• Nenhum resultado encontrado

1. Não foram observadas diferenças genotípicas entre os espécimes de Leishmania de humanos com leishmaniose visceral sintomática e assintomática;

2. Não foram observadas diferenças genotípicas entre os espécimes de Leishmania isoladas de humanos e cães;

3. Não foram observadas diferenças no conteúdo gênico de formas promastigotas e amastigotas de Leishmania na infecção assintomática;

4. O sequenciamento genômico dos 20 isolados de Leishmania, oriundos do Estado do Rio Grande do Norte, revelou uma forte similaridade entre as cepas;

5. As amostras isoladas na década de 1990 apresentaram uma maior diversidade genotípica quando comparadas as amostras recentemente isoladas;

6. Todos os isolados de Leishmania apresentaram 36 cromossomos com ploidia variável entre os isolados;

7. Não foi encontrada relação entre as variações no número de cópias gênicas de amastina, gp63, A2 e SSG, com as formas clínicas.

8. 34,28% dos flebotomíneos coletados no Alto Oeste são L. longipalpis.

9. As principais fontes de repasto sanguíneo no Alto Oeste foram humanos, cães e galinha.

REFERÊNCIAS

ABYZOV, A. et al. CNVnator: An approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Research, v. 21, p. 974–984, 2011.

AKOPYANTS, N. S. et al. Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector. Science (New York, N.Y.), v. 324, p. 265–268, 2009.

ALEIXO, J. A. et al. Atypical American visceral leishmaniasis caused by disseminated Leishmania amazonensis infection presenting with hepatitis and adenopathy. Trans R Soc Trop Med Hyg, v. 100, n. 1, p. 79–82, 2006. ALEXANDER, J.; SATOSKAR, A. R.; RUSSELL, D. G. Leishmania species: models of intracellular parasitism. Journal of cell science, v. 112 Pt 18, p. 2993–3002, 1999.

ALVAR, J. et al. The relationship between leishmaniasis and AIDS: The second 10 yearsClinical Microbiology Reviews, 2008.

AMBROISE-THOMAS, P. Emerging parasite zoonoses: The role of host- parasite relationshipInternational Journal for Parasitology, 2000.

ARIAS, J. R.; MONTEIRO, P. S.; ZICKER, F. The reemergence of visceral leishmaniasis in Brazil. Emerging Infectious Diseases, v. 2, n. 2, p. 145–146, 1996.

ASH, C.; JASNY, B. R. Trypanosomatid Genomes. Science, v. 309, n. 5733, p. 399, 2005.

ASHFORD, R. W. The leishmaniases as emerging and reemerging zoonoses. Int J Parasitol, v. 30, n. 12-13, p. 1269–1281, 2000a.

ASHFORD, R. W. Parasites as indicators of human biology and evolution. J Med Microbiol, v. 49, n. 9, p. 771–772, 2000b.

ASHUTOSH; SUNDAR, S.; GOYAL, N. Molecular mechanisms of antimony resistance in LeishmaniaJournal of Medical Microbiology, 2007.

ASSIMINA, Z.; CHARILAOS, K.; FOTOULA, B. Leishmaniasis: an overlooked public health concern. Health Science Journal, v. 2, n. 4, p. 196–205, 2008. AZIZI, H. et al. Searching for virulence factors in the non-pathogenic parasite to humans Leishmania tarentolae. Parasitology, v. 136, p. 723–735, 2009.

BACCHETTA, R.; GAMBINERI, E.; RONCAROLO, M.-G. Role of regulatory T cells and FOXP3 in human diseases. The Journal of allergy and clinical immunology, v. 120, p. 227–235; quiz 236–237, 2007.

BACELLAR, O. et al. Interleukin-12 restores interferon-gamma production and cytotoxic responses in visceral leishmaniasis. The Journal of infectious diseases, v. 173, p. 1515–1518, 1996.

BACELLAR, O. et al. IL-10 and IL-12 are the main regulatory cytokines in visceral leishmaniasis. Cytokine, v. 12, n. 8, p. 1228–1231, 2000.

