• Nenhum resultado encontrado

5.1 – Conclusões

Analisando o movimento das estruturas ósseas do modelo Intacto, podemos admitir que este foi capaz de reproduzir o comportamento de um joelho saudável. Os valores relativos a solicitações nas superfícies articulares e nas estruturas ligamentares estão próximos dos valores obtidos em estudos computacionais e experimentais consultados. O modelo Intacto apresenta-se como válido, podendo assim ser considerado uma referência para comparação com os restantes modelos. Os modelos FA-TC e FPS-TAI foram os que mais se afastaram do modelo Intacto. O enxerto ligamentar usado no modelo FA-TC é o mais curto e menos inclinado, constringindo os movimentos das estruturas ósseas durante a flexão da articulação e provocando tensões e deformações excessivas na sua zona superior, perto da inserção femoral. O Neo-ligamento do modelo FPS-TAI é o que sofre menos tensões e deformações mas os restantes ligamentos são os mais solicitados entre todos os modelos, este modelo apresenta também pouco controlo nas movimentações das estruturas ósseas. O modelo FPS-TAI aparenta ser o modelo que melhor caracteriza um joelho com rutura de ligamento cruzado anterior. Os modelos FC-TC e FC-TA apresentaram resultados relativamente idênticos entre si e foram os modelos que mais se aproximaram do modelo Intacto, constituindo as melhores opções para reconstrução do ligamento cruzado anterior por restituírem com maior eficácia a cinemática natural de um joelho saudável. Apesar de ambos os modelos apresentaram resultados positivos, a isometria que a posição FC-TA oferece torna-a a opção mais viável, já usada e defendida em reconstruções ligamentares do ligamento cruzado anterior. Ambas as posições na tíbia e no fémur do enxerto ligamentar são importantes para o sucesso da reconstrução do ligamento cruzado anterior, mas o mau posicionamento no fémur leva a alterações da biomecânica do joelho significativas que para além de não restituírem a cinemática natural da articulação influenciam decisivamente os esforços suportados pelas restantes estruturas, podendo originar novas patologias.

Este trabalho tinha como objetivo a análise das estruturas sensíveis da articulação tibiofemoral antes e após reconstrução ligamentar. O modelo numérico representativo do joelho saudável foi competente na reprodução de resultados próximos aos consultados na bibliografia e o modelo reconstruído cuja cinemática mais se aproxima de um joelho saudável apresenta posições para o enxerto ligamentar recomendadas e usadas na reconstrução do ligamento cruzado anterior por

108

cirurgiões. Face a estas afirmações é admissível considerar que o objetivo proposto para este trabalho foi atingido.

5.2 - Trabalhos futuros

Futuramente, propõe-se o melhoramento dos modelos geométricos, adicionando a patela e o ligamento patelar e caracterizando melhor o ligamento cruzado anterior modelando os dois feixes que o constituem em vez de uma forma única. Os modelos numéricos também podem ser bastante melhorados, modificando as definições dos materiais para que melhor representem o comportamento viscoelástico dos ligamentos, meniscos e cartilagem e aplicando uma condição de fronteira que melhor caracterize as fixações reais dos meniscos. O uso de enxertos diferentes nestas análises também poderia ser proposto.

O desenvolvimento de ligamentos sintéticos viáveis que eliminem a necessidade de colheita de enxertos do paciente apresentam vantagens numerosas. Seria interessante estudar modelos numéricos com diferentes materiais sintéticos para o ligamento cruzado anterior, podendo assim analisar as alterações biomecânicas com esperança de ajudar o desenvolvimento deste tipo de opção.

109

Referências

1. Completo A, Fonseca F. Fundamentos de Biomecânica Musculo-Esqueletica e Ortopédica. Porto: Publindustria; 2011.

2. Knudson D. Fundamentals of Biomechanics. Second. Springer Science+Business Media,LLC; 2007.

3. Moore KL, Dalley AF, Agur AMR. Clinically Oriented Anatomy. 7th ed. Lippincot Williams & Wilkins, a Wolters Kluwer business; 2014.

