• Nenhum resultado encontrado

• Os teores de amilose nos amidos das diferentes fontes foram distintos (61 % para ervilha e 29 % para o grão-de-bico), o que resultou em diferentes comportamentos com relação aos tratamentos aplicados, bem como diferenças acentuadas nas propriedades avaliadas, tanto do amido natural, quanto dos amidos resistentes obtidos de cada uma das fontes.

• O amido de ervilha da cv Utrillo mostrou-se mais eficiente para produção de AR do que o amido de grão-de-bico da cv Cícero. Para o amido de ervilha o tratamento mais produtivo foi a hidrólise ácida do amido natural (55 % de AR), enquanto que para o amido de grão-de-bico foi o tratamento enzimático do amido gelatinizado (32 % de AR). O AR de ervilha também apresentou maior estabilidade térmica que o AR de grão-de-bico. O amido de ervilha apresentou 32 % de FDT, teor superior ao AR comercial NOVELOSE 330 (National Starch), que apresenta 30 % de FDT e inferior ao Hi-Maize 260 (National Starch), que apresenta 60 % de FDT. O AR de grão-de-bico apresentou baixo teor de FDT (9 %).

• Esses AR podem ser utilizados em diversos produtos alimentícios com o intuito de elevar o teor de fibra dietética dos mesmos. A escolha da fonte deve ser baseada nas características físico-químicas particulares que cada produto apresenta e o que cada alimento requer. Considerando a viscosidade, todos os AR obtidos de ervilha apresentaram viscosidade próxima de zero. Alguns AR de grão- de-bico apresentaram viscosidades superiores aos AR de ervilha e outros tratamentos resultaram em valores semelhantes, sendo que quanto maior o teor de AR na amostra, menor a viscosidade. Já os índices de ISA e IAA foram baixos para os AR de ambas as fontes, entretanto, foi observado elevação destes índices com o tratamento de hidrólise e autoclavagem dos amidos.

REFERÊNCIAS

AGGARWAL, V.; SINGH, N.; KAMBOJ, S.S.; BRAR, P.S. Some properties of seeds and starches separated from different Indian pea cultivars. Food Chemistry, London, v. 85, p. 585-590, 2004.

AMERICAN ASSOCIATION OF CEREAL CHEMISTS – AACC. Approved methods of

the American Association of Cereal Chemists. 9 th ed. Saint Paul, 1995.

ANDERSON, R.A.; CONWAY, V.F.P.; GRIFFIN, E.L. Gelatinization of corn grits by roll- and extrusion-cooking. Cereal Science Today, Minneapolis, v. 14, n. 1, p. 4-7, 1969. ANNISON, G.; TOPPING, D.L. Nutrition role of resistant starch: chemical structure vs physiological function. Annual Review of Nutrition, Palo Alto, v. 14, p. 297-320, 1994. APARICIO-SAGUILÁN, A.; FLORES-HUICOCHEA, E.; TOVAR, J.; GARCÍA-SUÁREZ, F.; GUTIÉRREZ-MERAZ, F.; BELLO-PÉREZ, L.A. Resistant starch-rich powders prepared by autoclaving of native and lintnerized banana starch: partial characterization.

Starch/Stärke, Weinheim, v. 57, p. 405-412, 2005.

ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTRY – AOAC. Official methods

of analysis of the Association of Official Analytical Chemistry. 18 th ed. Arlington,

2006. 1141 p.

BELITZ, H.D.; GROSCH, W.; SCHIEBERLE, P. Food chemistry. 3rd rev. Berlin; New York : Springer, 2004. 1070 p.

BELLO-PÉREZ, L.A.; MONTEALVO, M.G.M.; ACEVEDO, E.A. Almidón: definición, estructura y propriedades. In: LAJOLO, F.M.; MENEZES, E.W. Carbohidratos em

alimentos regionales iberoamericano. São Paulo: Edusp, 2006. cap. 1, p. 17-46.

BERTOFT, E.; MANELIUS, R.; QIN, Z. Studies on the structure of pea starches. Part I. Initial stages in α-amylolysis of granular smooth pea starch. Starch/Stärke, Weinheim, v. 45, p. 215-220, 1993.

BERTOLINI, A. C. Bases moleculaires et thermomécaniques de la propriété

d’expansion du polvilho azedo. 2000. 114p. These (Doctorat de Chimie Biologie) –

Faculté des Sciences et Techniques, Université de Nantes, Nantes, 2000.

