• Nenhum resultado encontrado

4. RESULTADOS E DISCUSSÃO

5.0. CONCLUSÕES

As RAMs-BSA estudadas mostraram-se eficiente para a exclusão das proteínas do leite materno, assim como os oligossacarídeos presentes na matriz.

As colunas RAMs com suporte de 3 µm apresentaram eficiência cromatográfica e poderia ser usada no modo simples de eluição proporcionando análises rápidas e sem preparo de amostra. Porém, a forte interação dos analitos com a coluna RAM-BSA causou perdas de eficiência cromatográfica.

Os estudos realizados inferem bons limites de detecção, com todos os parâmetros cromatográficos ajustados, os testes finais na concentração mais alta de trabalho, 100 ng/mL, permitia sensibilidades elevadas ao método.

A metodologia clássica de preparo de amostra, precipitação de proteína, foi avaliada neste trabalho, porém o efeito memória permaneceu mesmo quando foram utilizadas diferentes colunas analíticas, modos de eluição, e o uso de uma matriz substituta (leite bovino), indicando contaminação do sistema cromatográfico, provavelmente no auto-injetor, impossibilitando a validação e aplicação do método desenvolvido.

Existem vários trabalhos analíticos publicados na literatura sobre a determinação das benzofenonas selecionadas em leite materno, a maioria das vezes foi focado na determinação das BPs utilizando técnicas como microextração líquido- líquido dispersiva e extração em fase sólida. O preparo de amostra proposto neste trabalho difere dos reportados na literatura. A injeção direta de amostras utilizando colunas RAMs é considerada uma boa escolha em relação a sua boa capacidade de extração e operação, especialmente quando comparado ao SPE que é tradicionalmente utilizado em análises de fluidos biológicos, porém os analitos de baixa polaridade apresentaram forte interação com as colunas RAMs avaliadas.

A triagem de amostras de leite materno coletadas de 26 diferentes mães da Cidade de São Carlos foi avaliada por LC-HRMS e apresentou a presença de benzofenonas em 88% das amostras analisadas.

Referências

Em todos os momentos da vida, Seja qual for sua atividade, Busque a aprovação de Deus! OLHE PARA CIMA.

REFERÊNCIAS

1. LIEBERMAN; S. Are the differences between estradiol and other estrogens, naturally occurring or synthetic, merely semantical?.Journal of Clinical Endocrinology Metabolism. 81 (2) :850–851, 1996.

2. GHISELLI; G. & JARDIM; W. F. Interferentes endócrinos no ambiente. Quimica Nova. 30 (3) :695–706, 2007.

3. BILA; D. M. & DEZOTTI; M. Desreguladores endócrinos no meio ambiente: Efeitos e conseqüências. Quimica Nova. 30 (3) :651–666, 2007.

4. BIRKETT; J. W. & LESTER; J. N. Endocrine Disrupters in Wastewater and Sludge Treatment Processes. Journal Hazardous Materials. 100 (1–3) :317– 318, 2003.

5. VELA-SORIA; F.; JIMÉNEZ-DÍAZ; I.; DÍAZ; C.; PÉREZ; J.; IRIBARNE-DURÁN; L. M.; SERRANO-LÓPEZ; L.; ARREBOLA; J. P.; FERNÁNDEZ; M. F. & OLEA; N. Determination of endocrine-disrupting chemicals in human milk by

dispersive liquid-liquid microextraction. Bioanalysis. 8 (17) :1777–91, 2016. 6. JIMÉNEZ-DÍAZ; I.; IRIBARNE-DURÁN; L. M.; OCÓN; O.; SALAMANCA; E.;

FERNÁNDEZ; M. F.; OLEA; N. & BARRANCO; E. Determination of personal care products –benzophenones and parabens– in human menstrual blood. Journal Chromatography B. 1035 :57–66, 2016.

7. KUMAR; V.; YADAV; C. S.; SINGH; S.; GOEL; S.; AHMED; R. S.; GUPTA; S.; GROVER; R. K. & BANERJEE; B. D. CYP 1A1 polymorphism and

organochlorine pesticides levels in the etiology of prostate cancer. Chemosphere. 81 (4) :464–468, 2010.

