• Nenhum resultado encontrado

A caracterização espacio-temporal permitiu confirmar a ocorrência dos cinco estratos definidos a priori, tipificados pela ocorrência de determinadas espécies cuja abundância, densidade e biomassa variou temporal e espacialmente. A existência de um gradiente ambiental foi acompanhada pela ocorrência de um gradiente biológico, ou zonação onde foi possível observar a distribuição diferenciada das espécies nos diferentes estratos. A área de estudo enquadra-se no modelo de zonação universal descrito por McLachlan e Jaramillo (1995) com a primeira zona correspondente a OS a ser tipificada pelo anfípode

Talorchestia deshayesii, a segunda zona correspondente a ES a ser tipificada pelo isópode cirolanideo Eurydice pulchra e a terceira zona correspondente aos três estratos inferiores e a serem tipificadas por uma comunidade variada de poliquetas e bivalves como

Scrobicularia plana ou Cerastoderma edule. A EM, com as suas características intermédias, quer biológicas quer ambientais, constitui uma transição entre os estratos superiores e inferiores.

A caracterização espacio-temporal permitiu determinar o anfípode Talorchestia deshayesii, o gastrópode Hydrobia ulvae, o bivalve Scrobicularia plana e o poliqueta

Nereis diversicolor como espécies-chave para o funcionamento da comunidade e que são responsáveis pela maior parte da produção secundária.

As relações tróficas que se estabelecem na comunidade são complexas, sendo possível observar dois tipos de ecossistema: um ecossistema de interface presente nos estratos superiores e dependente de detritos e nutrientes alóctones, onde os sub- sistemas intersticial e decompositor são extremamente importantes e um ecossistema auto-sustentado presente nos três estratos inferiores onde o "loop" microbiano embora não abrangido pelo presente estudo deverá desempenhar um papel crucial na remineralização dos nutrientes que são utilizados pelos produtores primários e secundários, abundantes nestes estratos. Embora presente, o sub-sistema herbívoro terá um papel secundário numa comunidade francamente baseada no sub-sistema decompositor. Deste modo, os macroinvertebrados bentónicos são um elo fundamental na transferência de matéria orgânica e energia para níveis tróficos superiores. A elevada produção secundária nos estratos inferiores, deverá ser maioritariamente exportada uma vez que as aves e peixes que constituem os níveis tróficos superiores desta cadeia alimentam-se nestas zonas mas não são residentes.

CONSIDERAÇÕES FINAIS

Fig. 19 – Esquema global das fontes de alimento e produção secundária dos macroinvertebrados e das principais relações tróficas que se estabelecem entre os vários grupos de organismos.

OS: orla supra-litoral: ES: zona eulitoral superior; EM: zona eulitoral média; EI a: zona eulitoral inferior com algas e EI: zona eulitoral inferior sem algas.

A sobreposição das assinaturas isotópicas δ15N dos organismos estudados não

permite uma separação clara em diferentes níveis tróficos para algumas das espécies analisadas e é indicadora dos hábitos alimentares generalistas e dietas flexíveis típicos dos organismos estuarinos. Para mais foram registadas taxas isotópicas δ15N elevadas

para os produtores primários, que se pensa serem resultado da introdução de azoto no sistema estuarino. O aumento das taxas isotópicas nos produtores primários evidencia a influência de agentes antropogénicos no ecossistema.

Os ecossistemas estuarinos dispõem de uma grande variedade de fontes de carbono, cuja importância não foi avaliada neste estudo. Para um melhor conhecimento do funcionamento destes ecossistemas é necessário que futuros estudos incluam determinações isotópicas de δ13C para matéria orgânica dissolvida, matéria orgânica

particulada, detritos vegetais, microalgas bentónicas, entre outros. A contribuição do presente estudo pode ser resumida no modelo conceptual da estrutura trófica da comunidade apresentado na figura 19 onde são indicadas as relações tróficas das espécies mais importantes e definidos os sistemas que actuam nas diferentes zonas numa praia estuarina tipificada pelo local de estudo.