BADARO, R. et al. New perspectives on a subclinical form of visceral leishmaniasis.The Journal of infectious diseases, 1986.

BADARÓ, R. et al. A prospective study of visceral leishmaniasis in an endemic area of Brazil. The Journal of infectious diseases, v. 154, p. 639–649, 1986. BAÑULS, A. L.; HIDE, M.; TIBAYRENC, M. Molecular epidemiology and

evolutionary genetics of Leishmania parasites. International Journal for Parasitology, v. 29, p. 1137–1147, 1999.

BARRAL, A. et al. Leishmaniasis in Bahia, Brazil: Evidence that Leishmania amazonensis Produces a Wide Spectrum of Clinical Disease. American Journal of Tropical Medicine and Hygiene, v. 44, p. 536 – 546, 1991. BARRETTO, M. P. Sobre a sistemática da Subfamília Phlebotominae Rondani (Diptera, Psychodidae). Revista Brasileira de Entomologia, v. 3, p. 173–190, 1955.

BASU, J. M. et al. Sodium antimony gluconate induces generation of reactive oxygen species and nitric oxide via phosphoinositide 3-kinase and mitogen- activated protein kinase activation in Leishmania donovani-infected

macrophages. Antimicrobial Agents and Chemotherapy, v. 50, p. 1788– 1797, 2006.

BATES, P. A. Transmission of Leishmania metacyclic promastigotes by phlebotomine sand fliesInternational Journal for Parasitology, 2007.

BEDOYA-REINA, O. C. et al. Galaxy tools to study genome diversity. GigaScience, v. 2, n. 1, p. 17, jan. 2013.

BELKAID, Y. Regulatory T cells and infection: a dangerous necessity. Nature reviews. Immunology, v. 7, p. 875–888, 2007.

BELLUS, G. A. et al. Achondroplasia is defined by recurrent G380R mutations of FGFR3. American journal of human genetics, v. 56, p. 368–373, 1995. BLACKWELL, J. M. Genetic susceptibility to leishmanial infections: studies in mice and man. Parasitology, v. 112 Suppl, p. S67–S74, 1996.

BLACKWELL, J. M. et al. Genetics and visceral leishmaniasis: of mice and man. Parasite Immunol, v. 31, n. 5, p. 254–266, 2009.

BOGGIATTO, P. M. et al. Transplacental transmission of Leishmania infantum as a means for continued disease incidence in North America. PLoS Neglected Tropical Diseases, v. 5, 2011.

BOTILDE, Y. et al. Comparison of molecular markers for strain typing of Leishmania infantum. Infection, Genetics and Evolution, v. 6, p. 440–446, 2006.

BRITTO, C. et al. Conserved linkage groups associated with large-scale chromosomal rearrangements between Old World and New World Leishmania genomes. Gene, v. 222, p. 107–117, 1998.

CARNAÚBA, D. et al. Atypical disseminated leishmaniasis similar to post-kala- azar dermal leishmaniasis in a Brazilian AIDS patient infected with Leishmania (Leishmania) infantum chagasi: a case report. International Journal of

Infectious Diseases, v. 13, 2009.

CHANG, K.-P.; MCGWIRE, B. S. Molecular determinants and regulation of Leishmania virulence. Kinetoplastid biology and disease, v. 1, p. 1, 2002. CHAREST, H.; MATLASHEWSKI, G. Developmental gene expression in Leishmania donovani: differential cloning and analysis of an amastigote-stage- specific gene. Molecular and cellular biology, v. 14, p. 2975–2984, 1994. CHEN, D. Q. et al. Episomal expression of specific sense and antisense

mRNAs in Leishmania amazonensis: Modulation of gp63 level in promastigotes and their infection of macrophages in vitro. Infection and Immunity, v. 68, p. 80–86, 2000.