8. RODRÍGUEZ-GÓMEZ; R.; JIMÉNEZ-DÍAZ; I.; ZAFRA-GÓMEZ; A.; RODRÍGUEZ-GÓMEZ; R.; BALLESTEREOS; O. & NAVALÓN; A. A multiresidue method for the determination of selected endocrine disrupting chemicals in human breast milk based on a simple extraction procedure. Talanta. 130 :561–570, 2014.

9. REIS FILHO; R. W.; LUVIZOTTO-SANTOS; R. & VIEIRA; E. M. Poluentes Emergentes como Desreguladores Endócrinos. Journal of the Brazilian Society of Ecotoxicology. 2 (3) :283–288, 2007.

10. KUNZ; P. Y. & FENT; K. Multiple hormonal activities of UV filters and

comparison of in vivo and in vitro estrogenic activity of ethyl-4-aminobenzoate in fish. Aquatic Toxicology. 79 (4) :305–324, 2006.

11. DIETRICH; D. R. & HITZFELD; B. C. Bioaccumulation and ecotoxicity of synthetic musks in the aquatic environment. Handb. Environmental chemistry. 3 :233–244, 2004.

12. RODRÍGUEZ-GÓMEZ; R.; ZAFRA-GÓMEZ; A.; DORIVAL-GARCÍA; N.; BALLESTEREOS; O. & NAVALÓN; A. Determination of benzophenone-UV filters in human milk samples using ultrasound-assisted extraction and clean-up with dispersive sorbents followed by UHPLC-MS/MS analysis. Talanta 134 :657–664, 2015.

13. WOLFF; M. S.; BRITTON; J. a & WILSON; V. P. Environmental risk factors for breast cancer among African-American women. Cancer. 97 (1) :289–310, 2003.

14. DARBRE; P. D. Environmental oestrogens, cosmetics and breast cancer. Best Practice & Research Clinical Endocrinology Metabolismo. 20 (1) :121–143, 2006.

15. SNEDEKER; S. M. Pesticides and breast cancer risk: A review of DDT, DDE and dieldrin. Environmental Health Perspectives. 109 (1) :35–47, 2001.

16. HARVEY; P. W. & DARBRE; P. Endocrine disrupters and human health: Could oestrogenic chemicals in body care cosmetics adversely affect breast cancer incidence in women? A review of evidence and call for further research. Journal of Applied Toxicology. 24 (3) :167–176, 2004.

17. DARBRE; P. D. Underarm Cosmetics and Breast Cancer. Journal Applied Toxicology. 23 (2) :89–95, 2003.

18. LI; N.; ZHU; Q.; YANG; Y.; HUANG; J.; DANG; X. & CHEN; H. A novel

dispersive solid-phase extraction method using metal-organic framework MIL- 101 as the adsorbent for the analysis of benzophenones in toner. Talanta 132 :713–718, 2015.

19. KIM; S. & CHOI; K. Occurrences, toxicities, and ecological risks of

benzophenone-3, a common component of organic sunscreen products: A mini-review. Environment International. 70 :143–157, 2014.

20. SVOBODOVÁ; A.; PSOTOVÁ; J. & WALTEROVÁ; D. Natural phenolics in the prevention of UV-induced skin damage. A review. Biomedical Paper. 147 (2) :137–145, 2003.

21. GONZÁLEZ; M. T. P.; FUMAGALLI; F.; BENEVENUTO; C. G.; EMERY; F. da S. & GASPAR; L. R. Novel benzophenone-3 derivatives with promising

potential as UV filters: Relationship between structure, photoprotective potential and phototoxicity. European Journal Pharmaceutical Sciences. 101 :200–210, 2017.

22. ZUCCHI; S.; BLÜTHGEN; N.; IERONIMO; A. & FENT; K. The UV-absorber benzophenone-4 alters transcripts of genes involved in hormonal pathways in zebrafish (Danio rerio) eleuthero-embryos and adult males. Toxicology and Applied Pharmacology. 250 (2) :137–146, 2011.

23. SCHREURS; R.; LANSER; P.; SEINEN; W. & BURG; B. van der. Estrogenic activity of UV filters determined by an in vitro reporter gene assay and an in vivo transgenic zebrafish assay. Archives Toxicology. 76 (5–6) :257–261, 2002.

24. CHISVERT; A.; LEÓN-GONZÁLEZ; Z.; TARAZONA; I.; SALVADOR; A. & GIOKAS; D. An overview of the analytical methods for the determination of organic ultraviolet filters in biological fluids and tissues. Analytica Chimica Acta. 752 :11–29, 2012.