BEYNUM, G.M.A. van; ROELS, J. A. Starch conversion technology. New York: M. Dekker, 1985. 362 p.

BILIADERIS, C.G. The structure and interactions of starch with food constituents.

BJORCK, I.; NYMAN, M.; PEDERSEN, P.; SILJESTROM, M.; ASP, N.G.; EGGUM, B.O. Formation of enzyme resistant starch during autoclaving of wheat starch: Studies in vitro and in vivo. Journal of Cereal Science, London, v. 6, p. 159-72, 1987.

BOGRACHEVA, T.Y.; WANG, T.L.; HEDLEY, C.L. Implications of genetic changes in starch granular structure to gelatinization behaviour. In: BARSBY, T.L.; DONALD, A. M.; FRAZIER, P. J. (Ed.), Starch advances in structure and function. Cambridge: The Royal Society of Chemistry, 2001. p. 77-81.

BOGRACHEVA, T.Y.; DAVYDOVA, N.I.; GENIN, Y.V.; HEDLEY C.L. Mutant genes at the r and rb loci affect the structure and physical properties of pea seed starches.

Journal of Experimental Botany, Oxford, v. 46, n. 293, p. 1905-1913, 1995.

BOGRACHEVA, T.Y.; MORRIS, V.J.; RING, S.G.; HEDLEY C.L. The granular structure of C-type pea starch and its role in gelatinization. Biopolymers, New York, v. 45, p. 323-332, 1998.

BOGRACHEVA, T. Y.; CAIRNS, P.; NOEL, T. R.; HULLEMAN, S.; WANG, T. L.; MORRIS, V. J.; RING, S. G.; HEDLEY, C. L. The effect of mutant genes at the r, rb, rug3, rug4, rug5 and lam loci on the granular structure and physico-chemical properties of pea seed starch. Carbohydrate Polymers, Barking, v. 39, p. 303-314, 1999.

BOLTZ, K. W.; THOMPSON, D. B. Initial heating temperature and native lipid affects ordering of amylose during cooling of high-amylose starches. Cereal Chemistry, Saint Paul, v. 76, p. 204-212, 1999.

BOTHAM, R.L.; CAIRNS, P.; MORRIS, V. J.; RING, S.G.; ENGLYST, H. N.; CUMMINGS, J. H. A physicochemical characterization of chick pea starch resistant to digestion in the human small intestine. Carbohydrate Polymers, Barking, v. 26, p. 85- 90, 1995.

BRASIL. Ministério da Saúde. Agência Nacional de Vigilância Sanitária (ANVISA). Resolução RDC n. 263, de 22 de setembro de 2005. Aprova o regulamento técnico para produtos de cereais, amidos, farinhas e farelos. Disponível em: <http://e-legis.anvisa.gov.br/leisref/public/showAct.php?id=18822&word=>. Acesso em: 20 jun. 2009a.

BRASIL. Ministério da Saúde. Agência Nacional de Vigilância Sanitária (ANVISA). Resolução RDC n. 272, de 22 de setembro de 2005. Aprova o regulamento técnico para produtos de vegetais, produtos de frutas e cogumelos comestíveis. Disponível em: <http://e-legis.anvisa.gov.br/leisref/public/showAct.php?id=18831&word=>. Acesso em: 20 jun. 2009b.

BROWN, I.L. Applications and uses of resistant starch. Journal of AOAC International, Arlington, v. 87, n. 3, p. 727-732, 2004.

BROWN, I. L.; MCNAUGHT, K. J.; ANDREWS, D.; MORITA, T. Resistant starch: plant breeding, applications, development and commercial use. In: MCCLEARY, B. V.; PROSKY, L. (Ed.), Advanced dietary fibre technology. Oxford: Blackwell Science, 2001. chap. 34, p. 401-412.

BRUMOVSKY, J. O.; THOMPSON, D. B. Production of boiling-stable granular resistant starch by partial acid hydrolysis and hydrothermal treatments of high-amylose maize starch. Cereal Chemistry, Saint Paul, v. 78, n. 6, p. 680-689, 2001.

BULÉON, A.; GERARD, C.; RIEKEL, R.; VUONG, R.; CHANZY, H. Details of the crystalline ultrastructure of C-starch granules revealed by synchrotron microfocus mapping. Macromolecules, Washington, v. 31, n. 19, p. 6605-6610, 1998.

