, v. 22, n. 5, p. 1111–8, maio 2011.

HOLMES, R. E.; LEMPERLE, S. M.; CALHOUN, C. J. Protected Bone

Regeneration. SCIENTIFIC DATA SERIES IN RESORBABLE FIXATION: Medtronic Sofamor Danek:, 2001.

ISHIKAWA, K. Bone Substitute Fabrication Based on Dissolution-Precipitation Reactions. Molecular Diversity Preservation International, v. 3, n. 2, p. 1138–1155, 2010.

ISO 23317-14. Implants for surgery -- In vitro evaluation for apatite-forming

ability of implant materials. Disponível em:

<http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csn umber=65054>.

JALOTA, S.; BHADURI, S. B.; TAS, A. C. In vitro testing of calcium phosphate (HA, TCP and HA-TCP) whiskers. Journal of biomedical materials research.

Part A, v. 81, n. 4, p. 771–780, 2007.

JANG, H. L. et al. Revisiting whitlockite, the second most abundant biomineral in bone: Nanocrystal synthesis in physiologically relevant conditions and biocompatibility evaluation. ACS Nano, v. 8, n. 1, p. 634–641, 2014.

JANG, H. L. et al. Phase transformation from hydroxyapatite to the secondary bone mineral, whitlockite. J. Mater. Chem. B, v. 3, n. 7, p. 1342–1349, 2015. JONES, J. R.; EHRENFRIED, L. M.; HENCH, L. L. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials, v. 27, n. 7, p. 964–973, 2006.

KALITA, S. J. et al. CaO-P2O5-Na2O-based sintering a dditives for hydroxyapatite (HAp) ceramics. Biomaterials, v. 12, p. 2331–2339, 2004. KARAGEORGIOU, V.; KAPLAN, D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, v. 26, n. 27, p. 5474–91, set. 2005.

KAWACHI, E. Y.; BERTRAN, C. A.; REIS, R. R.; ALVES, O. L. Biocerâmicas: Tendências e perspectivas de uma área interdisciplinar. v. 23, n. 4, p. 518–522, 2000.

KELLY, C. M. et al. The Use of a Surgical Grade Calcium Sulfate as a Bone Graft Substitute: Results of a Multicenter Trial. Clinical Orthopaedics &

Related Research, v. 382, p. 42–50, 2001.

KIM, M. et al. Fabrication and Characterization of Strengthened BCP Scaffold Through Infiltration of PCL in the Frame. Bioceramics Development and

KIM, S. S. et al. Poly(lactide-co-glicolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials, v. 27, p. 1399–1409, 2006.

LAOUI, T.; SHAIK, S. K.; HALL, R. F. Microfabrication of dental root implants with a porous surface layer by layer microstereolithography. Virtual modeling

and rapid manufacturing: advanced research in virtual and rapid prototyping, p. 46–50, 2005.

LEGEROS, R. Z. Calcium phosphates in Oral Biology and Medicine. Basel: Kärger, 1991. v. 15

LEUKERS, B. et al. Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. Journal of Materials Science: Materials in Medicine, v. 16, n. 12, p. 1121–1124, 2005.

LI, S. et al. Synthesis of macroporous hydroxyapatite scaffolds for bone tissue engineering. J Biomed Mater Res, v. 61, n. 1, p. 109–20, 2002.

LIDE, D. R. et al. CRC Handbook of Chemistry and Physics. Internet V ed. Boca Ratón: [s.n.].

LINDHE, J.; KARRING, T.; LANG, N. P. Tratado de periodontia clínica e

implantologia oral. 4a. ed. São Paulo: Guanabara Koogan, 2005.

LIU, C.; HAN, Z.; CZERNUSKA, J. T. Gradient collagen/nanohydroxyapatite composite scaffold: Development and characterization. Acta Biomaterialia, v. 5, p. 661–669, 2009.

LIU, X.; MA, P. X. Polymeric scaffolds for bone tissue engineering. Annals of

biomedical engineering, v. 32, n. 3, p. 477–86, mar. 2004.