25. CABRAL; L. D. D. S.; PEREIRA; S. D. O. & PARTATA; A. K. Filtros solares e fotoprotetores mais utilizados nas formulações no brasil. Revista Científica do ITPAC. 4 (3) :1–10, 2011.

26. GOMEZ; E.; PILLON; A.; FENET; H.; ROSAIN; D.; DUCHESNE; M. J.; NICOLAS; J. C.; BALAGUER; P. & CASELLAS; C. Estrogenic activity of

cosmetic components in reporter cell lines: Parabens, UV screens, and musks. Journal of Toxicology and Environmental Health. 68 (4) :239–251, 2005.

27. SUZUKI; T.; KITAMURA; S.; KHOTA; R.; SUGIHARA; K.; FUJIMOTO; N. & OHTA; S. Estrogenic and antiandrogenic activities of 17 benzophenone derivatives used as UV stabilizers and sunscreens. Toxicology and Applied Pharmacology. 203 (1) :9–17, 2005.

28. SCHLUMPF; M.; COTTON; B.; CONSCIENCE; M.; HALLER; V.; STEINMANN; B. & LICHTENSTEIGER; W. In vitro and in vivo estrogenicity of UV screens. Environmental Health Perspectives. 109 (3) :239–244, 2001.

29. Salvador; a. & Chisvert; a. Sunscreen analysis: A critical survey on UV filters determination. Analytica Chimica Acta. 537 (1–2) :1–14, 2005.

30. NEGREIRA; N.; RODRÍGUEZ; I.; RAMIL; M.; RUBÍ; E. & CELA; R. Solid-phase extraction followed by liquid chromatography-tandem mass spectrometry for the determination of hydroxylated benzophenone UV absorbers in

environmental water samples. Analytica Chimica Acta. 654 (2) :162–170, 2009. 31. RICHARDSON; S. D. Environmental Mass Spectrometry: Ermerging

Contaminants and Current Issues. Analytical Chemistry. 80 (12) :4373–4402, 2008.

32. OKEREKE; C. S.; KADRY; A. M.; ABDEL-RAHMAN; M. S.; DAVIS; R. A. & FRIEDMAN; M. A. Metabolism of benzophenone-3 in ratsDrug Metabolism and Disposition. 21 (5) :788–791, 1993.

33. BALMER; M. E.; BUSER; H. R.; MÜLLER; M. D. & POIGER; T. Occurrence of some organic UV filters in wastewater, in surface waters, and in fish from Swiss lakes. Environmental Science & Technology. 39 (4) :953–962, 2005.

34. RODIL; R.; MOEDER; M.; ALTENBURGER; R. & SCHMITT-JANSEN; M. Photostability and phytotoxicity of selected sunscreen agents and their

degradation mixtures in water. Analytical and Bioanalytical Chemistry. 395 (5) :1513–1524, 2009.

35. FREITAS; J. V.; PRAÇA; F. S. G.; BENTLEY; M. V. L. B. & GASPAR; L. R. Trans-resveratrol and beta-carotene from sunscreens penetrate viable skin layers and reduce cutaneous penetration of UV-filters. International Journal of Pharmaceutics. 484 (1–2) :131–137, 2015.

36. GONZALEZ; H. Percutaneous absorption with emphasis on sunscreens. Photochemical & Photobiological Sciences. 9 (4) :482–8, 2010.

37. BLÜTHGEN; N.; ZUCCHI; S. & FENT; K. Effects of the UV filter

benzophenone-3 (oxybenzone) at low concentrations in zebrafish (Danio rerio). Toxicology and Applied Pharmacology. 263 (2) :184–194, 2012.

38. KIM; S.; JUNG; D.; KHO; Y. & CHOI; K. Effects of benzophenone-3 exposure on endocrine disruption and reproduction of japanese medaka (Oryzias latipes)-A two generation exposure study. Aquatic Toxicology. 155 :244–252, 2014.

39. SCHLUMPF; M.; Karin; K.; WITTASSEK; M.; ANGERER; J.; MASCHER; H.; MASCHER; D.; VÖKT; C.; BIRCHLER; M. & LICHTENSTEIGER; W. Exposure patterns of UV filters, fragrances, parabens, phthalates, organochlor pesticides, PBDEs, and PCBs in human milk: Correlation of UV filters with use of

cosmetics. Chemosphere. 81 (10) :1171–1183, 2010.