CANNIATTI-BRAZACA, S. G. Valor nutricional de produtos de ervilha em comparação com a ervilha fresca. Ciência e Tecnologia de Alimentos, Campinas, v. 26, n. 4, p. 766-771, 2006.

CEREDA, M.P (Ed.). Propriedades gerais do amido. Campinas: Fundação Cargill, 2001. v. 1, 224 p. (Série Culturas de Tuberosas Amiláceas Latino Americanas).

CEREDA, M. P.; VILPOUX, O. F.; DEMIATE, I. M. Amidos modificados. In: CEREDA, M. P.; VILPOUX, O. F. (Ed.) Culturas de tuberosas amiláceas latino americanas. São Paulo: Fundação Cargill, 2003. v. 3, p. 246-333.

CHEETHAM, N.W.H.; TAO, L. The effects of amylose content on the molecular size of amylose, and on the distribution of amylopectin chain length in maize starches.

Carbohydrate Polymers, Barking, v. 33, p. 251-261, 1997.

______. Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction. Carbohydrate Polymers, Barking, v. 36, p. 277-284, 1998. CHUNG, H.-J.; JEONG, H.-Y.; LIMA, S.-T. Effects of acid hydrolysis and defatting on crystallinity and pasting properties of freeze-thawed high amylose corn starch.

Carbohydrate Polymers, Barking, v. 54, p. 449-455, 2003.

CHUNG, H.-J.; LIU, Q.; HOOVER, R.; WARKENTIN, T.D.; VANDENBERG, B. In vitro starch digestibility, expected glycemic index, and thermal and pasting properties of flours from pea, lentil and chickpea cultivars. Food Chemistry, London, v. 111, p. 316-321, 2008.

COLONNA, P.; MERCIER, C. Macromolecular modifications of manioc starch components by extrusion-cooking with and without lipids. Carbohydrate Polymers, Barking, v. 3, n. 2, p. 87-108, 1983.

COLONNA, P.; BULÉON, A.; LEMAGUER, M.; MERCIER, C. Pisum sativum and Vicia faba carbohydrates: Part IV – Granular structure of wrinkled pea starch. Carbohydrate

CORDENUNSI, B.R. Utilização de novas técnicas de microscopia na caracterização do amido. In: LAJOLO, F.M.; MENEZES, E.W. Carbohidratos em alimentos regionales

iberoamericano. São Paulo: Edusp, 2006. cap. 2, p. 49-62.

COSTA, G.D. de A. Correlação entre valor nutritivo e teores de fibra alimentar e

amido resistente de dietas contendo grãos de ervilha (Pisum sativum L.), feijão- comum (Phaseolus vulgaris L.), grão-de-bico (Cicer arietinum L.) e lentilha (Lens

culinaris Med.). 2005. 63 p. Dissertação (Mestrado em Alimentos e Nutrição) – Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas, 2005.

COSTA, G.E. de A.; QUEIROZ-MONICI, K. da S.; REIS, S.M.P.M.; OLIVEIRA, A.C. de. Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chemistry, London, v. 94, p. 327-330, 2006.

DAVYDOVA, N.I; LEONT’EV, S.P.; GENIN, Y.V; SASO, A.Y; BOGRAHEV, T.Y. Some physico-chemical properties of smooth pea starches. Carbohydrate Polymers, Barking, v. 27, p. 109-115, 1995.

DONALD, A. M. Understanding starch structure and functionality. In: ELIASSION, A.C (Ed.). Starch in food: structure, function and applications. Cambridge: CRC Press, 2004. chap. 5, p. 156-184.

DUBOIS, M.; GILLES, K.A.; HAMILTON, J.K.; REBERS, P.A.; SMITH, F. Colorimetric method for determination of sugar and related substances. Analytical Chemistry, v. 28, n. 3, p. 350-354, 1956.

EERLINGEN, R.C.; DELCOUR, J.A. Formation, analysis, structure and properties of type III enzyme resistant starch. Journal of Cereal Science, London, v. 22, p. 129-38, 1995.

EERLINGEN, R.C.; DECEUNINCK, M.; DELCOUR, J.A. Enzyme-resistant starch. II. Influence of amylose chain length on resistant starch formation. Cereal Chemistry, Saint Paul, v. 70, n. 3, p. 345-350, 1993.