4. Goldblatt JP, Richmond JC. Anatomy and biomechanics of the knee. Oper Tech Sports Med 5. Flandry F, Hommel G. Normal anatomy and biomechanics of the knee. Sports Med Arthrosc.

2011;19(2):82–92.

6. Alvarez J. Síndrome Patelo-Femural [Internet]. 2012. Available from: https://fisioterapiaeesporte.wordpress.com/2012/08/

7. Machado M, Flores P, Claro JCP. Development of a planar multibody model of the human knee joint. 2010;459–78.

8. Blackburn TA, Craig E. Knee Anatomy: A Brief Review. 1980;

9. Fridén T, Jonsson A, Erlandsson T. Effect of femoral condyle configuration on disability after an anterior cruciate ligament rupture. 100 patients followed for 5 years. Acta Orthop Scand [1993;64(5):571–4

10. McLean SG, Lucey SM, Rohrer S. Knee joint anatomy predicts high-risk in vivo dynamic landing knee biomechanics. Clin Biomech [Internet]. Elsevier Ltd; 2010;25(8):781–8. 11. Hashemi J, Chandrashekar N, Gill B. The geometry of the tibial plateau and its influence on

the biomechanics of the tibiofemoral joint. J Bone Joint Surg Am. 2008;90(12):2724–34. 12. Meyler Z. Knee Anatomy [Internet]. 2011. Available from: http://www.arthritis-

health.com/types/joint-anatomy/knee-anatomy

13. Renström P, Johnson RJ. Anatomy and biomechanics of the menisci [Internet]. Vol. 9, Clinics in sports medicine. 1990. p. 523–38.

14. Deshpande S. Meniscus Tear [Internet]. http://drsarangdeshpande.com/meniscal-tear/ 15. Sharma C, Gautam S, Dinda AK, Mishra NC. Cartilage tissue engineering: Current scenario

and challenges. Adv Mater Lett. 2011;2(2):90–9.

16. Lu XL, Mow VC. Biomechanics of articular cartilage and determination of material properties. Med Sci Sports Exerc. 2008;40(2):193–9.

110

biomechanics under compression. J Biomech. 2008;41(16):3340–8.

18. Machado M, Flores P, Completo A. Influence of the contact model on the dynamic response of the human knee joint. 2011;344–58.

19. Eorthopod. A patient’s guide to knee arthroscopy [Internet]. Available from: http://www.houstonmethodist.org/orthopedics/where-does-it-hurt/knee/knee-

arthroscopy/

20. Woo SLY, Abramowitch SD, Kilger R. Biomechanics of knee ligaments: Injury, healing, and repair. J Biomech. 2006;39(1):1–20.

21. Hull ML, Berns GS, Varma H, Patterson HA. Strain in the medial collateral ligament of the human knee under single and combined loads. J Biomech. 1996;29(2):199–206.

22. Battaglia MJ, Lenhoff MW, Ehteshami JR. Medial collateral ligament injuries and subsequent load on the anterior cruciate ligament: a biomechanical evaluation in a cadaveric model. Am J Sports Med [Internet]. 2009 Feb 1;37(2):305–11.

23. Espregueira-Mendes, Vieira Da Silva M. Anatomy of the lateral collateral ligament: A cadaver and histological study. Knee Surgery, Sport Traumatol Arthrosc. 2006;14(3):221–8.

24. Buzzi R, Aglietti P, Vena LM, Giron F. Lateral collateral ligament reconstruction using a semitendinosus graft. Knee Surgery, Sport Traumatol Arthrosc. 2004;12(1):36–42.

25. Bowman KF, Sekiya JK. Anatomy and Biomechanics of the Posterior Cruciate Ligament and Other Ligaments of the Knee. Oper Tech Sports Med, Elsevier Inc.; 2009;17(3):126–34. 26. Noronha JC. Ligamento Cruzado Anterior. Porto; 2000.