LÓPEZ, J.; ALARCÓN, M. Sulfato de calcio: propiedades y aplicaciones clínicas. Periodoncia Implantol. Rehabil. Oral, v. 4, n. 3, p. 138–143, 2011. LÓPEZ, J.; ALARCÓN, M.; SACSAQUISPE, S. Utilización de sulfato de calcio hemihidratado como material de relleno y barrera en un alveolo post-exodoncia. Una observación clínica ,tomográfica e histológica comparativa a 4 meses antes de la colocación de implantes. Clin. Periodoncia Implantol. Rehabil.

Oral, v. 7, n. 1, p. 29–31, 2014.

LU, J. et al. The biodegradation mechanism of calcium phosphate biomaterials in bone. J Biomed Mater Res, v. 63, n. 4, p. 408–12, 2002.

LUTOLF, M. P. et al. Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nature biotechnology, v. 21, n. May, p. 513–518, 2003.

MAKOVEC, R. Digital technologies in dental laboratories. Annals of DAAAM &

Proceedings, p. 1579, 2010.

MEIRA, C. R. et al. Desenvolvimento de pó à base de gesso e binder para prototipagem rápida. Cerâmica, v. 59, n. 2013, p. 401–408, 2013.

Exchangers. J. Chem. Soc. Faraday Trans, v. 86, n. 12, p. 2003–2006, 2000. MOREJÓN-ALONSO, L. et al. Effect of sterilization on the properties of CDHA- OCP-beta-TCP biomaterial. Materials Research, v. 10, n. 1, p. 15–20, 2007. NAVARRO, M. et al. Biomaterials in orthopedics. Journal of the Royal Society

Interface, v. 5, p. 1137–1158, 2008.

NOORANI, R. Rapid Prototyping—Principles and Applications. 2006.

OLIVEIRA, S. M. et al. Engineering endochondral bone: in vivo studies. Tissue

Engineering. Part A, v. 15, p. 635–643, 2009.

PADILLA, S.; ROMÀN, J.; VALLET-REGÍ, M. Synthesis of porous hydroxyapatites by combination of gelcasting and foams burn out methods.

Journal of Materials Science: Materials in Medicine, v. 13, n. 12, p. 1193

1197, 2002.

PARK, J. B. Bioceramics: Properties, Characterizations, and Applications. 1a. ed. Iowa: Springer, 2008.

PARK, J.-H. et al. Bioactivity of calcium phosphate coatings prepared by electrodeposition in a modified simulated body fluid. Materials Letters, v. 60, n. 21-22, p. 2573–2577, 2006.

PEREZ, R. A. et al. Bioactive Injectables Based on Calcium Phosphates for Hard Tissues: A Recent Update. Tissue Eng Regen Med, v. 12, n. 3, p. 143– 153, 2015.

PILLIAR, R. . et al. Porous calcium polyphosphate scaffolds for bone substitute applications — in vitro characterization. Biomaterials, v. 22, n. 9, p. 963–972, 2001.

PRECHEUR, H. V. Bone graft materials. Dental Clinics of North American, v. 51, p. 729–746, 2007.

RATNER, B. D., HOFFMAN, A. S., SCHOEN, F. J.; LEMONS, J. E.

Biomaterials science: an introduction to materials in medicine. San Diego:

Academic Press, 1996.

RAYNAUD, S. et al. Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials, v. 23, p. 1065–1072, 2003.

REIS RUI, L.; SAN, R. J. Biodegradable Systems in Tissue Engineering and

Regenerative medicineCRC Press. Anais...2005

RIMAN, R. E. High Performance Ceramics: Surface Chemistry in

Processing Technology. Marcel-Dek ed. [s.l: s.n.].

SACHLOS, E.; CZERNUSZKA, J. T. Making tissue engineering scaffolds work. Review on the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. European Cells and Materials, v. 5, p. 29–40, 2003.

SALGADO, A. J.; COUTINHO, O. P.; REIS, R. L. Bone tissue engineering: state of the art and future trends. Macromolecular bioscience, v. 4, n. 8, p. 743–65, 9 ago. 2004.

