• Nenhum resultado encontrado

De acordo com os achados desta pesquisa, pode-se afirmar que:

• Após seis meses de uso clínico, as molas helicoidais fechadas de níquel-titânio

apresentaram diminuições significantes nas suas taxas de SE e nas FP.

• As molas helicoidais fechadas de níquel-titânio após terem sido mantidas

ativas in vitro por cinco meses, com simulação do movimento dentário, não apresentaram diminuições significantes nas suas taxas de SE, porém as FP apresentaram reduções significativas.

• Laboratorialmente, as diminuições nas FP foram maiores nos dois primeiros

meses e depois se estabilizaram, e as taxas de SE não apresentaram diferenças nos dois meses iniciais, aumentando nos seguintes.

• Apesar dos resultados do artigo in vitro apresentarem divergência no efeito da taxa de SE ao longo do tempo em relação ao artigo in vivo, as molas não foram utilizadas clinicamente e a simulação laboratorial pode não representar com exatidão o que acontece na cavidade bucal.

• Molas helicoidais fechadas de níquel-titânio após o uso clínico perdem a sua

• Portanto, a utilização a longo prazo ou a reutilização de uma mola helicoidal

fechada de níquel-titânio seria desaconselhada, pois está associada a uma diminuição na sua taxa de superelasticidade, na força média do platô clínico superelástico e na sua capacidade de recuperação elástica, o que pode representar complicações na mecânica envolvida. Os clínicos devem compreender as limitações destes materiais decorrentes do tempo de uso, modificando suas expectativas e/ou monitorando a evolução do tratamento.

• Novas pesquisas são necessárias para identificar quais as mudanças que

ocorrem nas temperaturas de transição de ligas de níquel-titânio na cavidade bucal e para determinar qual porcentagem da deformação é causada por deformação martensítica reversível ou por deformação residual permanente com o uso.

5 REFERÊNCIAS*

1. Andreasen GF, Hilleman TB. An evaluation of 55 cobalt substituted Nitinol wire for use in orthodontics. J Am Dent Assoc. 1971;82:1373-5.

2. Angolkar PV, Arnold JV, Nanda RS, Duncanson MG. Force degradation of closed coil springs: an in vitro evaluation. Am J Orthod Dentofacial Orthop. 1992;102:127-33.

3. Bartzela TN, Senn C, Wichelhaus A. Load-deflection characteristics of superelastic nickel-titanium wires. Angle Orthod. 2007;77:991-8.

4. Barwart O. The effect of temperature change on the load value of Japanese NiTi coil springs in the superelastic range. Am J Orthod Dentofacial Orthop. 1996;110:553-8.

5. Bennett JC, McLaughlin RP. Controlled space closure with a preadjusted appliance system. J Clin Orthod. 1990;24:251-60.

6. Bokas J, Woods M. A clinical comparison between nickel titanium springs and elastomeric chains. Aust Orthod J. 2006;22:39-46.

7. Bourauel C, Drescher D, Ebling J, Broome D, Kanarachos A. Superelastic nickel titanium alloy retraction springs--an experimental investigation of force systems. Eur J Orthod. 1997;19:491-500.

8. Bourauel C, Scharold W, Jager A, Eliades T. Fatigue failure of as-received and retrieved NiTi orthodontic archwires. Dent Mater. 2008;24:1095-101.

9. Burstone CJ, Qin B, Morton JY. Chinese NiTi wire--a new orthodontic alloy. Am J Orthod. 1985;87:445-52.

10. Dixon V, Read MJ, O'Brien KD, Worthington HV, Mandall NA. A randomized clinical trial to compare three methods of orthodontic space closure. J Orthod. 2002;29:31-6.

11. Eliades T, Eliades G, Athanasiou AE, Bradley TG. Surface characterization of retrieved NiTi orthodontic archwires. Eur J Orthod. 2000;22:317-26.

12. Gil FJ, Espinar E, Llamas JM, Manero JM, Ginebra MP. Variation of the superelastic properties and nickel release from original and reused NiTi orthodontic archwires. J Mech Behav Biomed Mater. 2012;6:113-9.

13. Han S, Quick DC. Nickel-titanium spring properties in a simulated oral environment. Angle Orthod. 1993;63:67-72.

14. Hazel RJ, Rohan GJ, West VC. Force relaxation in orthodontic arch wires. Am J Orthod. 1984;86:396-402.

15. Heo W, Nahm DS, Baek SH. En masse retraction and two-step retraction of maxillary anterior teeth in adult Class I women. A comparison of anchorage loss. Angle Orthod. 2007;77:973-8.