27. Noronha JC. Ligamento Cruzado Anterior. Porto: Multitema; 2013.

28. Carr JH. Programa de Reaprendizagem Motora para o Hemiplégio Adulto. 1a ed. São Paulo;

1988.

29. Kubota K, Weiss W. Rancho Observational Gait Analysis. 2016;1–24.

30. Adouni M, Shirazi-Adl A, Shirazi R. Computational biodynamics of human knee joint in gait: From muscle forces to cartilage stresses. J Biomech, Elsevier; 2012;45(12):2149–56. 31. Chow JW. Knee joint forces during isokinetic knee extensions: A case study. Clin Biomech.

1999;14(5):329–38.

32. Bergmann G, Bender A, Graichen F. Standardized loads acting in knee implants. PLoS One. 2014;9(1).

33. Saxby DJ, Modenese L, Bryant AL. Tibiofemoral contact forces during walking, running and sidestepping. Gait Posture [Internet]. Elsevier B.V.; 2016;0(0):e86035–513.

111

measured in vivo in five subjects. J Biomech [Internet]. Elsevier; 2010;43(11):2164–73. 35. Ytterstad B. The Harstad injury prevention study: the epidemiology of sports injuries. An 8

year study. Br J Sport Med. 1996;30:64–8.

36. Tegner Y, Lysholm J. Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res. 1985;198:43–9.

37. Damasceno ML, Ferreira TF, D’Elia CO. Use of allograft in ligamentar reconstruction of knee. Acta Ortop Bras. 2009;17(5):265–8.

38. Arendt E, Dick R. Knee Injury Patterns Among Men and Women in Collegiate Basketball and Soccer: NCAA Data and Review of Literature. Am J Sports Med. 1995 Dec 1;23(6):694–701. 39. Hetta W, Niazi G. MRI in assessment of sports related knee injuries. Egypt J Radiol Nucl Med,

Elsevier B.V.; 2014;45(4):1153–61.

40. Dallalana RJ, Brooks JHM, Kemp SPT. The epidemiology of knee injuries in english professional rugby union. 2007;35(5):818–30.

41. Chin YC, Wijaya R, Chong LR. Bone bruise patterns in knee injuries: where are they found? Springer-Verlag France; 2014;24(8):1481–7.

42. Geeslin AG, Laprade RF. Location of bone bruises and other osseous injuries associated with acute grade III isolated and combined posterolateral knee injuries. 2010;38(12):2502–8. 43. Niva MH, Kiuru MJ, Haataja R. Bone stress injuries causing exercise-induced knee pain.

2006;34(1):78–83.

44. Illingworth KD, Hensler D, Casagranda B. Relationship between bone bruise volume and the presence of meniscal tears in acute anterior cruciate ligament rupture. Knee Surg Sports Traumatol Arthrosc. 2014;22(9):2181–6.

45. Roos H, Adalberth T, Dahlberg L. Osteoarthritis of the knee after injury to the anterior cruciate ligament or meniscus: the influence of time and age. Osteoarthr Cartil. 1995;3(4):261–7.

46. Lohmander LS, Englund PM, Dahl LL. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med. 2007 Oct 1;35(10):1756– 69.

47. Krinsky MB, Abdenour TE, Starkey C. Incidence of lateral meniscus injury in professional basketball players. Am J Sports Med 1992;20(1):17–9.

48. Jung JY, Jee WH, Park MY. Meniscal tear configurations: Categorization with 3D isotropic turbo spin-echo MRI compared with conventional MRI at 3 T. Am J Roentgenol. 2012;198(2):173–80.

112

49. Syal A, Chudasama CH. Clinical examination, magnetic resonance imaging and arthroscopic correlations of ligament and menisci injuries of knee joint. J Arthrosc Jt Surg. Elsevier Ltd; 2015;2(1):3–8.

50. Slauterbeck JR, Kousa P, Clifton BC. Geographic mapping of meniscus and cartilage lesions associated with anterior cruciate ligament injuries. J Bone Joint Surg Am. The American Orthopedic Association; 2009 Sep 1;91(9):2094–103.