SCHLICKEWEI, W.; SCHLICKEWEI, C. The use of bone substitutes in the treatment of bone defects - The clinical view and history. Macromolecular

Symposia, v. 253, p. 10–23, 2007.

SCOTT, W. N. Insall & Scott - Cirurgia do Joelho. 5. ed. [s.l: s.n.].

SCOZ, M. R. Cuidados essenciais com os gessos odontológicos. [s.l.] UNIVERSIDADE FEDERAL DE SANTA CATARINA, 1999.

SILVA, A. R. S. et al. Análise da densidade óssea radiográfica de ratos submetidos ao alcoolismo crônico utilizando imagem digital. Odonto Ciência, v. 22, p. 77–81, 2007.

SUCHANEK, W. L.; LENCKA, M. M.; RIMAN, R. E. Hydrothermal Synthesis

of Ceramic Materials, 2004.

SUCHANEK, W. L.; RIMAN, R. E. Hydrothermal Synthesis of Advanced Ceramic Powders. Advances in Science and Technology, v. 45, n. 2006, p. 184–193, 2006.

SUZUKI, Y. et al. Fabrication of hydroxyapatite block from gypsum block based on (NH4)2HPO4 treatment. Dent Mater J, v. 24, p. 515–521, 2005.

TABATA, Y. Biomaterial technology for tissue engineering applications. Royal

Society Interface, v. 6, p. 311–324, 2009.

TADIC, D.; EPPLE, M. A thorough physicochemical characterization of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials, v. 25, p. 987–994, 2004.

TAYLOR, E. D.; KHAN, Y.; LAURENCIN, C. T. Tissue engineering of bone: a primer for the practicing hand surgeon. The Journal of hand surgery, v. 34, n. 1, p. 164–6, jan. 2009.

THEISS, F. et al. Biocompatibility and resorption of a brushite calcium phosphate cement. Biomaterials, v. 26, n. 21, p. 4383–94, 2005.

TOYAMA, T.; NAKASHIMA, K.; YASUE, T. Hydrothermal Synthesis of Beta- Tricalcium Phosphate from Amorphous Calcium Phosphate. J Ceram Soc

Japan, v. 110, p. 716–721, 2002.

UTELA, B. et al. A review of process development steps for new material systems in three dimensional printing (3DP). Journal of Manufacturing

Processes, v. 10, n. 2, p. 96–104, 2008.

VALLET-REGÍ, M.; JOSÉ MARÍA GONZÁLEZ-CALBET. Calcium phosphates as substitution of bone tissues. Progress in Solid State Chemistry, v. 32, n. 1- 2, p. 1–31, 2004.

VUNJAK-NOVAKOVIC, G.; KAPLAN, D. L. Tissue engineering: the next generation. Tissue engineering, v. 12, n. 12, p. 3261–3, dez. 2006.

WAN, D. C.; NACAMULI, R. P.; LONGAKER, M. T. Craniofacial bone tissue engineering. Dental Clinics of North American, v. 50, p. 175–190, 2006. WANG, S. Ordered mesoporous materials for drug delivery. Microporous and

Mesoporous Materials, v. 117, n. 1-2, p. 1–9, jan. 2009.

WHANG, K. Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture. Tissue Engineering, v. 5, n. 35, 1999.

WILLIAMS, D. F. On the nature of biomaterials. Biomaterials, v. 30, p. 5897– 5909, 2009.

XIN, R. et al. A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo. Biomaterials, v. 26, n. 33, p. 6477–6486, 2005. ZAMAN, C. T. et al. Fabrication of B-type carbonate apatite blocks by the phosphorization of free-molding gypsum-calcite composite. . Dent Mater J, v. 27, n. 5, p. 710–715, 2008.

ZAVAGLIA, F. DE C. Síntese , Caracterização e Processamento de Beta

Fosfato Tricálcico para Manufatura de Implantes Personalizados. [s.l.]

Universidade Estadual de Campinas, 2011.

ZCORP. Z Corporation. Disponível em: <www.zcorp.com>. Acesso em: 8 jan. 2015.

Documentos relacionados