ELIASSON, A.N.; GUDMUNDSSON, M. Starch: Physicochemical and Functional Aspects. In: ELIASSON, A.N. (Ed.) Carbohydrates in food. 2nd ed. Boca Raton: CRC Press, 2006. chap. 9, p. 391-469.

ENGLYST, H.N.; HUDSON, G.J. The classification and measurement of dietary carbohydrates. Food Chemistry, London, v. 57, n. 1, p. 15-21, 1996.

ENGLYST, H. N.; KINGMAN, S. M.; CUMMINGS, J. H. Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition, London, v. 46, (Suppl 2), p. S33-S50, 1992.

ESCARPA, A.; GONZÁLEZ, M.C. Tecnología del almidón resistente. Food Science

and Technology International, London, v. 3; p. 149-161, 1997.

ESCARPA, A.; M. C. GONZÁLEZ, M.C.; MAÑAS, E.; GARCÍA-DIZ, L.; SAURA- CALIXTO, F. Resistant starch formation: standardization of a high-pressure autoclave process. Journal of Agriculture and Food Chemistry, Easton, v. 44, p. 924-928, 1996.

FARAJ, A.; VASANTHAN, T.; HOOVER, R. The efect of extrusion cooking on resistant starch formation in waxy and regular barley flours. Food Research International, Barking, v. 37, p. 517-525, 2004.

FERREIRA, C.L.L.F. Prebióticos e probióticos: atualização e prospecção. Viçosa: Suprema Gráfica e Editora, 2003.

FERREIRA, R.E. Avaliação de parâmetros do processo de extrusão e do teor de

farelo de trigo adicionado em características de "snacks" expandidos de milho.

2006. 163 p. Dissertação (Mestrado em Tecnologia de Alimentos) – Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas, 2006.

FRENCH, D. Organization of starch granule. In: WHISTER, R.L.; BERMILLER, J.N.; PASCHALL, E.F. (Ed.) Starch: chemistry and technology. New York: Academic Press, 1984. p. 183-247.

GALLANT, D.J.; BOUCHET, B.; BULÉON, A.; PÉREZ, S. Physical characteristics of starch granules and susceptibility to enzymatic degradation. European Journal of

Clinical Nutrition, London, v. 46, n. 2, p. 3-16, 1992.

GARCÍA-ALONSO, A.; GOÑI, I.; SAURA-CALIXTO, F. Resistant starch and potencial glycaemic index of raw and cooked legumes (lentils, chickpea and beans). Zeitschrift

für Lebensmitteluntersuchung und-Forschung A, Heidelberg, v. 206, n. 4, p. 284-

287, 1998.

GELENCSÉR, T.; JUHÁSZ, R.;HÓDSÁGI, M.; GERGELY, SZ.; SALGÓ, A. Comparative study of native and resistant starches. Acta Alimentaria, Budapest, v. 37, n. 2, p. 255- 270, 2008.

GENKINA, N.K.; WIKMAN, J.; BERTOFT, E.; YURYEV, V.P. Effects of structural imperfection on gelatinization characteristics of amylopectin starches with A- and B-type crystallinity. Biomacromolecules, Washington, v. 8, p. 2329-2335, 2007.

GOMEZ, M.H.; AGUILERA, J.M. Changes in the starch fraction during extrusion cooking of corn. Journal of Food Science, Chicago, v. 48, n. 2, p. 378-381, 1983.

GOÑI, I.; GARCIA-DIAZ, L.; MAÑAS, E.; SAURA-CALIXTO, F. Analysis of resistant starch: a method for foods and food products. Food Chemistry, London, v. 56, p. 445- 449, 1996.

GONZÁLEZ-SOTO, R. A.; AGAMA-ACEVEDO, E.; SOLORZA-FERIA, J.; RENDÓNVILLALOBOS, R.; BELLO-PÉREZ, L. A. Resistant starch made from banana starch by autoclaving and debranching. Starch/Stärke, Weinheim, v. 56, p. 495-499, 2004.

GONZÁLEZ-SOTO, R.A.; MORA-ESCOBEDO, R.; HERNÁNDEZ-SÁNCHEZ, H.; SÁNCHEZ-RIVERA, M.; BELLO-PÉREZ, L.A. The influence of time and storage temperature on resistant starch formation from autoclaved debranched banana starch.

Food Research International, Barking, v. 40, p. 304-310, 2007.