CHEN, T. DNA microarrays--an armory for combating infectious diseases in the new century. Infectious disorders drug targets, v. 6, p. 263–279, 2006. COURTENAY, O. et al. Epidemiology of canine leishmaniasis: a comparative serological study of dogs and foxes in Amazon Brazil. Parasitology, v. 109 ( Pt 3, p. 273–279, 1994.

CRUZ, A. K.; TITUS, R.; BEVERLEY, S. M. Plasticity in chromosome number and testing of essential genes in Leishmania by targeting. Proceedings of the National Academy of Sciences of the United States of America, v. 90, p. 1599–1603, 1993.

CRUZ, I. et al. Leishmania/HIV co-infections in the second decade. The Indian journal of medical research, v. 123, p. 357–388, 2006.

CRUZ, M. C. et al. Trypanosoma cruzi: Role of δ -Amastin on Extracellular Amastigote Cell Invasion and Differentiation. PLoS ONE, v. 7, 2012.

CUNHA, A. M.; CHAGAS, E. Nova espécie de protozoário do gênero

Leishmania patogênico para o homem. Leishmania chagasi n. sp. Hospital, v. 11, p. 3 – 9, 1937.

CUPOLILLO, E.; GRIMALDI, G.; MOMEN, H. A general classification of New World Leishmania using numerical zymotaxonomy. The American journal of tropical medicine and hygiene, v. 50, p. 296–311, 1994.

CUPOLILLO, E.; GRIMALDI, G.; MOMEN, H. Discrimination of Leishmania isolates using a limited set of enzymatic loci. Annals of tropical medicine and parasitology, v. 89, p. 17–23, 1995.

DAHER, E. F. et al. Clinical and epidemiological features of visceral

leishmaniasis and HIV co-infection in fifteen patients from Brazil. The Journal of parasitology, v. 95, p. 652–655, 2009.

DANTAS-TORRES, F. The role of dogs as reservoirs of Leishmania parasites, with emphasis on Leishmania (Leishmania) infantum and Leishmania (Viannia) braziliensisVeterinary Parasitology, 2007.

DARLING, A. C. E. et al. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Research, v. 14, p. 1394–1403, 2004.

DAS, A.; ALI, N. Vaccine development against Leishmania donovaniFrontiers in Immunology, 2012.

DATASUS, M. DA S. REDE INTERAGENCIAL DE INFORMAÇÕES PARA A SAÚDE. Indicadores de Morbidade. Disponível em:

<http://www.datasus.gov.br/idb>. Acesso em: 7 jul. 2014.

DAWIT, G.; GIRMA, Z.; SIMENEW, K. A Review on Biology, Epidemiology and Public Health Significance of Leishmaniasis. J Bacteriol Parasito, v. 4, n. 2, 2013.

DE OLIVEIRA, J. P. C. et al. Genetic diversity of Leishmania amazonensis strains isolated in northeastern Brazil as revealed by DNA sequencing, PCR- based analyses and molecular karyotyping. Kinetoplastid biology and disease, v. 6, p. 5, 2007.

DEANE, L. DE M. Leishmaniose visceral no Brasil. Estudos sobre

reservatórios e transmissores realizados no Estado do Ceará. [s.l.] UFRJ, 1956.

DEANE, L. M.; DEANE, M. P. Encontro de Leishmanias nas vísceras e na pele de uma raposa, em zona endêmica de calazar, nos arredores de Sobral, Ceará. O Hospital, v. 45, p. 419–421, 1954.

DENISE, H. et al. Studies on the CPA cysteine peptidase in the Leishmania infantum genome strain JPCM5. BMC molecular biology, v. 7, p. 42, 2006.

DEPRISTO, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature genetics, v. 43, p. 491– 498, 2011.

DESJEUX, P. The increase in risk factors for leishmaniasis worldwide.

Transactions of the Royal Society of Tropical Medicine and Hygiene, v. 95, n. 3, p. 239–243, 2001.

DESJEUX, P. Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis, v. 27, n. 5, p. 305–318, 2004a.

