• Nenhum resultado encontrado

Finally, the characterization of the oral microbiota with extracted during this study is necessary for its future integration. Furthermore, the optimization of the characterization process will allow for the study of possible alterations the general oral microbiome due to food allergies, as well the possible use of PCs as prebiotics to modulate this specific microbiome and ameliorate symptoms of FA.

References:

Abelius, M. S. et al. (2014) ‘Th2-like chemokine levels are increased in allergic children and influenced by maternal immunity during pregnancy’, Pediatric Allergy and Immunology, 25(4), pp. 387–393. doi: 10.1111/pai.12235.

Alkhalidy, H., Wang, Y. and Liu, D. (2018) ‘Dietary Flavonoids in the Prevention of T2D:

An Overview’, Nutrients, 10(4), p. 438. doi: 10.3390/nu10040438.

Allaire, J. M. et al. (2018) ‘The Intestinal Epithelium: Central Coordinator of Mucosal Immunity’, Trends in Immunology, 39(9), pp. 677–696. doi: 10.1016/j.it.2018.04.002.

Alomirah, H. ., Alli, I. and Konishi, Y. (2000) ‘Applications of mass spectrometry to food proteins and peptides’, Journal of Chromatography A, 893(1), pp. 1–21. doi:

10.1016/S0021-9673(00)00745-7.

Alves-Santos, A. M. et al. (2020) ‘Prebiotic effect of dietary polyphenols: A systematic review’, Journal of Functional Foods, 74, p. 104169. doi: 10.1016/j.jff.2020.104169.

Anvari, S. et al. (2019) ‘IgE-Mediated Food Allergy’, (October 2018), pp. 244–260.

Ball, G. et al. (1994) ‘A major continuous allergenic epitope of bovine beta-lactoglobulin recognized by human IgE binding’, Clinical <html_ent glyph="@amp;" ascii="&amp;"/>

Experimental Allergy, 24(8), pp. 758–764. doi: 10.1111/j.1365-2222.1994.tb00987.x.

Bansil, R. and Turner, B. S. (2018) ‘The biology of mucus: Composition, synthesis and organization’, Advanced Drug Delivery Reviews, 124, pp. 3–15. doi:

10.1016/j.addr.2017.09.023.

Barsumian, E. L. et al. (1981) ‘IgE-induced histamine release from rat basophilic leukemia cell lines: isolation of releasing and nonreleasing clones’, European Journal of Immunology, 11(4), pp. 317–323. doi: 10.1002/eji.1830110410.

Barwary, N. J. S., Wan, D. and Falcone, F. H. (2020) ‘NPY-mRFP Rat Basophilic Leukemia (RBL) Reporter: A Novel, Fast Reporter of Basophil/Mast Cell Degranulation’, in, pp. 163–170. doi: 10.1007/978-1-0716-0696-4_13.

Basnet, P. and Skalko-Basnet, N. (2011) ‘Curcumin: An Anti-Inflammatory Molecule from a Curry Spice on the Path to Cancer Treatment’, Molecules, 16(6), pp. 4567–4598. doi:

10.3390/molecules16064567.

Benedé, S. et al. (2014) ‘In vitro digestibility of bovine β-casein with simulated and human oral and gastrointestinal fluids. Identification and IgE-reactivity of the resultant peptides’, Food Chemistry, 143, pp. 514–521. doi: 10.1016/j.foodchem.2013.07.110.

Besler, M., Steinhart, H. and Paschke, A. (2001) ‘Stability of food allergens and allergenicity of processed foods’, Journal of Chromatography B: Biomedical Sciences and Applications, 756(1–2), pp. 207–228. doi: 10.1016/S0378-4347(01)00110-4.

Bibbò, S. et al. (2016) ‘The role of diet on gut microbiota composition’, European review for medical and pharmacological sciences, 20, pp. 4742–4749.

Bilal Hussain, M. et al. (2019) ‘Bioavailability and Metabolic Pathway of Phenolic Compounds’, in Plant Physiological Aspects of Phenolic Compounds. IntechOpen, p. 13.

doi: 10.5772/intechopen.84745.

Blázquez, A. B. and Berin, M. C. (2008) ‘Gastrointestinal Dendritic Cells Promote Th2 Skewing via OX40L’, The Journal of Immunology, 180(7), pp. 4441–4450. doi:

10.4049/jimmunol.180.7.4441.

Bockman, D. E. and Cooper, M. D. (1973) ‘Pinocytosis by epithelium associated with lymphoid follicles in the bursa of fabricius, appendix, and Peyer’s patches. An electron microscopic study’, American Journal of Anatomy, 136(4), pp. 455–477. doi:

10.1002/aja.1001360406.

Bogahawaththa, D. et al. (2018) ‘In vitro immunogenicity of various native and thermally processed bovine milk proteins and their mixtures’, Journal of Dairy Science, 101(10), pp. 8726–8736. doi: 10.3168/jds.2018-14488.

Boyce, J. A. (2010) ‘Guidelines for the diagnosis and management of food allergy in the United States: Report of the NIAID-sponsored expert panel’, Journal of Allergy and Clinical Immunology, 126(6 SUPPL.), pp. 301–402. doi: 10.1016/j.jaci.2010.10.007.

Boyce, J. A. et al. (2011) ‘Guidelines for the diagnosis and management of food allergy in the United States: Summary of the NIAID-Sponsored Expert Panel Report’, Nutrition, 27(2), pp. 253–267. doi: 10.1016/j.nut.2010.12.001.

Bradford, M. (1976) ‘A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding’, Analytical Biochemistry, 72(1–2), pp. 248–254. doi: 10.1006/abio.1976.9999.

Brew, K. (2013) ‘α-Lactalbumin’, in Advanced Dairy Chemistry. Boston, MA: Springer US, pp. 261–273. doi: 10.1007/978-1-4614-4714-6_8.

Brodkorb, A. et al. (2019) ‘INFOGEST static in vitro simulation of gastrointestinal food digestion’, Nature Protocols, 14(4), pp. 991–1014. doi: 10.1038/s41596-018-0119-1.