40. KANG; H.-S.; KO; A.; KWON; J. E.; KYUNG; M. S.; MOON; G. I.; PARK; J. H.; LEE; H. S.; SUH; J. H.; LEE; J. M.; HWANG; M. S.; KIM; K.; HONG; J. H. & HWANG; I. G. Urinary benzophenone concentrations and their association with demographic factors in a South Korean population. Environmental Research. 149 :1–7, 2016.

41. VELA-SORIA; F.; JIMÉNEZ-DÍAZ; I.; RODRÍGUEZ-GÓMEZ; R.; ZAFRA- GÓMEZ; A.; BALLESTEROS; O.; NAVALÓN; A.; VÍLCHEZ; J. L.;

FERNÁNDEZ; M. F. & OLEA; N. Determination of benzophenones in human placental tissue samples by liquid chromatography-tandem mass spectrometry. Talanta. 85 (4) :1848–1855, 2011.

42. VELA-SORIA; F.; BALLESTEROS; O.; ZAFRA-GÓMEZ; A.; BALLESTEROS; L. & NAVALÓN; A. A new method for the determination of benzophenone-UV filters in human serum samples by dispersive liquid-liquid microextraction with liquid chromatography-tandem mass spectrometry. Talanta. 121 :97–104, 2014.

43. TARAZONA; I.; CHISVERT; A. & SALVADOR; A. Determination of

benzophenone-3 and its main metabolites in human serum by dispersive liquid- liquid microextraction followed by liquid chromatography tandem mass

spectrometry. Talanta. 116 :388–395, 2013.

44. YE; X.; KUKLENYIK; Z.; NEEDHAM; L. L. & CALAFAT; A. M. Measuring environmental phenols and chlorinated organic chemicals in breast milk using automated on-line column-switching-high performance liquid chromatography- isotope dilution tandem mass spectrometry. Journal Chromatography B. 831 (1–2) :110–115, 2006.

45. Kramer; M. S. ‘Breast is best’: The evidence. Early Human Development. 86 (11) :729–732, 2010.

46. Picone; S. & Paolillo; P. Chemical Contaminants in Breast Milk. Early Human Development. 89 (4) :S117–S118, 2013.

47. ANDREAS; N. J.; KAMPMANN; B. & LE-DOARE; K. Human breast milk : A review on its composition and bioactivity Human breast milk : A review on its composition and bioactivity. Early Human Development. 91 (11) :629–635, 2015.

48. KÄRRMAN; A. & LINDSTRÖM; G. Trends , analytical methods and precision in the determination of perfluoroalkyl acids in human milk. Trends in Analytical Chemistry. 46 :118–128, 2013.

49. Lopes; B. R.; Barreiro; J. C. & Cass; Q. B. Bioanalytical challenge: A review of environmental and pharmaceuticals contaminants in human milk. Journal of Pharmaceutical Biomedical Analysis. 130 :318–325, 2016.

milk glycobiome and its impact on the infant gastrointestinal microbiota.

Proceedings of the National Academy of Sciences. 108 (1) :4653–4658, 2011. 51. ZIVKOVIC; A. M.; LEWIS; Z. T.; GERMAN; J. B. & MILLS; D. A. Establishment

of a Milk-Oriented Microbiota (MOM) in Early Life: How Babies Meet Their MOMs. Journal of Functional Foods. 5 (1) :3–12, 2013.

52. BALLARD; O. & MORROW; L. A. Human Milk Composition Nutrients and Bioactive Factors. Pediatric Clinics of North America. 60 (1) :49–74, 2013. 53. BODE; L. Early Human Development The functional biology of human milk

oligosaccharides. Early Human Development. 91 :1–4, 2015.

54. KULINICH; A. & LIU; L. Human milk oligosaccharides : The role in the fi ne- tuning of innate immune responses. Carbohydrate Research. 432 :62–70, 2016.

55. Simões; B. R. L. Quantificação de carbamazepina, fluoxetina e seus

metabólitos principais em leite materno por injeção direta de amostra utilizando cromatografia líquida acoplada à espectrometria de massa. São Carlos,

Programa de Pós Graduação em Química – UFSCar, 2013. Tese de Doutorado, 122 p.