DESJEUX, P. Leishmaniasis. Nat Rev Microbiol, v. 2, n. 9, p. 692, 2004b. DIECKMANN, D. et al. Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood. The Journal of

experimental medicine, v. 193, p. 1303–1310, 2001.

DOWNING, T. et al. Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistanceGenome Research, 2011a.

DOWNING, T. et al. Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome research, v. 21, n. 12, p. 2143–56, dez. 2011b.

DUBESSAY, P. et al. The switch region on Leishmania major chromosome 1 is not required for mitotic stability or gene expression, but appears to be essential. Nucleic acids research, v. 30, p. 3692–3697, 2002a.

DUBESSAY, P. et al. Mitotic stability of a coding DNA sequence-free version of Leishmania major chromosome 1 generated by targeted chromosome

fragmentation. Gene, v. 289, p. 151–159, 2002b.

EL-SAYED, N. M. et al. Comparative genomics of trypanosomatid parasitic protozoa. Science (New York, N.Y.), v. 309, p. 404–409, 2005.

EVANS, T. G. et al. Epidemiology of visceral leishmaniasis in northeast Brazil. The Journal of infectious diseases, v. 166, p. 1124–1132, 1992.

EWING, B. et al. Base-calling of automated sequencer traces usingPhred. I. Accuracy assessment. Genome research, p. 175–185, 1998.

EWING, B.; GREEN, P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Research, v. 8, p. 186–194, 1998.

FAKIOLA, M. et al. Common variants in the HLA-DRB1-HLA-DQA1 HLA class II region are associated with susceptibility to visceral leishmaniasis. Nature

FOLGUEIRA, C. et al. Genomic organization and expression of the HSP70 locus in New and Old World Leishmania species. Parasitology, v. 134, p. 369– 377, 2007.

FRAGA, J. et al. Phylogeny of Leishmania species based on the heat-shock protein 70 gene. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases, v. 10, p. 238–245, 2010.

FRANKE, C. R. et al. Impact of the El Niño/Southern Oscillation on visceral leishmaniasis, Brazil. Emerging infectious diseases, v. 8, p. 914–917, 2002. GALATI, E. A. B. Morfologia e taxonomia: classificação de Phlebotominae. In: RANGEL, E. F.; LAINSON, R. (Eds.). Flebotomíneos do Brasil. Rio de Janeiro: FIOCRUZ, 2003. p. 23–51.

GARCIA, L. et al. Culture-Independent Species Typing of Neotropical

Leishmania for Clinical Validation of a PCR-Based Assay Targeting Heat Shock Protein 70 Genes. Journal of Clinical Microbiology, v. 42, p. 2294–2297, 2004.

GHALIB, H. W. et al. IL-12 enhances Th1-type responses in human Leishmania donovani infections. Journal of immunology (Baltimore, Md. : 1950), v. 154, p. 4623–4629, 1995.

GHEDIN, E. et al. Antibody response against a Leishmania donovani amastigote-stage-specific protein in patients with visceral leishmaniasis. Clinical and diagnostic laboratory immunology, v. 4, p. 530–535, 1997. GORDON, D.; ABAJIAN, C.; GREEN, P. Consed: A graphical tool for sequence finishing. Genome Research, v. 8, p. 195–202, 1998.

GOSSAGE, S. M.; ROGERS, M. E.; BATES, P. A. Two separate growth phases during the development of Leishmania in sand flies: Implications for

understanding the life cycle. International Journal for Parasitology, v. 33, p. 1027–1034, 2003.

GRIMALDI JR., G.; TESH, R. B.; MCMAHON-PRATT, D. A review of the geographic distribution and epidemiology of leishmaniasis in the New World. Am J Trop Med Hyg, v. 41, n. 6, p. 687–725, 1989.

GRIMALDI, G.; MCMAHON-PRATT, D. Monoclonal antibodies for the identification of New World Leishmania species. Memórias do Instituto Oswaldo Cruz, v. 91, n. 1, p. 37–42, 1996.