Bunyavanich, S. and Berin, M. C. (2019) ‘Food allergy and the microbiome: Current understandings and future directions’, Journal of Allergy and Clinical Immunology, 144(6), pp. 1468–1477. doi: 10.1016/j.jaci.2019.10.019.

van der Burg-Koorevaar, M. C. D., Miret, S. and Duchateau, G. S. M. J. E. (2011) ‘Effect of Milk and Brewing Method on Black Tea Catechin Bioaccessibility’, Journal of Agricultural and Food Chemistry, 59(14), pp. 7752–7758. doi: 10.1021/jf2015232.

Cabana, M. D. (2017) ‘The Role of Hydrolyzed Formula in Allergy Prevention’, Annals of Nutrition and Metabolism, 70(Suppl. 2), pp. 38–45. doi: 10.1159/000460269.

Carrillo-López, E. M. and Yahia, E. M. (2019) Postharvest Physiology and Biochemistry of Fruits and Vegetables. Elsevier. doi: 10.1016/C2016-0-04653-3.

Castillo, D. S. and Cassola, A. (2017) ‘Novel sensitive monoclonal antibody based competitive enzyme-linked immunosorbent assay for the detection of raw and processed bovine beta-casein’, PLOS ONE. Edited by P. L. Ho, 12(7), p. e0182447. doi:

10.1371/journal.pone.0182447.

Chabance, B. et al. (1998) ‘Casein peptide release and passage to the blood in humans during digestion of milk or yogurt’, Biochimie, 80(2), pp. 155–165. doi: 10.1016/S0300-9084(98)80022-9.

Choi, J.-R. et al. (2009) ‘Apigenin protects ovalbumin-induced asthma through the regulation of GATA-3 gene’, International Immunopharmacology, 9(7–8), pp. 918–924.

doi: 10.1016/j.intimp.2009.03.018.

Chung, S. and Champagne, E. T. (2009) ‘Ferulic Acid Enhances IgE Binding to Peanut Allergens in Western Blots’, Journal of Allergy and Clinical Immunology, 123(2), pp.

S192–S192. doi: 10.1016/j.jaci.2008.12.727.

Cocco, R. R. et al. (2007) ‘Mutational analysis of immunoglobulin E-binding epitopes of ?-casein and ?-lactoglobulin showed a heterogeneous pattern of critical amino acids between individual patients and pooled sera’, Clinical & Experimental Allergy, 37(6), pp.

831–838. doi: 10.1111/j.1365-2222.2007.02712.x.

Comalada, M. et al. (2006) ‘Inhibition of pro-inflammatory markers in primary bone marrow-derived mouse macrophages by naturally occurring flavonoids: Analysis of the structure–activity relationship’, Biochemical Pharmacology, 72(8), pp. 1010–1021. doi:

10.1016/j.bcp.2006.07.016.

Conrad, D. H., Wingard, J. R. and Ishizaka, T. (1983) ‘The interaction of human and rodent IgE with the human basophil IgE receptor.’, Journal of immunology (Baltimore, Md. : 1950), 130(1), pp. 327–33. doi: 6183355.

Crespy, V. et al. (2001) ‘Bioavailability of Phloretin and Phloridzin in Rats’, The Journal of Nutrition, 131(12), pp. 3227–3230. doi: 10.1093/jn/131.12.3227.

Curtis D. Klaassen, J. B. W. I. (2015) Casarett & Doull’s Essentials of Toxicology.

McGraw-Hill.

D’Archivio, M. et al. (2010) ‘Bioavailability of the polyphenols: Status and controversies’, International Journal of Molecular Sciences, 11(4), pp. 1321–1342. doi:

10.3390/ijms11041321.

D’Auria, E. et al. (2021) ‘Hydrolysed Formulas in the Management of Cow’s Milk Allergy:

New Insights, Pitfalls and Tips’, Nutrients, 13(8), p. 2762. doi: 10.3390/nu13082762.

Das, N. P. (1971) ‘Studies on flavonoid metabolism’, Biochemical Pharmacology, 20(12), pp. 3435–3445. doi: 10.1016/0006-2952(71)90449-7.

Das, S. and Rosazza, J. P. N. (2006) ‘Microbial and enzymatic transformations of flavonoids’, Journal of Natural Products, 69(3), pp. 499–508. doi: 10.1021/np0504659.

Docena, G. H. et al. (1996) ‘Identification of casein as the major allergenic and antigenic protein of cow’s milk’, Allergy, 51(6), pp. 412–416. doi: 10.1111/j.1398-9995.1996.tb04639.x.

Domínguez-Avila, J. A. et al. (2017) ‘Gastrointestinal interactions, absorption, splanchnic metabolism and pharmacokinetics of orally ingested phenolic compounds’, Food and Function, 8(1), pp. 15–38. doi: 10.1039/c6fo01475e.

Domon, B. (2006) ‘Mass Spectrometry and Protein Analysis’, Science, 312(5771), pp.

212–217. doi: 10.1126/science.1124619.

Dong, L. et al. (2021) ‘Tracking the digestive performance of different forms of dairy products using a dynamic artificial gastric digestive system’, Food Structure, 29, p.

100194. doi: 10.1016/j.foostr.2021.100194.

Drummond, E. M. et al. (2013) ‘Inhibition of Proinflammatory Biomarkers in THP1 Macrophages by Polyphenols Derived From Chamomile, Meadowsweet and Willow bark’, Phytotherapy Research, 27(4), pp. 588–594. doi: 10.1002/ptr.4753.

Dueñas, M. et al. (2015) ‘A Survey of Modulation of Gut Microbiota by Dietary Polyphenols’, BioMed Research International, 2015, pp. 1–15. doi:

10.1155/2015/850902.

Eccleston, E. et al. (1973) ‘Basophilic Leukaemia in the Albino Rat and a Demonstration of the Basopoietin’, Nature New Biology, 244(133), pp. 73–76. doi:

10.1038/newbio244073b0.

Elizur, A. et al. (2012) ‘Natural course and risk factors for persistence of IgE-mediated cow’s milk allergy’, Journal of Pediatrics, 161(3), pp. 482-487.e1. doi:

10.1016/j.jpeds.2012.02.028.

Eslami, M. et al. (2020) ‘Probiotics function and modulation of the immune system in allergic diseases’, Allergologia et Immunopathologia, 48(6), pp. 771–788. doi:

10.1016/j.aller.2020.04.005.