GONZÁLEZ-SOTO, R.A.; SÁNCHEZ-HERNÁNDEZ, L.; SOLORZA-FERIA, J.; NÚÑEZSANTIAGO, C.; FLORES-HUICOCHEA, E.; BELLO-PÉREZ, L.A. Resistant starch production from non-conventional starch sources by extrusion. Food Science

and Technology International, London, v. 12, n.1, p. 5-11, 2006.

GOVINDASAMY, S.; CAMPANELLA, O.H.; OATES, C.G. High moisture twin-screw extrusion of sago starch: 1. Influence on granule morphology and structure.

Carbohydrate Polymers, Barking, v. 30, p. 215-286, 1996.

HAN, J.-Y.; TYLER, R.T. Characterization of pea starches in the presence of alkali and borax. Starch/Stärke, Weinheim, v. 55, n. 6, p. 457-463, 2003.

HARALAMPU, S. G. Resistant starch – a review of the physical properties and biological impact of RS3. Carbohydrate Polymers, Barking, v. 41, n. 4, p. 285-292, 2000.

______. In-vivo and in-vitro digestion of resistant starch. In: MCCLEARY, B. V.; PROSKY, L. (Ed.), Advanced dietary fibre technology. Oxford: Blackwell Science, 2001. chap. 35, p. 413-423.

HAWKINS, A.; JOHNSON, S. K. In vitro carbohydrate digestibility of whole-chickpea and chickpea bread products. International Journal of Food Sciences and Nutrition, Basingstoke, v. 56, n. 3, p. 147-155, 2005.

HEDLEY, L.; BOGRACHEVA, T. Y.; WANG, T. L. A genetic approach to studying the morphology, structure and function of starch granules using pea as a model.

Starch/Stärke, Weinheim, v. 54, p. 235-242, 2002.

HILBERT, G. E.; MACMASTERS, M. M. Pea starch, a starch of high amylase content.

The Journal of Biological Chemistry, Bethesda, v. 162, p. 229-238, 1946.

HOOVER, R. Acid-treated starches. Food Reviews International, New York, v. 16, n. 3, p. 369-392, 2000.

HOOVER, R.; RATNAYAKE, W.S. Starch characteristics of black bean, chick pea, lentil, navy bean and pinto bean cultivars grown in Canada. Food Chemistry, London, v. 78, p. 489-498, 2002.

HOOVER, R., ZHOU, Y. In vitro and in vivo hydrolysis of legume starches by a-amylase and resistant starch formation in legumes - a review. Carbohydrate Polymers, Barking, v. 54, n. 4, p. 401-417, 2003.

HOSENEY, R. C. Starch. In: ______ Principles of cereal: science and technology. 2nd ed. St. Paul: American Association of Cereal Chemists, 1994. chap. 2, p. 29-64.

HUANG, J.; SCHOLS, H.A.; SOEST, J.J.G. van; JIN, Z.; SULMANN, E.; VORAGEN, A.G.J. Physicochemical properties and amylopectin chain profiles of cowpea, chickpea and yellow pea starches. Food Chemistry, London, v. 101, p. 1338-1345, 2007.

HUGHES, T.; HOOVER, R.; LIU, Q.; DONNER, E.; CHIBBAR, R.; JAISWAL, S. Composition, morphology, molecular structure, and physicochemical properties of starches from newly released chickpea (Cicer arietinum L.) cultivars grown in Canada.

Food Research International, Barking, v. 42, p. 627-635, 2009.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. Norme internationale: riz détermination de la teneur en amylose. Suisse, 1987. 5 p. (ISO 6647)

JACOBS, H.; EERLINGEN, R. C.; ROUSEU, N.; COLONNA, P.; DELCOUR, J. A. Acid hydrolysis of native and annealed wheat, potato and pea starches - DSC melting features and chain length distributions of lintnerized starches. Carbohydrate Research, Amsterdam, v. 308, p. 359-371, 1998.

JANE, J.; CHEN, Y.Y.; LEE, L.F.; MCPHERSON, A. E.; WONG, K.S.; RADOSAVLJEVIC, M.; T. KASEMSUWAN, T. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch.

Cereal Chemistry, Saint Paul, v. 76, n. 5, p. 629-637, 1999.