GRIMALDI, G.; TESH, R. B. Leishmaniases of the New World: current concepts and implications for future research. Clinical microbiology reviews, v. 6, p. 230–250, 1993.

GUERIN, P. J. et al. Visceral leishmaniasis: current status of control, diagnosis, and treatment, and a proposed research and development agenda. The Lancet infectious diseases, v. 2, p. 494–501, 2002.

GUINDON, S. et al. New algorithms and methods to estimate maximum-

likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, v. 59, p. 307–321, 2010.

HAILU, A.; GRAMICCIA, M.; KAGER, P. A. Visceral leishmaniasis in Aba-Roba, south-western Ethiopia: prevalence and incidence of active and subclinical infections. Annals of tropical medicine and parasitology, v. 103, p. 659–670, 2009.

HANDMAN, E.; BULLEN, D. V. R. Interaction of Leishmania with the host macrophageTrends in Parasitology, 2002.

HARHAY, M. O. et al. Urban parasitology: visceral leishmaniasis in Brazil. Trends in parasitology, v. 27, n. 9, p. 403–9, set. 2011.

HASKER, E. et al. Latent Infection with Leishmania donovani in Highly Endemic Villages in Bihar, India. PLoS Neglected Tropical Diseases, v. 7, 2013.

HERWALDT, B. L. Leishmaniasis. Lancet, v. 354, p. 1191–1199, 1999. HILLIS, D. M.; DIXON, M. T. Ribosomal DNA: molecular evolution and

phylogenetic inference. The Quarterly review of biology, v. 66, p. 411–453, 1991.

INBAR, E. et al. The Mating Competence of Geographically Diverse Leishmania major Strains in Their Natural and Unnatural Sand Fly Vectors. PLoS Genetics, v. 9, 2013.

IOVANNISCI, D. M.; BEVERLEY, S. M. Structural alterations of chromosome 2 in Leishmania major as evidence for diploidy, including spontaneous

amplification of the mini-exon array. Molecular and biochemical parasitology, v. 34, p. 177–188, 1989.

IVENS, A. C. et al. A physical map of the Leishmania major Friedlin genome. Genome research, v. 8, p. 135–145, 1998.

IVENS, A. C. et al. The genome of the kinetoplastid parasite, Leishmania major. Science (New York, N.Y.), v. 309, p. 436–442, 2005.

JAMIESON, S. E. et al. Genome-wide scan for visceral leishmaniasis susceptibility genes in Brazil. Genes Immun, v. 8, n. 1, p. 84–90, 2007a. JAMIESON, S. E. et al. Genome-wide scan for visceral leishmaniasis

JERONIMO, S. M. et al. An urban outbreak of visceral leishmaniasis in Natal, Brazil. Trans R Soc Trop Med Hyg, v. 88, n. 4, p. 386–388, 1994.

JERONIMO, S. M. et al. Natural history of Leishmania (Leishmania) chagasi infection in Northeastern Brazil: long-term follow-up. Clin Infect Dis, v. 30, n. 3, p. 608–609, 2000.

JERONIMO, S. M. et al. An emerging peri-urban pattern of infection with Leishmania chagasi, the protozoan causing visceral leishmaniasis in northeast Brazil. Scand J Infect Dis, v. 36, n. 6-7, p. 443–449, 2004.

JERONIMO, S. M. et al. Genetic predisposition to self-curing infection with the protozoan Leishmania chagasi: a genomewide scan. J Infect Dis, v. 196, n. 8, p. 1261–1269, 2007a.

JERONIMO, S. M. et al. Genes at human chromosome 5q31.1 regulate delayed-type hypersensitivity responses associated with Leishmania chagasi infection. Genes Immun, v. 8, n. 7, p. 539–551, 2007b.

JERONIMO, S. M. B. et al. Genetic predisposition to self-curing infection with the protozoan Leishmania chagasi: a genomewide scan. The Journal of infectious diseases, v. 196, p. 1261–1269, 2007c.