Evans, T. I. and Reeves, R. K. (2013) ‘All-trans-retinoic acid imprints expression of the gut-homing marker α4β7 while suppressing lymph node homing of dendritic cells’, Clinical and Vaccine Immunology, 20(10), pp. 1642–1646. doi: 10.1128/CVI.00419-13.

Feehley, T. et al. (2019) ‘Healthy infants harbor intestinal bacteria that protect against food allergy’, Nature Medicine, 25(3), pp. 448–453. doi: 10.1038/s41591-018-0324-z.

Fernández, L. et al. (2013) ‘The human milk microbiota: Origin and potential roles in health and disease’, Pharmacological Research, 69(1), pp. 1–10. doi:

10.1016/j.phrs.2012.09.001.

Flom, J. D. and Sicherer, S. H. (2019) ‘Epidemiology of Cow’s Milk Allergy’, Nutrients, 11(5), p. 1051. doi: 10.3390/nu11051051.

Fries, W., Belvedere, A. and Vetrano, S. (2013) ‘Sealing the Broken Barrier in IBD:

Intestinal Permeability, Epithelial Cells and Junctions’, Current Drug Targets, 14(12), pp.

1460–1470. doi: 10.2174/1389450111314120011.

Galli, S. J. and Tsai, M. (2012) ‘IgE and mast cells in allergic disease’, Nature Medicine, 18(5), pp. 693–704. doi: 10.1038/nm.2755.

Gebert, A., Rothkötter, H.-J. and Pabst, R. (1996) ‘M Cells in Peyer’s Patches of the

Intestine’, in, pp. 91–159. doi: 10.1016/S0074-7696(08)61346-7.

Gee, J. M. et al. (1998) ‘Quercetin Glucosides Interact With the Intestinal Glucose Transport Pathway 11This work was supported by a UK Biotechnology and Biological Sciences Research Council Competitive Strategic Grant.’, Free Radical Biology and Medicine, 25(1), pp. 19–25. doi: 10.1016/S0891-5849(98)00020-3.

Goldberg, M. R. et al. (2020) ‘Microbial signature in IgE-mediated food allergies’, Genome Medicine, 12(1), pp. 1–18. doi: 10.1186/s13073-020-00789-4.

Goverse, G. et al. (2017) ‘Diet-Derived Short Chain Fatty Acids Stimulate Intestinal Epithelial Cells To Induce Mucosal Tolerogenic Dendritic Cells’, The Journal of Immunology, 198(5), pp. 2172–2181. doi: 10.4049/jimmunol.1600165.

Grozdanovic, M. M. et al. (2016) ‘Kiwifruit cysteine protease actinidin compromises the intestinal barrier by disrupting tight junctions’, Biochimica et Biophysica Acta (BBA) - General Subjects, 1860(3), pp. 516–526. doi: 10.1016/j.bbagen.2015.12.005.

Gustafsson, J. K. et al. (2021) ‘Intestinal goblet cells sample and deliver lumenal antigens by regulated endocytic uptake and transcytosis’, eLife, 10. doi: 10.7554/eLife.67292.

Hadis, U. et al. (2011) ‘Intestinal Tolerance Requires Gut Homing and Expansion of FoxP3+ Regulatory T Cells in the Lamina Propria’, Immunity, 34(2), pp. 237–246. doi:

10.1016/j.immuni.2011.01.016.

Hakimi, J. et al. (1990) ‘The alpha subunit of the human IgE receptor (FcERI) is sufficient for high affinity IgE binding.’, The Journal of biological chemistry, 265(36), pp. 22079–

81. doi: 2148316.

Halim, T. Y. F. et al. (2014) ‘Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation’, Immunity, 40(3), pp. 425–

435. doi: 10.1016/j.immuni.2014.01.011.

Heleno, S. A. et al. (2015a) ‘Bioactivity of phenolic acids: Metabolites versus parent compounds: A review’, Food Chemistry, 173, pp. 501–513. doi:

10.1016/j.foodchem.2014.10.057.

Heleno, S. A. et al. (2015b) ‘Bioactivity of phenolic acids: Metabolites versus parent compounds: A review’, Food Chemistry, 173, pp. 501–513. doi:

10.1016/j.foodchem.2014.10.057.

Hogan, P. G. et al. (2003) ‘Transcriptional regulation by calcium, calcineurin, and NFAT’,

Genes & Development, 17(18), pp. 2205–2232. doi: 10.1101/gad.1102703.

Hoi, A. Y. et al. (2017) ‘Immunotherapeutic strategies in antiphospholipid syndrome’, Internal Medicine Journal, 47(3), pp. 250–256. doi: 10.1111/imj.13245.

Hollman, P. C. et al. (1995) ‘Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers’, The American Journal of Clinical Nutrition, 62(6), pp.

1276–1282. doi: 10.1093/ajcn/62.6.1276.

Høst, A. (2002) ‘Frequency of cow’s milk allergy in childhood’, Annals of Allergy, Asthma

& Immunology, 89(6), pp. 33–37. doi: 10.1016/S1081-1206(10)62120-5.

Jang, M. H. et al. (2004) ‘Intestinal villous M cells: An antigen entry site in the mucosal epithelium’, Proceedings of the National Academy of Sciences, 101(16), pp. 6110–6115.

doi: 10.1073/pnas.0400969101.

Jiang, J. et al. (2018) ‘The effect of non-covalent interaction of chlorogenic acid with whey protein and casein on physicochemical and radical-scavenging activity of in vitro protein digests’, Food Chemistry, 268, pp. 334–341. doi:

10.1016/j.foodchem.2018.06.015.

Jiménez, E. et al. (2008) ‘Is meconium from healthy newborns actually sterile?’, Research in Microbiology, 159(3), pp. 187–193. doi: 10.1016/j.resmic.2007.12.007.

Johansson, M. E. V., Sjövall, H. and Hansson, G. C. (2013) ‘The gastrointestinal mucus system in health and disease’, Nature Reviews Gastroenterology & Hepatology, 10(6), pp. 352–361. doi: 10.1038/nrgastro.2013.35.