56. LOPES; B. R. & CASSIANO; N. M. Injeção direta de amostras: uma nova tendência em LC in Cromatografia Líquida: Novas tendências e aplicações. CASS, Q.B. e CASSIANO, N.M., 2015, Elsevier: Rio de Janeiro. P. 127.

57. MARKOPOULOU; C. & KONDOURELLIS; J. Development of a validated liquid chromatography method for the simultaneous determination of ethinyl estradiol, cyproterone acetate, and norgestrel in breast milk following solid-phase

extraction. Journal of Liquid Chromatography & Related Technologies. 29 (5) :685–700, 2006.

58. ALVAREZ-COQUE; M. C. G. & BROCH; S. C. Direct injection of physiological fluids in micellar liquid chromatography. Journal Chromatography B. 736 :1–18, 1999.

59. De Lima; V. V.; Cassiano; N. M. & Cass; Q. B. Desenvolvimento de colunas cromatográficas de meios de acesso restrito proteína-imobilizada e suas avaliações para análise de fármacos com injeção direta de plasma humano. Quimica Nova. 29 (1) :72–78, 2006.

60. CASSIANO; N. .; BARREIRO; J. .; OLIVEIRA; R. . & CASS; Q. Direct bioanalytical sample injection with 2D LC – MS. Bioanalysis 4. (22) :2737– 2756, 2012.

61. DE FARIA; H. D.; ABRÃO; L. C. de C.; SANTOS; M. G.; BARBOSA; A. F. & FIGUEIREDO; E. C. New advances in restricted access materials for sample preparation: A review. Analytica Chimica Acta. 959 :43–65, 2017.

62. KATAOKA; H. & SAITO; K. Recent advances in SPME techniques in

biomedical analysis. Journal of Pharmaceutical and Biomedical Analysis. 54 (5) :926–950, 2011.

63. KATAOKA; H.; ISHIZAKI; A. & SAITO; K. Recent progress in solid-phase microextraction and its pharmaceutical and biomedical applications. Analytical

Methods. 8 (29) :5773–5788, 2016.

64. QUEIROZ; M. E. C.; OLIVEIRa; E. B.; BRETON; F. & PAWLISZYN; J. Immunoaffinity in-tube solid phase microextraction coupled with liquid chromatography-mass spectrometry for analysis of fluoxetine in serum samples. Journal Chromatography A. 1174 (1–2) :72–77, 2007.

65. YASUHARA; R.; EHARA; K.; SAITO; K. & KATAOKA; H. Automated analysis of salivary stress-related steroid hormones by online in-tube solid-phase microextraction coupled with liquid chromatography-tandem mass spectrometry. Analytical Methods. 4 (11) :3625–3630, 2012.

66. SOUZA; I. D.; HANTAO; L. W. & QUEIROZ; M. E. C. Polymeric ionic liquid open tubular capillary column for on-line in-tube SPME coupled with UHPLC- MS/MS to determine endocannabinoids in plasma samples. Analytica Chimica Acta. 1045 (1): 1–9, 2018.

67. LUO; X.; LI; G. & HU; Y. In-tube solid-phase microextraction based on NH2- MIL-53(Al)-polymer monolithic column for online coupling with high-

performance liquid chromatography for directly sensitive analysis of estrogens in human urine. Talanta. 165 (1) :377–383, 2017.

68. SAITO; K.; YAGI; K.; ISHIZAKI; A. & KATAOKA; H. Determination of anabolic steroids in human urine by automated in-tube solid-phase microextraction coupled with liquid chromatography-mass spectrometry. Journal of

Pharmaceutical and Biomedical Analysis. 52 (5) :727–733, 2010.

69. COUCHMAN; L. Turbulent flow chromatography in bioanalysis: A review. Biomedical Chromatography. 26 (8) :892–905, 2012.

70. RUDEWICZ; Pa. J. Turbulent flow bioana lysis in drug metabolism and pharmacokinetics. Bioanalysis. 14 (3) :1663–1671, 2011.

71. SCHAEFER; N.; PETERS; B.; SCHMIDT; P. & EWALD; A. H. Development and validation of two LC-MS/MS methods for the detection and quantification of amphetamines, designer amphetamines, benzoylecgonine, benzodiazepines, opiates, and opioids in urine using turbulent flow chromatography. Analytical and Bioanalytical Chemistry. 405 (1) :247–258, 2013.