51. Carnes J, Stannus O, Cicuttini F. Knee cartilage defects in a sample of older adults: Natural history, clinical significance and factors influencing change over 2.9 years. Osteoarthr Cartil. Elsevier Ltd; 2012;20(12):1541–7.

52. Daniel DM, Stone ML, Dobson BE. Fate of the ACL-injured Patient: A Prospective Outcome Study. Am J Sports Med [Internet]. 1994;22(5):632–44.

53. Bacchini M, Cademartiri C, Soncini G. Gait analysis in patients undergoing ACL reconstruction according to Kenneth Jones’ technique. 2009;80(2):140–9.

54. Griffin LY, Agel J, Albohm MJ. Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. J Am Acad Orthop Surg. 2000;8(3):141–50.

55. Fleming BC, Carey JL, Spindler KP. Can suture repair of ACL transection restore normal anteroposterior laxity of the knee? An ex vivo study. J Orthop Res. 2008;26(11):1500–5. 56. Slette EL, Mikula JD, Schon JM. Biomechanical Results of Lateral Extra-articular Tenodesis

Procedures of the Knee: A Systematic Review. W.B. Saunders; 2016;

57. Hermoso HJA, Usandizaga Camats JM, Morales Cano J. Intra-articular versus combined intra and extra-articular plasty in the treatment of chronic anterior knee laxity. Revista de Ortopedia y Traumatologia. 2002;323–30.

58. Desai N, Björnsson H, Musahl V. Anatomic single- versus double-bundle ACL reconstruction: A meta-analysis. Springer Verlag; 2014;22(5):1009–23.

59. Gobbi A, Mahajan V, Karnatzikos G. Single- versus double-bundle ACL reconstruction: Is there any difference in stability and function at 3-year followup? In 2012. p. 824–34. 60. Mayr HO, Benecke P, Hoell A. Single-Bundle Versus Double-Bundle Anterior Cruciate

Ligament Reconstruction: A Comparative 2-Year Follow-up. Arthroscopy. Arthroscopy Association of North America; 2016;32(1):34–42.

61. Gavriilidis I, Motsis EK, Pakos EE. Transtibial versus anteromedial portal of the femoral tunnel in ACL reconstruction: A cadaveric study. 2008;15(5):364–7.

62. Kothari A, Haughom B, Subburaj K. Evaluating rotational kinematics of the knee in ACL reconstructed patients using 3.0Tesla magnetic resonance imaging. 2012;19(5):648–51.

113

63. Bedi A, Raphael B, Maderazo A. Transtibial Versus Anteromedial Portal Drilling for Anterior Cruciate Ligament Reconstruction: A Cadaveric Study of Femoral Tunnel Length and Obliquity. 2010;26(3):342–50.

64. Chalmers PN, Mall NA, Cole BJ. Anteromedial versus transtibial tunnel drilling in anterior cruciate ligament reconstructions: A systematic review. Vol. 29. 2013. p. 1235–42.

65. Schairer WW, Haughom BD, Morse LJ. Magnetic resonance imaging evaluation of knee kinematics after anterior cruciate ligament reconstruction with anteromedial and transtibial femoral tunnel drilling techniques. 2011;27(12):1663–70.

66. Ferretti A, Monaco E, Vadalà A. Rotatory instability of the knee after ACL tear and reconstruction. J Orthop Traumatol. 2014;15(2):75–9.

67. Dargel J, Gotter M, Mader K. Biomechanics of the anterior cruciate ligament and implications for surgical reconstruction. Strateg Trauma Limb Reconstr. 2007;2(1):1–12.

68. Gao B, Zheng N (Nigel). Alterations in three-dimensional joint kinematics of anterior cruciate ligament-deficient and -reconstructed knees during walking. 2010;25(3):222–9.

69. Gao B, Cordova ML, Zheng N. Three-dimensional joint kinematics of ACL-deficient and ACL- reconstructed knees during stair ascent and descent. 2012;31(1):222–35.