JOSHI, P. B. et al. Targeted gene deletion in Leishmania major identifies leishmanolysin (GP63) as a virulence factor. Molecular and biochemical parasitology, v. 120, p. 33–40, 2002.

KAMHAWI, S. Phlebotomine sand flies and Leishmania parasites: friends or foes? Trends in parasitology, v. 22, n. 9, p. 439–45, set. 2006.

KATOH, K.; ASIMENOS, G.; TOH, H. Multiple alignment of DNA sequences with MAFFT. Methods in Molecular Biology, v. 537, p. 39–64, 2009.

KAYE, P.; SCOTT, P. Leishmaniasis: complexity at the host-pathogen interface. Nature reviews. Microbiology, v. 9, p. 604–615, 2011.

KILLICK-KENDRICK, R. The life-cycle of Leishmania in the sandfly with special reference to the form infective to the vertebrate host. Ann Parasitol Hum Comp, v. 65 Suppl 1, p. 37–42, 1990a.

KILLICK-KENDRICK, R. Are cattle a reservoir host of kala-azar in India? Trans R Soc Trop Med Hyg, v. 84, n. 5, p. 754, 1990b.

KOURIBA, B. et al. Analysis of the 5q31-q33 locus shows an association between IL13-1055C/T IL-13-591A/G polymorphisms and Schistosoma

haematobium infections. Journal of immunology (Baltimore, Md. : 1950), v. 174, p. 6274–6281, 2005.

KRAUSPENHAR, C. et al. Leishmaniose visceral em um canino de Cruz Alta, Rio Grande do Sul, Brasil. Ciência Rural, v. 37, n. 3, p. 907–910, 2007.

KUHLS, K. et al. Analysis of ribosomal DNA internal transcribed spacer sequences of the Leishmania donovani complex. Microbes and infection / Institut Pasteur, v. 7, p. 1224–34, 2005.

LAINSON, R.; RANGEL, E. F. Lutzomyia longipalpis and the eco-epidemiology of American visceral leishmaniasis, with particular reference to Brazil: a review. Memorias do Instituto Oswaldo Cruz, v. 100, p. 811–827, 2005.

LAINSON, R.; RYAN, L.; SHAW, J. J. Infective stages of Leishmania in the sandfly vector and some observations on the mechanism of transmission. Mem Inst Oswaldo Cruz, v. 82, n. 3, p. 421–424, 1987.

LAINSON, R.; SHAW, J. J. Epidemiology and ecology of leishmaniasis in Latin- America. Nature, v. 273, n. 5664, p. 595–600, 1978.

LANGMEAD, B.; SALZBERG, S. L. Fast gapped-read alignment with Bowtie 2Nature Methods, 2012.

LANZARO, G. C. et al. Lutzomyia longipalpis is a species complex: genetic divergence and interspecific hybrid sterility among three populations. Am J Trop Med Hyg, v. 48, n. 6, p. 839–847, 1993.

LAURENT, T. et al. Epidemiological dynamics of antimonial resistance in Leishmania donovani: Genotyping reveals a polyclonal population structure among naturally-resistant clinical isolates from Nepal. Infection, Genetics and Evolution, v. 7, p. 206–212, 2007.

LEISHMAN, W. B. On the possibility of the occurrence of trypanosomiasis in India. 1903. Natl Med J India, v. 7, n. 4, p. 196–200, 1994.

LEWIN, S. et al. Strain typing in Leishmania donovani by using sequence-

confirmed amplified region analysis. International Journal for Parasitology, v. 32, p. 1267–1276, 2002.

LEWIS, D. J. Phlebotomid sandflies. Bulletin of the World Health Organization, v. 44, n. 4, p. 535–51, jan. 1971.

LEWIS, D. J. et al. Proposals for a stable classification of phlebotominae sandflies. Systematic Entomology, v. 2, p. 319–332, 1977.