JENKINS, D.J.A.; VUKSAN, V.; KENDALL, C.W.C.; WÜRSCH, P.; JEFFCOAT, R.; WARING, S.; MEHLING, C.C.; VIDGEN, E., AUGUSTIN, L.S.A.; WONG, E. Physiological effects of resistant starches on fecal bulk, short chain fatty acids, blood lipids and glycemic index. Journal of the American College of Nutrition, New York, v. 17, n. 6, p. 609-616, 1998.

JUHÁSZ, R.; SALGÓ, A. Pasting behavior of amylose, amylopectin and their mixtures as determined by RVA curves and first derivatives. Starch/Stärke, Weinheim, v. 60, p. 70-78, 2008.

JULIANO, B. O. A simplified assay for milled-rice amylose. Cereal Science Today, v. 16, n. 10, p. 334-340, 1971.

KAUR, M.; SINGH, N. Studies on functional, thermal and pasting properties of flours from different chickpea (Cicer arietinum L.) cultivars. Food Chemistry, London, v. 91, p. 403-411, 2005.

KAUR, M.; SANDHU, K.S.; SINGH, N. Comparative study of the functional, thermal and pasting properties of flours from different field pea (Pisum sativum L.) and pigeon pea (Cajanus cajan L.) cultivars. Food Chemistry, London, v. 104, p. 259-267, 2007.

KEARSLEY, M. W.; DZIEDZIC, S. Z. Handbook of starch hydrolysis products and

their derivatives. London: Blackie Academic & Professional, 1995. 275 p.

KIATPONGLARP, W. Production of enzyme-resistant starch from cassava starch. 2006. 125 p. Dissertação (Degree of Master of Science in Food Technology) – Suranaree University of Technology, 2006.

KÖKSEL, H.; BASMAN, A.; KAHRAMAN, K.; OZTURK, S. Effect of acid modification and heat treatments on resistant starch formation and functional properties of corn starch. International Journal of Food Properties, Philadelphia, v. 10, p. 691-702, 2007.

KOZLOV, S.S.; BLENNOWB, A.; KRIVANDIN, A.V.; YURYEV, V.P. Structural and thermodynamic properties of starches extracted from GBSS and GWD suppressed potato lines. International Journal of Biological Macromolecules, Guildford, v. 40, p. 449-460, 2007.

LEHMANN, U.; RÖSSLER, C.; SCHMIEDL, D.; JACOBASCH, G. Production and physicochemical characterization of resistant starch type III derived from pea starch.

Nahrung/Food, Weinheim, v. 47, n. 1, p. 60-63, 2003.

LEONG, Y. H.; KARIM, A.A.; NORZIAH, M.H. Effect of pullulanase debranching of sago (Metroxylon sagu) starch at subgelatinization temperature on the yield of resistant starch. Starch/Stärke, Weinheim, v. 59, n. 1, p. 21-32, 2007.

LI, L.; JIANG, H.; CAMPBELL, M.; BLANCO, M.; JANE, J. Characterization of maize amylose-extender (ae) mutant starches. Part I: Relationship between resistant starch contents and molecular structures. Carbohydrate Polymers, Barking, v. 74, p. 396-404, 2008.

LII, C.-Y.; TSAI, M.-L.; TSENG, K.-H. Effect of amylose content on the rheological property of rice starch. Cereal Chemistry, Saint Paul, v. 73, n. 4, p. 415-420, 1996. LIU, H.; XIE, F.; CHEN, L.; YU, L.; DEAN, K.; BATEMAN, S. Thermal behavior of high amylose cornstarch studied by DSC. International Journal of Food Engineering, Berkeley, v. 1, n. 1, p. 1-6, 2005.

LOBO, A. R.; SILVA, G.M. de L. Amido resistente e suas propriedades físico-químicas.

Revista de Nutrição, Campinas, v. 16, n. 2, p.219-226, 2003.

LUNARDINI, A. C. Como melhorar a textura, sabor e performance de produtos em panificação. Revista da ABAM, Paranavaí, v. 3, n. 11, 2005. Disponível em: <http://www.abam.com.br/revista/revista11/textura.php>. Acesso em: 10 set. 2007. MARCONI, E.; RUGGERI, S.; CAPPELLONI, M.; LEONARDI, D.; CARNOVALE, E. Physicochemical, nutritional, and microstructural characteristics of chickpeas (Cicer arietinum L.) and common beans (Phaseolus vulgaris L.) following microwave cooking.