72. STOLKER; A. A. M.; PETERS; R. J. B.; ZUIDERENT; R.; DIBUSSOLO; J. M. & MARTINS; C. P. B. Fully automated screening of veterinary drugs in milk by turbulent flow chromatography and tandem mass spectrometry. Analytical and Bioanalytical Chemistry. 397 (7) :2841–2849, 2010.

73. MODICK; H.; SCHÜTZE; A.; PÄLMKE; C.; WEISS; T.; BRÜNING; T. & KOCH; H. M. Rapid determination of N-acetyl-4-aminophenol (paracetamol) in urine by tandem mass spectrometry coupled with on-line clean-up by two dimensional turbulent flow/reversed phase liquid chromatography. Journal Chromatography B. 925 (1) :33–39, 2013.

74. SÁNCHEZ-GUIJO; A.; HARTMANN; M. F.; SHI; L.; REMER; T. & WUDY; S. A. Determination of free cortisol and free cortisone in human urine by on-line turbulent flow chromatography coupled to fused-core chromatography-tandem mass spectrometry (TFC-HPLC-MS/MS). Analytical and Bioanalytical

75. He; X. & Kozak; M. Development of a liquid chromatography-tandem mass spectrometry method for plasma-free metanephrines with ion-pairing turbulent flow online extraction. Analytical and Bioanalytical Chemistry. 402 (9) :3003 3010, 2012.

76. CASSIANO; N. M.; BARREIRO; J. C.; MORAES; M. C.; OLIVEIRA; R. V & CASS; Q. B. Restricted-access media supports for direct high-throughput analysis of biological fluid samples: review of recent applications. Bioanalysis. 1 (3) :577–594, 2009.

77. CASSIANO; N. M.; LIMA; V. V.; OLIVEIRA; R. V.; PIETRO; A. C. de & CASS; Q. B. Development of restricted-access media supports and their application to the direct analysis of biological fluid samples via high-performance liquid

chromatography. Analytical and Bioanalytical Chemistry. 384 (7–8) :1462– 1469, 2006.

78. HAGESTAM; I. H. & PINKERTON; T. C. Production of ‘internal surface reveresed-phase’ supports: The hydrolysis of selected substrates from silica using chymotrypsin. Journal Chromatography A. 368 (1) :77–84, 1986.

79. GISCH; D. J.; HUNTER; B. T. & FEIBUSH; B. Shielded hydrophobic phase: a new concept for direct injection analysis of biological fluids by high-

performance liquid chromatography. Journal of Chromatography B: Biomedical Sciences and Applications. 433 (1) :264–268, 1988.

80. HAGINAKA; J. & WAKAI; J. Synthesis of a Mixed-Functional Silica Support for Direct Injection Analysis of Drugs in Serum by Liquid Chromatography.

Chromatographia. 29 (5–6) :223–227, 1990.

81. BOOS; K.-S.; RUDOLPHI; A.; VIELHAUER; S.; WALFORT; A.; LUBDA; D. & EISENBEIB; F. Alkyl-Diol Silica (ADS): restricted access precolumn packings for direct injection and coupled-column chromatography of biofluids.

Toxicologic Pathology. 45 (2) :353–361, 2017.

82. DESILETS; C. P. .; ROUNDS; M. A. . & REGNIER; F. E. Semipermeable- surface reversed-phase media for high- performance liquid chromatography. Journal Chromatography. 544 (1–2) :25–39, 1991.

83. YOSHIDA; H.; MORITA; I.; TAMAI; G.; MASUJIMA; T.; TSURU; T.; TAKAI; N. & IMAI; H. Some characteristics of a protein-coated ODS column and its use for the determination of drugs by the direct injection analysis of plasma samples. Chromatographia. 19 (1) :466–472, 1984.

84. LOPES; B. R.; BARREIRO; J. C.; BARALDI; P. T. & CASS; Q. B.

Quantification of carbamazepine and its active metabolite by direct injection of human milk serum using liquid chromatography tandem ion trap mass

spectrometry. Journal Chromatography B. 889–890 :17–23, 2012.