16. Lee SH, Chang YI. Effects of recycling on the mechanical properties and the surface topography of nickel-titanium alloy wires. Am J Orthod Dentofacial Orthop. 2001;120:654-63.

17. Maganzini AL, Wong AM, Ahmed MK. Forces of various nickel titanium closed coil springs. Angle Orthod. 2010;80:182-7.

18. Manhartsberger C, Seidenbusch W. Force delivery of Ni-Ti coil springs. Am J Orthod Dentofacial Orthop. 1996;109:8-21.

19. Melsen B, Topp LF, Melsen HM, Terp S. Force system developed from closed coil springs. Eur J Orthod. 1994;16:531-9.

20. Miura F, Mogi M, Ohura Y, Hamanaka H. The super-elastic property of the Japanese NiTi alloy wire for use in orthodontics. Am J Orthod Dentofacial Orthop. 1986;90:1-10.

21. Miura F, Mogi M, Ohura Y, Karibe M. The super-elastic Japanese NiTi alloy wire for use in orthodontics. Part III. Studies on the Japanese NiTi alloy coil springs. Am J Orthod Dentofacial Orthop. 1988;94:89-96.

22. Nanda R. Biomechanics in clinical orthodontics. Philadelphia: W. B. Saunders; 1997. 332 p.

23. Nattrass C, Ireland AJ, Sherriff M. The effect of environmental factors on elastomeric chain and nickel titanium coil springs. Eur J Orthod. 1998;20:169-76.

24. Nightingale C, Jones SP. A clinical investigation of force delivery systems for orthodontic space closure. J Orthod. 2003;30:229-36.

25. Ramazanzadeh BA, Ahrari F, Sabzevari B, Zebarjad SM, Ahrari A. Effects of a simulated oral environment and sterilization on load-deflection properties of superelastic nickel titanium-based orthodontic wires. Int J Orthod. 2011;22:13-21.

26. Samuels RH, Rudge SJ, Mair LH. A comparison of the rate of space closure using a nickel-titanium spring and an elastic module: a clinical study. Am J Orthod Dentofacial Orthop. 1993;103:464-7.

27. Samuels RH, Rudge SJ, Mair LH. A clinical study of space closure with nickel-titanium closed coil springs and an elastic module. Am J Orthod Dentofacial Orthop. 1998;114:73-9.

28. Santoro M, Beshers DN. Nickel-titanium alloys: stress-related temperature transitional range. Am J Orthod Dentofacial Orthop. 2000;118:685-92.

29. Santos AC, Tortamano A, Naccarato SR, Dominguez-Rodriguez GC, Vigorito JW. An in vitro comparison of the force decay generated by different commercially available elastomeric chains and NiTi closed coil springs. Braz Oral Res. 2007;21:51-7.

30. Schneevoigt R, Haase A, Eckardt VL, Harzer W, Bourauel C. Laboratory analysis of superelastic NiTi compression springs. Med Eng Phys. 1999;21:119- 25.

31. Segner D, Ibe D. Properties of superelastic wires and their relevance to orthodontic treatment. Eur J Orthod. 1995;17:395-402.

32. Sonis AL. Comparison of NiTi coil springs vs. elastics in canine retraction. J Clin Orthod. 1994;28:293-5.

33. Sueri MY, Turk T. Effectiveness of laceback ligatures on maxillary canine retraction. Angle Orthod. 2006;76:1010-4.

34. Tripolt H, Burstone CJ, Bantleon P, Manschiebel W. Force characteristics of nickel-titanium tension coil springs. Am J Orthod Dentofacial Orthop. 1999;115:498-507.

35. Vidoni G, Perinetti G, Antoniolli F, Castaldo A, Contardo L. Combined aging effects of strain and thermocycling on unload deflection modes of nickel- titanium closed-coil springs: an in-vitro comparative study. Am J Orthod Dentofacial Orthop. 2010;138:451-7.

36. von Fraunhofer JA, Bonds PW, Johnson BE. Force generation by orthodontic coil springs. Angle Orthod. 1993;63:145-8.

37. Wichelhaus A, Brauchli L, Ball J, Mertmann M. Mechanical behavior and clinical application of nickel-titanium closed-coil springs under different stress levels and mechanical loading cycles. Am J Orthod Dentofacial Orthop. 2010;137:671-8.

              

Autorizo a reprodução deste trabalho. (Direitos de publicação reservado ao autor)

Documentos relacionados