Joseph, C. L. M. et al. (2014) ‘Transforming growth factor beta (TGFβ 1 ) in breast milk and indicators of infant atopy in a birth cohort’, Pediatric Allergy and Immunology, 25(3), pp. 257–263. doi: 10.1111/pai.12205.

Kanwar, J. (2012) ‘Recent advances on tea polyphenols’, Frontiers in Bioscience, E4(1), p. 111. doi: 10.2741/363.

Karasawa, K. et al. (2011) ‘A Matured Fruit Extract of Date Palm Tree ( Phoenix dactylifera L.) Stimulates the Cellular Immune System in Mice’, Journal of Agricultural and Food Chemistry, 59(20), pp. 11287–11293. doi: 10.1021/jf2029225.

Kass, G. E. N., Nicotera, P. and Orrenius, S. (1992) ‘Calcium-Modulated Cellular Effects of Oxidants’, in Biological Oxidants: Generation and Injurious Consequences. Elsevier, pp. 133–156. doi: 10.1016/B978-0-12-150404-5.50010-6.

Kass, G. E. and Orrenius, S. (1999) ‘Calcium signaling and cytotoxicity.’, Environmental Health Perspectives, 107(suppl 1), pp. 25–35. doi: 10.1289/ehp.99107s125.

Kleinberg, I. and Jenkins, G. N. (1964) ‘The pH of dental plaques in the different areas of the mouth before and after meals and their relationship to the pH and rate of flow of resting saliva’, Archives of Oral Biology, 9(5), pp. 493–516. doi: 10.1016/0003-9969(64)90015-9.

Kontopidis, G., Holt, C. and Sawyer, L. (2004) ‘Invited Review: β-Lactoglobulin: Binding Properties, Structure, and Function’, Journal of Dairy Science, 87(4), pp. 785–796. doi:

10.3168/jds.S0022-0302(04)73222-1.

Kreft, L., Hoffmann, C. and Ohnmacht, C. (2020) ‘Therapeutic Potential of the Intestinal Microbiota for Immunomodulation of Food Allergies’, Frontiers in Immunology, 11(August), pp. 1–8. doi: 10.3389/fimmu.2020.01853.

Kulczycki, A., Isersky, C. and Metzger, H. (1974) ‘The Interaction Of IgE With Rat Basophilic Leukae mia Cells’, Journal of Experimental Medicine, 139(3), pp. 600–616.

doi: 10.1084/jem.139.3.600.

Kulkarni, D. H. et al. (2020) ‘Goblet cell associated antigen passages support the induction and maintenance of oral tolerance’, Mucosal Immunology, 13(2), pp. 271–282.

doi: 10.1038/s41385-019-0240-7.

Lack, G. (2012) ‘Update on risk factors for food allergy’, Journal of Allergy and Clinical Immunology, 129(5), pp. 1187–1197. doi: 10.1016/j.jaci.2012.02.036.

Lee, B., Moon, K. M. and Kim, C. Y. (2018) ‘Tight Junction in the Intestinal Epithelium:

Its Association with Diseases and Regulation by Phytochemicals’, Journal of Immunology Research, 2018, pp. 1–11. doi: 10.1155/2018/2645465.

Lee, D.-N. et al. (2006) ‘Expression of porcine epidermal growth factor in Pichia pastoris and its biology activity in early-weaned piglets’, Life Sciences, 78(6), pp. 649–654. doi:

10.1016/j.lfs.2005.05.067.

Leiherer, A., Mündlein, A. and Drexel, H. (2013) ‘Phytochemicals and their impact on adipose tissue inflammation and diabetes’, Vascular Pharmacology, 58(1–2), pp. 3–20.

doi: 10.1016/j.vph.2012.09.002.

Lenartova, M. et al. (2021) ‘The Oral Microbiome in Periodontal Health’, Frontiers in Cellular and Infection Microbiology, 11. doi: 10.3389/fcimb.2021.629723.

Lifschitz, C. and Szajewska, H. (2015) ‘Cow’s milk allergy: evidence-based diagnosis and management for the practitioner’, European Journal of Pediatrics, 174(2), pp. 141–

150. doi: 10.1007/s00431-014-2422-3.

Lisson, M., Novak, N. and Erhardt, G. (2014) ‘Immunoglobulin E epitope mapping by microarray immunoassay reveals differences in immune response to genetic variants of caseins from different ruminant species’, Journal of Dairy Science, 97(4), pp. 1939–1954.

doi: 10.3168/jds.2013-7355.

Lu, T.-S. et al. (2010) ‘Interpretation of biological and mechanical variations between the Lowry versus Bradford method for protein quantification.’, North American journal of medical sciences, 2(7), pp. 325–328. doi: 10.4297/najms.2010.2325.

Luca, S. V. et al. (2020) ‘Bioactivity of dietary polyphenols: The role of metabolites’, Critical Reviews in Food Science and Nutrition, 60(4), pp. 626–659. doi:

10.1080/10408398.2018.1546669.

Lucey, J. A., Otter, D. and Horne, D. S. (2017) ‘A 100-Year Review: Progress on the chemistry of milk and its components’, Journal of Dairy Science, 100(12), pp. 9916–

9932. doi: 10.3168/jds.2017-13250.

Luu, M., Monning, H. and Visekruna, A. (2020) ‘Exploring the Molecular Mechanisms Underlying the Protective Effects of Microbial SCFAs on Intestinal Tolerance and Food Allergy’, Frontiers in Immunology, 11. doi: 10.3389/fimmu.2020.01225.

Luu, M. and Visekruna, A. (2019) ‘Short‐chain fatty acids: Bacterial messengers modulating the immunometabolism of T cells’, European Journal of Immunology, 49(6), pp. 842–848. doi: 10.1002/eji.201848009.

Lv, L. et al. (2021) ‘Changes in structure and allergenicity of shrimp tropomyosin by dietary polyphenols treatment’, Food Research International, 140, p. 109997. doi:

10.1016/j.foodres.2020.109997.

M. Christopher, A. M. L. S. (2016) ‘乳鼠心肌提取 HHS Public Access’, Physiology &

behavior, 176(1), pp. 100–106. doi: 10.1038/nri.2016.111.Food.