70. Beasley LS, Weiland DE, Vidal AF. Anterior cruciate ligament reconstruction: A literature review of the anatomy, biomechanics, surgical considerations, and clinical outcomes. Oper Tech Orthop. 2005;15(1):5–19.

71. Cerulli G, Placella G, Sebastiani E. ACL Reconstruction: Choosing the Graft. Joints. 2013;1(1):18–24.

72. Leonardi AB de A, Duarte Junior A, Severino NR. Bone tunnel enlargement on anterior cruciate ligament reconstruction. Acta Ortop Bras. 2014;22(5):240–4.

73. Magnussen RA, Carey JL, Spindler KP. Does autograft choice determine intermediate-term outcome of ACL reconstruction? Knee Surgery, Sport Traumatol Arthrosc. 2011;19(3):462– 72.

74. Pinczewski LA, Lyman J, Salmon LJ. A 10-year comparison of anterior cruciate ligament reconstructions with hamstring tendon and patellar tendon autograft: a controlled, prospective trial. Am J Sport Med. 2007;35(4):564–74.

75. Shakked R, Weinberg M, Capo J. Autograft Choice in Young Female Patients: Patella Tendon versus Hamstring. J Knee Surg. 2016;1(212).

76. Slone HS, Romine SE, Premkumar A. Quadriceps tendon autograft for anterior cruciate ligament reconstruction: A comprehensive review of current literature and systematic

114

review of clinical results. Vol. 31. W.B. Saunders; 2015. p. 541–54.

77. Kim SJ, Kumar P, Oh KS. Anterior Cruciate Ligament Reconstruction: Autogenous Quadriceps Tendon-Bone Compared With Bone-Patellar Tendon-Bone Grafts at 2-Year Follow-up. 2009;25(2):137–44.

78. Noronha JC, Vasconcelos JC, Pinto A. Reconstrução do ligamento cruzado anterior com tendão quadricipital. Rev Port Ortop Traum 6. 1998;143–7.

79. Clark JC, Rueff DE, Indelicato PA. Primary ACL Reconstruction Using Allograft Tissue. Clin Sports Med. Elsevier Ltd; 2009;28(2):223–44.

80. Ventura A, Terzaghi C, Legnani C. Synthetic grafts for anterior cruciate ligament rupture: 19- year outcome study. Knee. Elsevier B.V.; 2010;17(2):108–13.

81. Huang JM, Wang Q, Shen F. Cruciate ligament reconstruction using LARS artificial ligament under arthroscopy: 81 Cases report. 2010;123(2):160–4.

82. Ye JX, Shen GS, Zhou HB. Arthroscopic reconstruction of the anterior cruciate ligament with the LARS artificial ligament: Thirty-six to fifty-two months follow-up study. 2013;17(11):1438–46.

83. Lavoie P, Fletcher J, Duval N. Patient satisfaction needs as related to knee stability and objective findings after ACL reconstruction using the LARS artificial ligament. Knee. 2000;7(3):157–63.

84. Liu ZT, Zhang XL, Jiang Y. Four-strand hamstring tendon autograft versus LARS artificial ligament for anterior cruciate ligament reconstruction. Int Orthop. 2010;34(1):45–9. 85. Pan X, Wen H, Wang L. Bone-patellar tendon-bone autograft versus LARS artificial ligament

for anterior cruciate ligament reconstruction. Eur J Orthop Surg Traumatol. 2013;23(7):819– 23.

86. Peña E, Calvo B, Martínez MA. A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J Biomech. 2006;39(9):1686–701.

87. Fujie H, Mabuchi K, Woo SL-Y. The Use of Robotics Technology to Study Human Joint Kinematics: A New Methodology. J Biomech Eng. 1993;115(3):211–7.

88. Beynnon BD, Fleming BC, Johnson RJ. Anterior cruciate ligament strain behavior during rehabilitation exercises in vivo. Am J Sports Med. 1995;23(1):24–34.