VI. BIBLIOGRAFIA

Abrantes A, Pinto F, Moreira MH (1999) Ecology of the polychaete Nereis diversicolor in the Canal de Mira (Ria de Aveiro, Portugal): Population dynamics, production and oogenic cycle. Acta oecologica 20 (4): 267 – 283. . . . . -

Adin R, Riera P (2003) Preferential food source utilization among stranded macroalgae by Talitrus saltator (Amphipoda, Talitridae): a stable isotopes study in the northern coast of Brittany (France). Est. Coast. Shel. Sci. 56: 91 – 98.

Armonies W, Keise K (2000) Faunal diversity across a sandy shore. Mar Eco. Pro. Ser. 196: 49-57. Aravena R, Evans M, Cherry JA (1993) Stable isotopes of oxygen and nitrogen in source

identification of nitrate from septic systems. Ground water 31 (2): 180 – 186.

Asmus H (1987) Secondary production of an intertidal mussel bed community related to its storage and turnover compartements. Mar Ecol. Pro. Ser. 39: 251 – 266.

Asmus H (1994) Benthic grazers and suspension feeders: which one assumes the energetic dominance in Konigshafen. Helgol. Mar. Res. 48: 217 – 231.

Asmus H, Asmus R (1985) The importance of grazing food chain for energy flow and production un three intertidal sand bottom communities of the northern Wadden Sea. Helgol. Mar. Res. 39: 273 – 301.

Asmus H, Asmus R (2000) Material exchange and food web of seagrass beds in the Sykt-Romo Bight: how significant are community changes at the ecosystem level? Helgol. Mar Res. 54: 137 – 150.

Asmus R, Sprung M, Asmus A (2000) Nutrient fluxes in intertidal communities of a South European lagoon (Ria Formosa) – similarities and differences with a northern Wadden Sea Bay (Sylt- Romo Bay). Hydrobiologia 436: 217 – 235.

Austen MC, Warwick RM, Rosado MC (1989) Meiobenthic and macrobenthic community structure along a putative pollution gradient in southern Portugal. Mar Poll. Bul. 20 (8): 398 – 405. Banse K, Mosher S (1980). Adult body mass and annual production/biomass relationships of field

populations. Ecol. Monogr. 50: 355 – 379.

Barnes RSK (1994) The brackish water fauna of northwestern Europe. Cambridge University Press, Cambridge.

Barrosa JO (1985) Breve caracterização da Ria de Aveiro. Jornadas da Ria de Aveiro, vol. II. Recursos da Ria de Aveiro. Câmara Municipal de Aveiro.

Bayed A (2003) Influence of morphodynamic and hydroclimatic factors on the macrofauna of Moroccan sandy beaches. Est. Coast. Shelf Sci. 58 (S): 71 - 82.

BIBLIOGRAFIA

Beaudoin CP, Prepas EE, Tonn WM, Wassenaar LI, Kotak B (2001) A stable carbon and nitrogen isotope study of lake food webs in Canada’s Boreal Plain. Freshwater Biology 46 (4): 465 – 473.

Bhaud M, Cha JH, Duchêne JC, Nozais C (1995) Influence of temperature on the marine fauna: what can be expected from a climatic change. J. the m. Biol. 20 (1/2): 91 - 94. r

t

.

t .

Borrego C, Moreira MH, Fernandes CI, Luis AS, Morgado F, Rebelo JE, Cunha MR (1994) Estudo de avaliação da vulnerabilidade e capacidade de recepção das águas costeiras em Portugal. Relatório R7.2, IDAD, 122 pp.

Bolam SG, Fernandes TF (2002) The effects of macroalgal cover on the spatial distribution of macrobenthic invertebrates: the effect of macroalgal morphology. Hydrobiology. 475/476: 437 - 448.

Boutton T (1991) Stable Carbon Isotope Ratios of Natural Materials: I. Sample Preparation and Mass Spectrometric Analysis. In Coleman DC, Fry B (eds) Carbon Isotope Techniques, Academic Press, 155 - 171 pp.

Branfield AE (1978) The institute of Biology’s studies in Biology nº 89: Life in sandy shores. Edward Arnold, London, 60 pp.

Brawley SH (1992) Mesoherbivores. In: John DH, Hawkins SJ, Price J (eds) Plan -animal interactions in the marine benthos. Oxford University Press, Oxford, 235 – 263 pp.

Brown AC, McLachlan A (1990) Ecology of sandy shores. Elsevier, Amsterdam, 328 pp.