Macian, F. (2005) ‘NFAT proteins: key regulators of T-cell development and function’, Nature Reviews Immunology, 5(6), pp. 472–484. doi: 10.1038/nri1632.

Magrone, T. and Jirillo, E. (2012) ‘Influence of polyphenols on allergic immune reactions:

mechanisms of action’, Proceedings of the Nutrition Society, 71(2), pp. 316–321. doi:

10.1017/S0029665112000109.

Manach, C. et al. (1998) ‘Quercetin is recovered in human plasma as conjugated derivatives which retain antioxidant properties’, FEBS Letters, 426(3), pp. 331–336. doi:

10.1016/S0014-5793(98)00367-6.

Maslowski, K. M. et al. (2009) ‘Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43’, Nature, 461(7268), pp. 1282–1286. doi:

10.1038/nature08530.

Matthews, D. M. (1975) ‘Intestinal absorption of peptides’, Physiological Reviews, 55(4), pp. 537–608. doi: 10.1152/physrev.1975.55.4.537.

Maynard, F., Jost, R. and Wal, J.-M. (1997) ‘Human IgE Binding Capacity of Tryptic Peptides from Bovine α-Lactalbumin’, International Archives of Allergy and Immunology, 113(4), pp. 478–488. doi: 10.1159/000237625.

McCauley, H. A. and Guasch, G. (2015) ‘Three cheers for the goblet cell: maintaining homeostasis in mucosal epithelia’, Trends in Molecular Medicine, 21(8), pp. 492–503.

doi: 10.1016/j.molmed.2015.06.003.

McDole, J. R. et al. (2012) ‘Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine’, Nature, 483(7389), pp. 345–349. doi: 10.1038/nature10863.

McKenzie, C. et al. (2017) ‘The nutrition-gut microbiome-physiology axis and allergic diseases’, Immunological Reviews, 278(1), pp. 277–295. doi: 10.1111/imr.12556.

Medhe, S. (2018) ‘Ionization Techniques in Mass Spectrometry: A Review’, Mass Spectrometry & Purification Techniques, 04(01). doi: 10.4172/2469-9861.1000126.

Messina, M. and Venter, C. (2020) ‘Recent Surveys on Food Allergy Prevalence’, Nutrition Today, 55(1), pp. 22–29. doi: 10.1097/NT.0000000000000389.

Min, Y.-D. et al. (2007) ‘Quercetin inhibits expression of inflammatory cytokines through attenuation of NF-κB and p38 MAPK in HMC-1 human mast cell line’, Inflammation Research, 56(5), pp. 210–215. doi: 10.1007/s00011-007-6172-9.

Misaka, S. et al. (2013) ‘Green tea extract affects the cytochrome P450 3A activity and pharmacokinetics of simvastatin in rats’, Drug Metabolism and Pharmacokinetics, 28(6), pp. 514–518. doi: 10.2133/dmpk.DMPK-13-NT-006.

Morand, C. et al. (2000) ‘Quercetin 3-O-β-glucoside is better absorbed than other quercetin forms and is not present in rat plasma’, Free Radical Research, 33(5), pp. 667–

676. doi: 10.1080/10715760000301181.

Msagati, T. A. M. (2017) Food Forensics and Toxicology. Chichester, UK: John Wiley &

Sons, Ltd. doi: 10.1002/9781119101406.

Muller, A. G. et al. (2019) ‘Delivery of natural phenolic compounds for the potential treatment of lung cancer’, DARU, Journal of Pharmaceutical Sciences, 27(1), pp. 433–

449. doi: 10.1007/s40199-019-00267-2.

Nakamura, R. et al. (2010) ‘A convenient and sensitive allergy test: IgE crosslinking-induced luciferase expression in cultured mast cells’, Allergy, 65(10), pp. 1266–1273.

doi: 10.1111/j.1398-9995.2010.02363.x.

Natale, M. et al. (2004) ‘Cow’s milk allergens identification by two-dimensional immunoblotting and mass spectrometry’, Molecular Nutrition & Food Research, 48(5), pp. 363–369. doi: 10.1002/mnfr.200400011.

Newberry, R. D. and Hogan, S. P. (2021) ‘Intestinal epithelial cells in tolerance and allergy to dietary antigens’, Journal of Allergy and Clinical Immunology, 147(1), pp. 45–

48. doi: 10.1016/j.jaci.2020.10.030.

Nowak-Wegrzyn, A., Szajewska, H. and Lack, G. (2017a) ‘Food allergy and the gut’, Nature Reviews Gastroenterology & Hepatology, 14(4), pp. 241–257. doi:

10.1038/nrgastro.2016.187.

Nowak-Wegrzyn, A., Szajewska, H. and Lack, G. (2017b) ‘Food allergy and the gut’, Nature Reviews Gastroenterology & Hepatology, 14(4), pp. 241–257. doi:

10.1038/nrgastro.2016.187.

Nuwaysir, L. M. and Stults, J. T. (1993) ‘Electrospray ionization mass spectrometry of phosphopeptides isolated by on-line immobilized metal-ion affinity chromatography’, Journal of the American Society for Mass Spectrometry, 4(8), pp. 662–669. doi:

10.1016/1044-0305(93)85031-R.

Okada, Y. et al. (2012) ‘Dietary Resveratrol Prevents the Development of Food Allergy in Mice’, PLoS ONE. Edited by S. Bereswill, 7(9), p. e44338. doi:

10.1371/journal.pone.0044338.

Ozorio, L. et al. (2020) ‘The Influence of Peptidases in Intestinal Brush Border Membranes on the Absorption of Oligopeptides from Whey Protein Hydrolysate: An Ex Vivo Study Using an Ussing Chamber’, Foods, 9(10), p. 1415. doi:

10.3390/foods9101415.

Pabst, O. and Mowat, A. M. (2012) ‘Oral tolerance to food protein’, Mucosal Immunology, 5(3), pp. 232–239. doi: 10.1038/mi.2012.4.

Palmer Jr, R. J. (2014) ‘Composition and development of oral bacterial communities’, Periodontology 2000, 64(1), pp. 20–39. doi: 10.1111/j.1600-0757.2012.00453.x.

Pannaraj, P. S. et al. (2017) ‘Association Between Breast Milk Bacterial Communities and Establishment and Development of the Infant Gut Microbiome’, JAMA Pediatrics, 171(7), p. 647. doi: 10.1001/jamapediatrics.2017.0378.