89. Fleming BC, Beynnon BD, Nichols CE. An in vivo comparison of anterior tibial translation and strain in the anteromedial band of the anterior cruciate ligament. J Biomech. 1993;26(1):51– 8.

115

90. Xerogeanes JW, Takeda Y, Livesay GA. Effect of knee flexion on the in situ force distribution in the human anterior cruciate ligament. Knee Surg Sport Traumatol Arthrosc. 1995;3(1):9– 13.

91. Livesay G a, Fujie H, Kashiwaguchi S. Determination of the In Situ Forces and Force Distribution within the Human Anterior Cruciate Ligament. Ann Biomed Eng. 1995;23(4):467–74.

92. Vairis A, Stefanoudakis G, Petousis M. Evaluation of an intact, an ACL-deficient, and a reconstructed human knee joint finite element model. Comput Methods Biomech Biomed Engin. 2015;5842(April):1–8.

93. Bendjaballah MZ, Shirazi-Adl A, Zukor DJ. Biomechanical response of the passive human knee joint under anterior-posterior forces. Clin Biomech. 1998;13(8):625–33.

94. Song Y, Debski RE, Musahl V. A three-dimensional finite element model of the human anterior cruciate ligament: A computational analysis with experimental validation. J Biomech. 2004;37(3):383–90.

95. Bersini S, Sansone V, Frigo CA. A dynamic multibody model of the physiological knee to predict internal loads during movement in gravitational field. Comput Methods Biomech Biomed Engin. 2015;5842(January):1–9.

96. Orsi AD, Chakravarthy S, Canavan PK. The effects of knee joint kinematics on anterior cruciate ligament injury and articular cartilage damage. Comput Methods Biomech Biomed Engin. 2015;5842(March):1–14.

97. Erdemir A, Sibole S. A Three-Dimensional Finite Element Representation of the Knee Joint. In: User’s Guide. Version 1.0.0; 2010.

98. Sibole S, Bennetts C, Maas S. Open knee: a 3d finite element representation of the knee joint. In: 34th Annual Meeting of the American Society of Biomechanics. 2010.

99. Rho JY, Ashman RB, Turner CH. Young’s modulus of trabecular and cortical bone material: Ultrasonic and microtensile measurements. J Biomech. 1993;26(2):111–9.

100. Armstrong CG, Lai WM, Mow VC. An analysis of the unconfined compression of articular cartilage. J Biomech Eng. 1984;106(2):165–73.

101. Eberhardt AW, Keer LM, Lewis JL. An analytical model of joint contact. J Biomech Eng. 1990;112(4):407–13.

102. Haut Donahue TL, Hull ML, Rashid MM. A Finite Element Model of the Human Knee Joint for the Study of Tibio-Femoral Contact. J Biomech Eng. 2002;124(3):273.

116

anterior cruciate ligament. J Biomech. 1992;25(5):511–8.

104. Harner CD, Xerogeanes JW, Livesay G a. The human posterior cruciate ligament complex: An interdisciplinary study. Am J Sports Med. 1995;23:736–45.

105. Butler D, Kay M, Stouffer D. Fascicle-Bone Units From Human Patellar Tendon and Knee Ligaments. J Biomech. 1986;19(6):425–32.

106. Quapp KM, Weiss JA. Material Characterization of Human Medial Collateral Ligament. J Biomech Eng. 1998;120(6):757–63.

107. Shani RH, Umpierez E, Nasert M. Biomechanical Comparison of Quadriceps and Patellar Tendon Grafts in Anterior Cruciate Ligament Reconstruction. Arthrosc J Arthrosc Relat Surg. Arthroscopy Association of North America; 2015;32(1):1–5.

108. Liu F, Kozanek M, Hosseini A. In vivo tibiofemoral cartilage deformation during the stance phase of gait. J Biomech. Elsevier; 2010;43(4):658–65.

109. Vedi V, Williams A, Tennant SJ. Meniscal movement. An in-vivo study using dynamic MRI. J Bone Joint Surg Br. 1999;81(1):37–41.

Documentos relacionados