LEWIS, M. D. et al. Flow cytometric analysis and microsatellite genotyping reveal extensive DNA content variation in Trypanosoma cruzi populations and expose contrasts between natural and experimental hybrids. International Journal for Parasitology, v. 39, p. 1305–1317, 2009.

LI, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics, v. 27, p. 2987–2993, 2011.

LIMA, I. D. et al. Leishmania infantum chagasi in northeastern Brazil:

asymptomatic infection at the urban perimeter. Am J Trop Med Hyg, v. 86, n. 1, p. 99–107, 2012.

LIPMAN, D. J.; PEARSON, W. R. Rapid and sensitive protein similarity searches. Science (New York, N.Y.), v. 227, p. 1435–1441, 1985. LUKES, J. et al. Evolutionary and geographical history of the Leishmania donovani complex with a revision of current taxonomy. Proceedings of the National Academy of Sciences of the United States of America, v. 104, p. 9375–9380, 2007.

LYONS, S.; VEEKEN, H.; LONG, J. Visceral leishmaniasis and HIV in Tigray, Ethiopia. Tropical Medicine and International Health, v. 8, p. 733–739, 2003. MAIA-ELKHOURY, A. N. S. et al. Visceral leishmaniasis in Brazil: trends and challenges. Cadernos de saude publica / Ministerio da Saude, Fundacao Oswaldo Cruz, Escola Nacional de Saude Publica, v. 24, p. 2941–2947, 2008.

MALOY, K. J.; POWRIE, F. Regulatory T cells in the control of immune pathology. Nature immunology, v. 2, p. 816–822, 2001.

MAROLI, M. et al. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Medical and veterinary

entomology, v. 27, p. 123–47, 2013.

MARTÍNEZ-CALVILLO, S. et al. Transcription of Leishmania major Friedlin chromosome 1 initiates in both directions within a single region. Molecular Cell, v. 11, p. 1291–1299, 2003.

MARTÍNEZ-CALVILLO, S.; STUART, K.; MYLER, P. J. Ploidy changes associated with disruption of two adjacent genes on Leishmania major chromosome 1. International Journal for Parasitology, v. 35, p. 419–429, 2005.

MARTINS, A. V.; WILLIAMS, P.; FALCÄO, A. L. American sand flies (Diptera: Psychodidae, Phlebotominae). Rio de Janeiro: Academia Brasileira de

Ciências, 1978. p. 195

MAURICIO, I. L. et al. Genetic typing and phylogeny of the Leishmania donovani complex by restriction analysis of PCR amplified gp63 intergenic regions. Parasitology, v. 122, p. 393–403, 2001.

MCCALL, L. I.; ZHANG, W. W.; MATLASHEWSKI, G. Determinants for the Development of Visceral Leishmaniasis DiseasePLoS Pathogens, 2013.

MCKENNA, A. et al. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, v. 20, p. 1297–1303, 2010.

MEDINA-ACOSTA, E.; CROSS, G. A. M. Rapid isolation of DNA from

trypanosomatid protozoa using a simple “mini-prep” procedure. Molecular and Biochemical Parasitology, v. 59, p. 327–330, 1993.

MIZBANI, A. et al. Effect of A2 gene on infectivity of the nonpathogenic parasite Leishmania tarentolae. Parasitology Research, v. 109, p. 793–799, 2011. MOHAMED, H. S. et al. Genetic susceptibility to visceral leishmaniasis in The Sudan: linkage and association with IL4 and IFNGR1. Genes and immunity, v. 4, p. 351–355, 2003.

MONTALVO, A. M. et al. Heat-shock protein 70 PCR-RFLP: a universal simple tool for Leishmania species discrimination in the New and Old World.

Parasitology, v. 137, p. 1159–1168, 2010.

MONTEIRO, G. R. D. G. IL-10 na patogênese da leishmaniose visceral e o perfil da expressão gênica frente à infecção por Leishmania infantum. [s.l.] UFRN, 2013.