Park, J. et al. (2015) ‘Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR–S6K pathway’, Mucosal Immunology, 8(1), pp. 80–93. doi: 10.1038/mi.2014.44.

Paul, W. E. and Zhu, J. (2010) ‘How are TH2-type immune responses initiated and amplified?’, Nature Reviews Immunology, 10(4), pp. 225–235. doi: 10.1038/nri2735.

Pérot, M. et al. (2017) ‘Polyphenol Interactions Mitigate the Immunogenicity and Allergenicity of Gliadins’, Journal of Agricultural and Food Chemistry, 65(31), pp. 6442–

6451. doi: 10.1021/acs.jafc.6b05371.

Pessato, T. B. et al. (2018) ‘Protein structure modification and allergenic properties of whey proteins upon interaction with tea and coffee phenolic compounds’, Journal of Functional Foods, 51, pp. 121–129. doi: 10.1016/j.jff.2018.10.019.

Pezoldt, J. et al. (2018) ‘Neonatally imprinted stromal cell subsets induce tolerogenic dendritic cells in mesenteric lymph nodes’, Nature Communications, 9(1), p. 3903. doi:

10.1038/s41467-018-06423-7.

Plundrich, N. J. et al. (2015) ‘Stability and immunogenicity of hypoallergenic peanut protein–polyphenol complexes during in vitro pepsin digestion’, Food & Function, 6(7), pp. 2145–2154. doi: 10.1039/C5FO00162E.

Polewski, M. A. et al. (2020) ‘Isolation and Characterization of Blueberry Polyphenolic Components and Their Effects on Gut Barrier Dysfunction’, Journal of Agricultural and Food Chemistry, 68(10), pp. 2940–2947. doi: 10.1021/acs.jafc.9b01689.

Pulendran, B. and Artis, D. (2012) ‘New paradigms in type 2 immunity’, Science, 337(6093), pp. 431–435. doi: 10.1126/science.1221064.

Rautava, S. et al. (2012) ‘Microbial contact during pregnancy, intestinal colonization and human disease’, Nature Reviews Gastroenterology & Hepatology, 9(10), pp. 565–576.

doi: 10.1038/nrgastro.2012.144.

Roepstorff, P. and Fohlman, J. (1984) ‘Letter to the editors’, Biological Mass Spectrometry, 11(11), pp. 601–601. doi: 10.1002/bms.1200111109.

Saenz, S. A. et al. (2013) ‘IL-25 simultaneously elicits distinct populations of innate lymphoid cells and multipotent progenitor type 2 (MPPtype2) cells’, Journal of Experimental Medicine, 210(9), pp. 1823–1837. doi: 10.1084/jem.20122332.

Salim, S. Y. and Söderholm, J. D. (2011) ‘Importance of disrupted intestinal barrier in inflammatory bowel diseases’, Inflammatory Bowel Diseases, 17(1), pp. 362–381. doi:

10.1002/ibd.21403.

Sampson, H. A. (1999) ‘Food allergy. Part 1: Immunopathogenesis and clinical disorders’, Journal of Allergy and Clinical Immunology, 103(5), pp. 717–728. doi:

10.1016/S0091-6749(99)70411-2.

Sampson, H. A. et al. (2014) ‘Food allergy: A practice parameter update—2014’, Journal of Allergy and Clinical Immunology, 134(5), pp. 1016-1025.e43. doi:

10.1016/j.jaci.2014.05.013.

Savage, J. and Johns, C. B. (2015) ‘Food Allergy’, Immunology and Allergy Clinics of North America, 35(1), pp. 45–59. doi: 10.1016/j.iac.2014.09.004.

Savage, J., Sicherer, S. and Wood, R. (2016) ‘The Natural History of Food Allergy’, Journal of Allergy and Clinical Immunology: In Practice, 4(2), pp. 196–203. doi:

10.1016/j.jaip.2015.11.024.

Scalbert, A. et al. (2002) ‘Absorption and metabolism of polyphenols in the gut and impact on health’, Biomedicine & Pharmacotherapy, 56(6), pp. 276–282. doi:

10.1016/S0753-3322(02)00205-6.

Scalbert, A. and Williamson, G. (2000) ‘Bioavailability of Polyphenols’, Journal of Nutrition, (May), pp. 2073–2085.

Schmidt, S. D. et al. (2012) ‘Aβ Measurement by Enzyme-Linked Immunosorbent Assay’, in, pp. 507–527. doi: 10.1007/978-1-61779-551-0_34.

Schroeder, B. O. (2019) ‘Fight them or feed them: how the intestinal mucus layer manages the gut microbiota’, Gastroenterology Report, 7(1), pp. 3–12. doi:

10.1093/gastro/goy052.

Schulten, V. et al. (2011) ‘A food matrix reduces digestion and absorption of food

allergens in vivo’, Molecular Nutrition & Food Research, 55(10), pp. 1484–1491. doi:

10.1002/mnfr.201100234.

Sehra, S. et al. (2015) ‘TH9 cells are required for tissue mast cell accumulation during allergic inflammation’, Journal of Allergy and Clinical Immunology, 136(2), pp. 433-440.e1. doi: 10.1016/j.jaci.2015.01.021.

Selma, M. V., Espín, J. C. and Tomás-Barberán, F. A. (2009) ‘Interaction between phenolics and gut microbiota: Role in human health’, Journal of Agricultural and Food Chemistry, 57(15), pp. 6485–6501. doi: 10.1021/jf902107d.

Shen, W. and Matsui, T. (2017) ‘Current knowledge of intestinal absorption of bioactive peptides’, Food & Function, 8(12), pp. 4306–4314. doi: 10.1039/C7FO01185G.

Shen, W. and Matsui, T. (2019) ‘Intestinal absorption of small peptides: a review’, International Journal of Food Science & Technology, 54(6), pp. 1942–1948. doi:

10.1111/ijfs.14048.

Shu, S.-A. et al. (2019) ‘Microbiota and Food Allergy’, Clinical Reviews in Allergy &

Immunology, 57(1), pp. 83–97. doi: 10.1007/s12016-018-8723-y.