MIAO, M.; JIANG, B.; ZHANG, T. Effect of pullulanase debranching and recrystallization on structure and digestibility of waxy maize starch. Carbohydrate Polymers, Barking, v. 76, p. 214-221, 2009.

MIAO, M.; ZHANG, T.; JIANG, B. Characterizations of kabuli and desi chickpea starches cultivated in China. Food Chemistry, London, v. 113, p. 1025-1032, 2009.

MILÁN-CARRILLO, J.; REYES-MORENO, C.; ARMIENTA-RODELO, E.; CARÁBEZ- TREJO, A.; MORA-ESCOBEDO, R. Physicochemical and nutritional characteristics of extruded flours from fresh and hardened chickpeas (Cicer arietinum L). Lebensmittel-

Wissenschaft und-Technologie, London, v. 33, p. 117-123, 2000.

MOORTHY, S. N. Large scale industries. In: BALAGOPALAN, C. Integrated

technologies for value addition and post harvest management in tropical tuber crops. Thiruvananthapuram: Central Tuber Crops Research institute, 2000. chap. 6, p.

106-137.

MORRIS, V.J. Starch gelation and retrogradation. Trends in Food Science &

Technology, Cambridge, v. 1, p. 2-6, 1990.

MORRISON, W. R.; TESTER, R. F.; GIDLEY, M. J.; KARKALAS, J. Resistance to acid hydrolysis of lipid-complexed amylose and lipid-free amylose in lintnerised waxy and non-waxy barley starches. Carbohydrate Research, Amsterdam, v. 245, n. 2, p. 289- 302, 1993.

MUIR, J.G.; O'DEA, K. Measurement of resistant starch: factors affecting the amount of starch escaping digestion in vitro. American Journal of Clinical Nutrition, New York, v. 56, p. 123-127, 1992.

MUN, S.-H.; SHIN, M. Mild hydrolysis of resistant starch from maize. Food Chemistry, London, v. 96, p. 115-121, 2006.

NAKORN, K.N.; TONGDANG, T.; SIRIVONGPAISAL, P. Crystallinity and rheological properties of pregelatinized rice starches differing in amylose content. Starch/Stärke, Weinheim, v. 61, p. 101-108, 2009.

NARA, S.; KOMIYA, T. Studies on the relationship between water saturated state and crystallinity by the diffraction method for moistened potato starch. Starch/Stärke, Weinheim, v. 35, p. 407-410, 1983.

NODA, T.; FURUTA, S.; SUDA, I. Sweet potato β-amylase immobilized on chitosan beads and its application in the semi-continuous production of maltose. Carbohydrate

Polymers, Barking, v. 44, n. 3, p. 189-195, 2001.

NUGENT, A.P. Health properties of resistant starch. Nutrition Bulletin, London, v. 30, p. 27-54, 2005.

OLIVEIRA, T.M. de. Desenvolvimento e avaliação de filme biodegradável de

polietileno incorporado de amido de grão-de-bico (Cicer arietinum L.). 2007. 108 p.

Dissertação (Mestrado em Ciência e Tecnologia de Alimentos) – Universidade Federal de Viçosa, Viçosa, 2007.

ONG, M.H.; BLANSHARD, J.M.V. Texture determinants in cooked, parboiled rice. I: Rice starch amylose and the fine stucture of amylopectin. Journal of Cereal Science, London, v. 21, p. 251-260, 1995.

ONYANGO, C.; BLEY, T.; JACOB, A.; HENLE, T.; ROHM, H. Influence of incubation temperature and time on resistant starch type III formation from autoclaved and acid- hydrolysed cassava starch. Carbohydrate Polymers, Barking, v. 66, p. 494-499, 2006. OTTO, T.; BAIK, B.-K.; CZUCHAJOWSKA, Z. Microstructure of seeds, flours, and starches of legumes. Cereal Chemistry, Saint Paul, v. 74, p. 445-451, 1997.

PEREIRA, K.D. Amido resistente, a última geração no controle de energia e digestão saudável. Ciência e Tecnologia de Alimentos, Campinas, v. 27(supl.), p. 88-92, 2007. POMERANZ, Y. Research and development regarding enzyme-resistant starch (RS) in the USA: a review. European Journal of Clinical Nutrition, London, v. 46, (Suppl 2), p. 63S-68S, 1992.