85. ALvim-JR; J.; LOPES; B. R. & CASS; Q. B. Simultaneous enantioselective quantification of fluoxetine and norfluoxetine in human milk by direct sample injection using 2-dimensional liquid chromatography-tandem mass

spectrometry. Journal Chromatography A. 1451 :120–126, 2016.

86. MOURA; F.; DE ALMEIDA; F. G.; LOPES; B. R. & CASS; Q. B. Quantification of ampicillin in bovine milk by coupled-column ultrahigh-performance liquid

chromatography-tandem mass spectrometry. Journal of Separation Science. 35 (19) :2615–2620, 2012.

87. YE; X.; BISHOP; A. M.; NEEDHAM; L. L. & CALAFAT; A. M. Automated on-line column-switching HPLC-MS/MS method with peak focusing for measuring parabens, triclosan, and other environmental phenols in human milk. Analytica Chimica Acta. 622 (1–2) :150–156, 2008.

88. CARDOSO; J. de O. & OLIVEIRA; R. V. LC-MS: fundamentos, vantagens e problemas do acoplamento in Cromatografia Líquida: Novas Tendências e Aplicações. CASS, Q.B. e CASSIANO, N.M., 2015, Elsevier: Rio de Janeiro. P. 127.

89. SANTOS; M. G.; TAVARES; I. M. C.; BARBOSA; A. F.; BETTINI; J. & FIGUEIREDO; E. C. Analysis of tricyclic antidepressants in human plasma using online-restricted access molecularly imprinted solid phase extraction followed by direct mass spectrometry identification/quantification. Talanta. 163 :8–16, 2017.

90. PITT; J. J. Principles and Applications of Liquid Chromatography- Mass

Spectrometry in Clinical Biochemistry. The Clinical Biochemist Reviews. 30 (1) :19–34, 2009.

91. DEVANSHU; S.; RAHUL; M.; ANNU; G.; KISHAN; S. & ANROOP; N.

Quantitative Bioanalysis by LC-MS / MS : A Review. Journal of Pharmaceutical and Biomedical Sciences. 7 (1) :1–9, 2010.

92. AHMAD; S.; KALRA; H.; GUPTA; A.; RAUT; B. & HUSSAIN; A. HybridSPE: A novel technique to reduce phospholipid-based matrix effect in LC–ESI-MS Bioanalysis. Journal of Pharmacy and Bioallied Sciences. 4 (4) :267–276, 2012.

93. TRUFELLI; H.; PALMA; P.; FAMIGLINI; G. & CAPPIELLO; A. An overview of matrix effects in liquid chromatography–mass spectrometry. Journal of Mass Spectrometry. Rev. 20 (3) :133–138, 2007.

94. GUO; X. & LANKMAYR; E. Phospholipid-based matrix effects in LC-MS bioanalysis. Bioanalysis. 3 (4) :349–352, 2011.

95. MENEZES; M. L. & FELIX; G. Analysis of Organochlorine Pesticides in Plain Milk Using Direct Injection on an ISRP Column , with Column Switching. Journal of Liquid Chromatography & Related Technologies. 19 (19) :3221– 3228, 1996.

96. DENADAI; M. & CASS; Q. B. Simultaneous determination of fluoroquinolones in environmental water by liquid chromatography–tandem mass spectrometry with direct injection: A green approach. Journal Chromatography A. 1418 (1) :177–184, 2015.

97. BRADFORD; M. M. A Rapid and Sensitive Method for the Quantitation

Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry. 72 (1–2) :248–254, 1976.

98. OLIVEIRA; R. V. & CASS; Q. B. Evaluation of liquid chromatographic behavior of cephalosporin antibiotics using restricted access medium columns for on-line sample cleanup of bovine milk. Journal of Agricultural and Food Chemistry. 54

(4) :1180–1187, 2006.

99. CASS; Q. B.; GOMES; R. F.; CALAFATTI; S. A. & JR PEDRAZOLLI; J. D etermination of amoxycillin in human plasma by direct injection and coupled- column high-performance liquid chromatography. Journal Chromatography A. 987 (1–2) :235–241, 2003.