Sicherer, S. H. and Sampson, H. A. (2009) ‘Food allergy: Recent advances in pathophysiology and treatment’, Annual Review of Medicine, 60, pp. 261–277. doi:

10.1146/annurev.med.60.042407.205711.

Sicherer, S. H. and Sampson, H. A. (2018a) ‘Food allergy: A review and update on epidemiology, pathogenesis, diagnosis, prevention, and management’, Journal of Allergy and Clinical Immunology, 141(1), pp. 41–58. doi: 10.1016/j.jaci.2017.11.003.

Sicherer, S. H. and Sampson, H. A. (2018b) ‘Food allergy: A review and update on epidemiology, pathogenesis, diagnosis, prevention, and management’, Journal of Allergy and Clinical Immunology, 141(1), pp. 41–58. doi: 10.1016/j.jaci.2017.11.003.

Simón-Soro, Á. et al. (2013) ‘Microbial Geography of the Oral Cavity’, Journal of Dental Research, 92(7), pp. 616–621. doi: 10.1177/0022034513488119.

Singh, A., Holvoet, S. and Mercenier, A. (2011) ‘Dietary polyphenols in the prevention and treatment of allergic diseases’, Clinical & Experimental Allergy, 41(10), pp. 1346–

1359. doi: 10.1111/j.1365-2222.2011.03773.x.

Singh, B. N., Shankar, S. and Srivastava, R. K. (2011) ‘Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications’,

Biochemical Pharmacology, 82(12), pp. 1807–1821. doi: 10.1016/j.bcp.2011.07.093.

Singh, R. K. et al. (2017) ‘Influence of diet on the gut microbiome and implications for human health’, Journal of Translational Medicine, 15(1), p. 73. doi: 10.1186/s12967-017-1175-y.

Siraganian, R. P. and Siragania, P. A. (1975) ‘Mechanism of action of concanavalin A on human basophils.’, Journal of immunology (Baltimore, Md. : 1950), 114(2 pt 2), pp. 886–

93. doi: 46257.

Sivaprakasam, S., Prasad, P. D. and Singh, N. (2016) ‘Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis’, Pharmacology & Therapeutics, 164, pp. 144–151. doi: 10.1016/j.pharmthera.2016.04.007.

Skrovankova, S. et al. (2015) ‘Bioactive Compounds and Antioxidant Activity in Different Types of Berries’, International Journal of Molecular Sciences, 16(10), pp. 24673–24706.

doi: 10.3390/ijms161024673.

Smith, P. M. et al. (2013) ‘Reports 1000’, The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic Treg Cell Homeostasis, 341(August), pp. 569–574.

Soares, Susana et al. (2020) ‘Oral interactions between a green tea flavanol extract and red wine anthocyanin extract using a new cell-based model: insights on the effect of different oral epithelia’, Scientific Reports, 10(1), p. 12638. doi: 10.1038/s41598-020-69531-9.

Soto-Ramírez, N. et al. (2012) ‘Maternal immune markers in serum during gestation and in breast milk and the risk of asthma-like symptoms at ages 6 and 12 months: a longitudinal study’, Allergy, Asthma & Clinical Immunology, 8(1), p. 11. doi:

10.1186/1710-1492-8-11.

Spahn, T. W. et al. (2001) ‘Induction of oral tolerance to cellular immune responses in the absence of Peyer’s patches’, European Journal of Immunology, 31(4), pp. 1278–

1287. doi: 10.1002/1521-4141(200104)31:4<1278::AID-IMMU1278>3.0.CO;2-A.

Spahn, T. W. et al. (2002) ‘Mesenteric lymph nodes are critical for the induction of high-dose oral tolerance in the absence of Peyer’s patches’, European Journal of Immunology, 32(4), pp. 1109–1113. doi: 10.1002/1521-4141(200204)32:4<1109::AID-IMMU1109>3.0.CO;2-K.

Steffen, Y. et al. (2008) ‘Mono-O-methylated flavanols and other flavonoids as inhibitors of endothelial NADPH oxidase’, Archives of Biochemistry and Biophysics, 469(2), pp.

209–219. doi: 10.1016/j.abb.2007.10.012.

Stern, A., Wold, A. E. and Östman, S. (2013) ‘Neonatal Mucosal Immune Stimulation by Microbial Superantigen Improves the Tolerogenic Capacity of CD103+ Dendritic Cells’, PLoS ONE. Edited by G. Kassiotis, 8(9), p. e75594. doi: 10.1371/journal.pone.0075594.

Świeca, M. et al. (2014) ‘Bread enriched with quinoa leaves – The influence of protein–

phenolics interactions on the nutritional and antioxidant quality’, Food Chemistry, 162, pp. 54–62. doi: 10.1016/j.foodchem.2014.04.044.

Tachibana, H. et al. (no date) ‘Effect of Tea Polyphenols on Degranulation in Human Mature Basophils Differentiated with IL-4’, in Animal Cell Technology: Challenges for the 21st Century. Dordrecht: Kluwer Academic Publishers, pp. 301–305. doi: 10.1007/0-306-46869-7_53.

Tang, X. et al. (2016) ‘Epidermal Growth Factor and Intestinal Barrier Function’, Mediators of Inflammation, 2016, pp. 1–9. doi: 10.1155/2016/1927348.

Tarko, T., Duda-Chodak, A. and Zajac, N. (2013) ‘Digestion and absorption of phenolic compounds assessed by in vitro simulation methods. A review.’, Roczniki Państwowego Zakładu Higieny, 64(2), pp. 79–84.

Tatemoto, K., Carlquist, M. and Mutt, V. (1982) ‘Neuropeptide Y—a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide’, Nature, 296(5858), pp. 659–660. doi: 10.1038/296659a0.

Thompson, T., Kane, R. R. and Hager, M. H. (2006) ‘Food Allergen Labeling and Consumer Protection Act of 2004 in Effect’, Journal of the American Dietetic Association, 106(11), pp. 1742–1744. doi: 10.1016/j.jada.2006.08.010.

du Toit, G. et al. (2010) ‘Identifying and managing cow’s milk protein allergy’, Archives of Disease in Childhood - Education and Practice, 95(5), pp. 134–144. doi:

10.1136/adc.2007.118018.