PONGJANTA, J.; UTAIPATTANACEEP, A.; NAIVIKUL, O.; PIYACHOMKWAN, K. Effects of preheated treatments on physicochemical properties of resistant starch type III from pullulanase hydrolysis of high amylose rice starch. American Journal of Food

Technology, New York, v. 4, n. 2, p. 79-89, 2009.

RATNAYAKE, W.S.; JACKSON, D.S. A new insight into the gelatinization process of native starches. Carbohydrate Polymers, Barking, v. 67, n. 3, p. 511-529, 2007.

RATNAYAKE, W. S.; HOOVER, R.; WARKENTIN, T. Pea starch: composition, structure and properties - A review. Starch/Stärke, Weinheim, v. 54, n. 6, p. 217-234, 2002. RATNAYAKE, W.S.; HOOVER, R.; SHAHIDI, F.; PERERA, C.; JANE, J. Composition, molecular structure, and physicochemical properties of starches from four field pea (Pisum sativum L.) cultivars. Food Chemistry, London, v. 74, p. 189-202, 2001.

REGE, A.; PAI, J.S. Thermal and freeze-thaw properties of starch of chickpea (Cicer arietinum). Food Chemistry, London, v. 57, p. 545-547, 1996.

RING, S.G.; GEE, J.M.; WHITTAM, M.; ORFORD, P.; JOHNSON, I.T. Resistant starch: its chemical form in foodstuffs and effect on digestibility in vitro. Food Chemistry, London, v. 28, p. 97-109, 1988.

ROSIN, P.M. Formação de amido resistente em alimentos armazenados sob baixa

temperatura (-20 °C), estudo in vitro e in vivo. 2000. 77 p. Dissertação (Mestrado em

Nutrição Experimental) – Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 2000.

SAJILATA,M.G.; SINGHAL, R.S.; KULKARNI, P.R. Resistant starch – A review.

Comprehensive Reviews in Food Science and Food Safety, Chicago, v. 5, n. 1, p. 1-

17, 2006.

SANDHU, K. S.; LIM, S. Digestibility of legume starches as influenced by their physical and structural properties. Carbohydrate Polymers, Barking, v. 71, p. 245-252, 2008. STATISTICAL ANALYSES SYSTEM - SAS. SAS/INSIGHT User's guide. versão 9.1.3 - versão para Windows. Cary: SAS Institute, 2002/2003.

SASAKI, T.; YASUI, T.; MATSUKI. J. Effect of amylose content on gelatinization, retrogradation, and pasting properties of starches from waxy and nonwaxy wheat and their F1 seeds. Cereal Chemistry, Saint Paul, v. 77, n. 1, p. 58-63, 2000.

SAYAR, S.; KOKSEL, H.; TURHAN, M. The effects of protein-rich fraction and defatting on pasting behavior of chickpea starch. Starch/Stärke, Weinheim, v. 57, p. 599-604, 2005.

SHI, Y-C; JEFFCOAT, R. Structural features of resistant starch. In: MCCLEARY, B. V.; PROSKY, L. (Ed.), Advanced dietary fibre technology. Oxford: Blackwell Science, 2001. chap. 37, p. 430-439.

SHIN, S. I.; BYUN, J.; PARK, K. H.; MOON, T. W. Effect of partial acid hydrolysis and heat-moisture treatment on formation of resistant tuber starch. Cereal Chemistry, Saint Paul, v. 81, n. 2, p. 194-198, 2004.

SHIN, S.I.; LEE, C.J.; KIM, D.-I.; LEE, H.A.; CHEONG, J.J.; CHUNG, K.M.; BAIK, M.-Y.; PARK, C.S.; KIM, C.H.; MOON, T.W. Formation, characterization, and glucose response in mice to rice starch with low digestibility produced by citric acid treatment. Journal of

Cereal Science, London, v. 45, p. 24-33, 2007.

SIEVERT, D.; POMERANZ, Y. Enzyme-resistant starch. I. Characterization and evaluation by enzymatic, thermoanalytical, and microscopic methods. Cereal

Chemistry, Saint Paul, v. 66, n. 4, p. 342-347, 1989.

______. Enzyme-resistant starch. II. Differential scanning calorimetry studies on heat- treated starches and enzyme-resistant starch residues. Cereal Chemistry, Saint Paul, v. 67, n. 3, p. 217-221, 1990.

SIEVERT, D.; WÜRSCH, P. Thermal behavior of potato amylose and enzyme-resistant

Documentos relacionados