100. REBELO; B.; CASSIANO; N. M.; CARVALHO; D. M.; MOISÉS; E. C. D. & CASS; Q. B. Simultaneous quantification of fluoxetine and norfluoxetine in colostrum and mature human milk using a 2-dimensional liquid

chromatography – tandem mass spectrometry system. Journal of Pharmaceutical and Biomedical Analysis. 150 (1) :362–367, 2018. 101. DENADAI; M. Fluoroquinolonas em amostras aquosas ambientais e em

teleósteos: quantificação, avaliação de toxicidade e ensaios de

biotransformação. São Carlos, Programa de Pós Graduação em Química – UFSCar, 2015. Tese de Doutorado, p. 154.

102. ZAIA; D. A. M.; ZAIA; C. T. B. V & LICHTIG; J. Determinação de proteinas totais via espectrofometria: Vantagens e desvantagens dos métodos existentes. Quimica Nova. 21 (6) :787–793, 1998.

103. MATUSZEWSKI; B. K.; CONSTANZER; M. L. & CHAVEZ-ENG; C. M. Matrix Effect in Quantitative LC/MS/MS Analyses of Biological Fluids: A Method for Determination of Finasteride in Human Plasma at Picogram Per Milliliter Concentrations. Analytical Chemistry. 70 (5) :882–889, 1998.

104. MALDANER; L. & JARDIM; I. C. S. O estado da arte da crOmatOgrafia líquida de ultra eficiência. Quimica Nova. 32 (1) :214–222, 2009.

105. USP. "PQRI Approach for Selecting Columns of Equivalent Selectivity | USP". Available at: http://www.usp.org/resources/pqri-approach-column- equiv-tool. (Accessed: 1st August 2018)

106. SNYDER; L. R. & DOLAN; J. W. Optimizing selectivity during reversed-phase high performance liquid chromatography method development: Prioritizing experimental conditions. Journal Chromatography A. 1302 (1) :45–54, 2013. 107. Cass; Q. B. Ortogonalidade no modo reverso de eluição in Cromatografia

Líquida: Novas Tendências e Aplicações. CASS, Q.B. e CASSIANO, N.M., 2015, Elsevier: Rio de Janeiro. P. 127.

108. Guideline on bioanalytical method validation, 2011.

109. HAHNE; H.; PACHL; F.; RUPRECHT; B.; MAIER; S. K.; KLAEGER; S.; HELM; D.; MÉDARD; G.; WILM; M.; LEMEER; S. & KU; B. DMSO enhances

electrospray response, boosting sensitivity of proteomic experiments. Nature Methods. 10 (10) :989–991, 2013.

110. STRZELECKA; D.; HOLMAN; S. W. & EYERS; C. E. Evaluation of dimethyl sulfoxide (DMSO) as a mobile phase additive during top 3 label-free

quantitative proteomics. International Journal of Mass Spectrometry. 391 (1) :157–160, 2015.

111. ACQUITY UPLC TM BEH Column Care and Use Instructions. Available at: www.waters.com/sampleprep. (Accessed: 1st August 2018)

112. Dolan; J. W. Autosampler Carryover. LCGC Europe.:1–6, 2001.

113. LAKOWICZ; J. R. Principles of Fluorescence Spectroscopy. 3ª edição. Nova York: Springer, 2006.

114. LI; J.; LI; J.; JIAO; Y. & DONG; C. Spectroscopic analysis and molecular modeling on the interaction of jatrorrhizine with human serum albumin (HSA). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 118 (1) :48–54, 2014.

115. ZHANG; Y.-Z.; ZHANG; J.; LI; F.-F.; XIANG; X.; REN; A.-Q. & LIU; Y. Study on the interaction between ketoprofen and bovine serum albumin by molecular simulation and spectroscopic methods. Spectroscopy. 26 (6) :337–348, 2011. 116. MULLER; W. E. & WOLLERT; U. Human serum albumin as a ‘silent receptor’

for drugs and endogenous substances. Animal Genetics. 39 (5) :561–563, 2008.

117. FU; Z.; CUI; Y.; CUI; F. & ZHANG; G. Modeling techniques and fl uorescence imaging investigation of the interactions of an anthraquinone derivative with HSA and ctDNA. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 153 (1) :572–579, 2016.

118. SUGANTHI; M. & ELANGO; K. P. Synthesis, characterization and serum albumin binding studies of vitamin K3 derivatives. Journal of Photochemistry and Photobiology B: Biology. 166 (1) :126–135, 2017.

119. CHEN; J.; SONG; G.; HE; Y. & Qiujun; Y. Spectroscopic analysis of the

Documentos relacionados