TOKURA, T. et al. (2005) ‘Inhibitory Effect of Polyphenol-Enriched Apple Extracts on Mast Cell Degranulation in Vitro Targeting the Binding between IgE and FcεRI’, Bioscience, Biotechnology, and Biochemistry, 69(10), pp. 1974–1977. doi:

10.1271/bbb.69.1974.

Turner, J. R. (2009) ‘Intestinal mucosal barrier function in health and disease’, Nature Reviews Immunology, 9(11), pp. 799–809. doi: 10.1038/nri2653.

Vancamelbeke, M. and Vermeire, S. (2017) ‘The intestinal barrier: a fundamental role in health and disease’, Expert Review of Gastroenterology & Hepatology, 11(9), pp. 821–

834. doi: 10.1080/17474124.2017.1343143.

Vauzour, D. et al. (2010) ‘Polyphenols and human health: Prevention of disease and mechanisms of action’, Nutrients, 2(11), pp. 1106–1131. doi: 10.3390/nu2111106.

Villas-Boas, M. B. et al. (2015) ‘Epitopes resistance to the simulated gastrointestinal digestion of β-lactoglobulin submitted to two-step enzymatic modification’, Food Research International, 72, pp. 191–197. doi: 10.1016/j.foodres.2015.03.044.

Vincent, D. et al. (2016) ‘Milk Bottom-Up Proteomics: Method Optimization’, Frontiers in Genetics, 6. doi: 10.3389/fgene.2015.00360.

Wal, J.-M. (2004) ‘Bovine milk allergenicity’, Annals of Allergy, Asthma & Immunology, 93(5), pp. S2–S11. doi: 10.1016/S1081-1206(10)61726-7.

Walle, T. (2009) ‘Methylation of dietary flavones increases their metabolic stability and chemopreventive effects’, International Journal of Molecular Sciences, 10(11), pp. 5002–

5019. doi: 10.3390/ijms10115002.

Wan, D. et al. (2014) ‘Use of Humanized Rat Basophil Leukemia (RBL) Reporter Systems for Detection of Allergen-Specific IgE Sensitization in Human Serum’, in, pp.

177–184. doi: 10.1007/978-1-4939-1173-8_13.

Wan, D. et al. (2020) ‘Use of Humanized RBL Reporter Systems for the Detection of Allergen-Specific IgE Sensitization in Human Serum’, in, pp. 145–153. doi: 10.1007/978-1-0716-0696-4_11.

Wang, Jin et al. (2021) ‘Influence of high-intensity ultrasound on the IgE binding capacity of Act d 2 allergen, secondary structure, and In-vitro digestibility of kiwifruit proteins’, Ultrasonics Sonochemistry, 71, p. 105409. doi: 10.1016/j.ultsonch.2020.105409.

Wang, Xiaoya et al. (2014) ‘Covalent complexation and functional evaluation of (−)-epigallocatechin gallate and α-lactalbumin’, Food Chemistry, 150, pp. 341–347. doi:

10.1016/j.foodchem.2013.09.127.

Wang, Xiaowei et al. (2014) ‘Optimisation and Use of Humanised RBL NF-AT-GFP and NF-AT-DsRed Reporter Cell Lines Suitable for High-Throughput Scale Detection of Allergic Sensitisation in Array Format and Identification of the ECM–Integrin Interaction as Critical Factor’, Molecular Biotechnology, 56(2), pp. 136–146. doi: 10.1007/s12033-013-9689-x.

Williamson, G., Kay, C. D. and Crozier, A. (2018) ‘The Bioavailability, Transport, and Bioactivity of Dietary Flavonoids: A Review from a Historical Perspective’, Comprehensive Reviews in Food Science and Food Safety, 17(5), pp. 1054–1112. doi:

10.1111/1541-4337.12351.

Wolf, J. L. and Bye, W. A. (1984) ‘The Membranous Epithelial (M) Cell and the Mucosal Immune System’, Annual Review of Medicine, 35(1), pp. 95–112. doi:

10.1146/annurev.me.35.020184.000523.

Worbs, T. et al. (2006) ‘Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells’, Journal of Experimental Medicine, 203(3), pp. 519–527. doi: 10.1084/jem.20052016.

Woska, J. R. and Gillespie, M. E. (2012) ‘SNARE complex-mediated degranulation in mast cells’, Journal of Cellular and Molecular Medicine, 16(4), pp. 649–656. doi:

10.1111/j.1582-4934.2011.01443.x.

Wu, S. et al. (2018) ‘Structure–affinity relationship of the interaction between phenolic acids and their derivatives and β-lactoglobulin and effect on antioxidant activity’, Food Chemistry, 245, pp. 613–619. doi: 10.1016/j.foodchem.2017.10.122.

Xiong, Y. et al. (2022) ‘Intestinal Uptake and Tolerance to Food Antigens’, Frontiers in Immunology, 13. doi: 10.3389/fimmu.2022.906122.

Xu, Lijuan et al. (2016) ‘Recent progress in the enzymatic glycosylation of phenolic compounds’, Journal of Carbohydrate Chemistry, 35(1), pp. 1–23. doi:

10.1080/07328303.2015.1137580.

Yang, Y. et al. (2013) ‘Polyphenols differentially inhibit degranulation of distinct subsets of vesicles in mast cells by specific interaction with granule-type-dependent SNARE complexes’, Biochemical Journal, 450(3), pp. 537–546. doi: 10.1042/BJ20121256.

Yokanovich, L. T., Newberry, R. D. and Knoop, K. A. (2021) ‘Regulation of oral antigen delivery early in life: Implications for oral tolerance and food allergy’, Clinical and Experimental Allergy, 51(4), pp. 518–526. doi: 10.1111/cea.13823.

Zarco, M., Vess, T. and Ginsburg, G. (2012) ‘The oral microbiome in health and disease and the potential impact on personalized dental medicine’, Oral Diseases, 18(2), pp.

109–120. doi: 10.1111/j.1601-0825.2011.01851.x.

Zeiger, R. S. et al. (1999) ‘Soy allergy in infants and children with IgE-associated cow’s milk allergy’, The Journal of Pediatrics, 134(5), pp. 614–622. doi:

Documentos relacionados