MUKHERJEE, A.; RAMESH, V.; MISRA, R. S. Post-kala-azar dermal

leishmaniasis: a light and electron microscopic study of 18 cases. Journal of cutaneous pathology, v. 20, p. 320–325, 1993.

MURRAY, H. W. et al. Advances in leishmaniasisLancet. Anais...2005a MURRAY, H. W. et al. Advances in leishmaniasisLancet. Anais...2005b MURRAY, H. W.; RUBIN, B. Y.; ROTHERMEL, C. D. Killing of intracellular Leishmania donovani by lymphokine-stimulated human mononuclear

phagocytes. Evidence that interferon-?? is the activating lymphokine. Journal of Clinical Investigation, v. 72, p. 1506–1510, 1983.

NASCIMENTO, E. L. T. DO. Periurbanização da leishmaniose visceral no Rio Grande do Norte e suas implicações na co-infecção HIV/Leishmania. [s.l.] UFRN, 2009.

NASCIMENTO, E. T. et al. The emergence of concurrent HIV-1/AIDS and visceral leishmaniasis in Northeast Brazil. Trans R Soc Trop Med Hyg, v. 105, n. 5, p. 298–300, 2011.

NOYES, H. et al. Leishmania chagasi: genotypically similar parasites from Honduras cause both visceral and cutaneous leishmaniasis in humans. Experimental parasitology, v. 85, p. 264–273, 1997.

OCHSENREITHER, S. et al. Multilocus microsatellite typing as a new tool for discrimination of Leishmania infantum MON-1 strains. J Clin Microbiol, v. 44, n. 2, p. 495–503, 2006.

OLIVEIRA, C. C. et al. Changing epidemiology of American cutaneous

leishmaniasis (ACL) in Brazil: a disease of the urban-rural interface. Acta Trop, v. 90, n. 2, p. 155–162, 2004a.

OLIVEIRA, C. C. G. et al. Changing epidemiology of American cutaneous leishmaniasis (ACL) in Brazil: A disease of the urban-rural interfaceActa Tropica, 2004b.

PATEL, R. K.; JAIN, M. NGS QC toolkit: A toolkit for quality control of next generation sequencing data. PLoS ONE, v. 7, 2012.

PATZ, J. A. et al. Effects of environmental change on emerging parasitic diseases. International journal for parasitology, v. 30, p. 1395–1405, 2000. PEACOCK, C. S. et al. Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nature genetics, v. 39, p. 839– 847, 2007.

PENNA, H. A. Leishmaniose visceral no Brasil. Brasil Médico, v. 48, p. 949– 950, 1934.

PIMENTA, P. F. et al. Stage-specific adhesion of Leishmania promastigotes to the sandfly midgut. Science (New York, N.Y.), v. 256, p. 1812–1815, 1992. PINTADO, V.; LOPES-VELEZ, R. Visceral leishmaniasis associated with human immunodeficiency virus infection. Enfermedades Infecciosas y Microbiologıa Clínica., v. 19, p. 353–357, 2001.

POCAI, E. A. et al. Leishmaniose visceral (calazar). Cinco casos em cães de Santa Maria, Rio Grande do Sul, Brasil. Ciência Rural, v. 28, n. 3, p. 501–505, 1998.

PONCE, C. et al. Leishmania donovani chagasi: new clinical variant of cutaneous leishmaniasis in Honduras. Lancet, v. 337, p. 67–70, 1991. PRATES, D. B. et al. New insights on the inflammatory role of Lutzomyia longipalpis saliva in leishmaniasisJournal of Parasitology Research, 2012.

PRATLONG, F. et al. Leishmania-human immunodeficiency virus coinfection in the Mediterranean basin: isoenzymatic characterization of 100 isolates of the Leishmania infantum complex. The Journal of infectious diseases, v. 172, p. 323–326, 1995.

PRATLONG, F. et al. Isoenzymatic analysis of 712 strains of Leishmania infantum in the south of France and relationship of enzymatic polymorphism to clinical and epidemiological features. Journal of Clinical Microbiology, v. 42,

Documentos relacionados