Bunn SE, Loneragan NR, Kempster MA (1995) Effects of acid washing on stable isotope ratios of C and N in penaeid shrimp and seagrass: Implications for food-web studies using multiple stable isotopes. Limnol. Oceanog. 40 (3): 622 – 625.

Cardoso PG, Lillebo AI, Pardal MA, Ferreira SM, Marques JC (2002) The effect of different primary producers on Hydrobia ulvae population dynamics: a case study in a temperate intertidal estuary. J. Exp. Mar Biol. Ecol. 277: 173 – 195.

Cartes JE, Brey T, Sorbe JC, Maynou F (2002) Comparing production-biomass ratios of benthos and suprabenthos in macrofaunal marine crustaceans. Can. J. Fish. Aqua ic Sci. 59: 1616 – 1625. Cerqueira MA, Pio CA (1999) Production and release ofdimethhylsulphide from an estuary in

Portugal. Atmos. Environm. 33: 3355 - 3366.

Clarke KR, Warwick RM (2001) Change in marine communities – An approach to statistical analysis and interpretation. 2nd edition, PRIMER-E, Plymouth.

Clarke KR, Gorley RN (2001) Primer vs User Manual/Tutorial. Primer-E, Plymouth, 91 pp.

Corbett DR, Chanton J, Burnett W, Dillon K, Rutkowski C, Fourqurean JW (1999) Patterns of groundwater discharge into Florida Bay. Limnol. Oceanogr. 44 (4): 1045 – 1055.

Corbisier T (1991) Benthic macrofauna of sandy intertidal zone at Santos estuarine system, São Paulo, Brazil. Bolm Ins. Oceanogr. 39 (1): 1 – 13.

Coull BC (1999) Role of meiofauna in estuarine soft bottom habitats, Aus . Journ. Ecol. 24: 327 – 343.

t t

t

Craig H (1953) The geochemistry of the stable carbon isotopes. Geochimica e Cosmochimica Acta, 3: 53 – 92.

Créach V, Schricke M, Bertru G Mariotti G (1997) A stable isotopes and gut analyses to determine feeding relationships in saltmarsh macroconsumers. Est. Coast. Shel. Sci. 44: 599 - 611.

Cunha MR (1999). Peracaridian Crustacea in Ria de Aveiro (NW Portugal): taxonomic composition and spatio-temporal struc ure of the assemblages; life history and secondary production of the Corophium multisetosum Stock, 1952 (Amphipoda, Corophiidae). PhD thesis, Universidade de Aveiro, 196 pp.

Cunha MR, Moreira MH (1995) Macrobenthos of Potamoge on and Myriophyllum beds in the upper reaches of Canal de Mira (Ria de Aveiro, NW Portugal): community structure and environmental factors. Ne h. J Aqua. Ecol. 29 (3 – 4): 377 – 390.

t t .

.

r Cunha MR, Moreira MH, Sorbe JC (2000) The amphipod Corophium multisetosum (Corophiidae) in

Ria de Aveiro (NW Portugal). II. Abundance, biomass and production. Mar Biol. 137: 651 – 660.

Cupul-Magaña L, Téllez-Duarte M (1997) Space time variations in macrobenthic fauna of a sandy beach, related to changes in the beach profile and sediment grain size, at El Pelicano beach, Baja California. Ciencias marinas. 23 (4): 419 – 434.

Currin CA, Newell SY, Paerl HW (1995) The role of standing dead Spartina alterniflora and benthic microalgae in salt marsh food webs: considerations based on multiple stable isotope analysis. Mar. Eco. Pro. Ser. 121: 99 - 116.

Dahl E (1952 - 1953) Some aspects of the ecology and zonation of the fauna on sandy beaches. Oikos 4 (I): 1 – 27.

Degan LA, Garrit RH (1997) Evidence dor spatial variability in estuarine food webs. Mar. Ecol P og. Ser. 147: 31 – 47.

Degraer S, Mouton I, De Neve L, Vincx M (1999) Community structure and intertidal zonation of the macrobenthos on a macrotidal, ultra-dissipative sandy beach: summer-winter comparison. Estuaries 22 (3B): 742 – 752.

Degraer S, Volckaer A, Vincx M (2003) Macrobenthic zonation patterns along a morphodynamical continuum of macrotidal, low tide bar/rip and ultra-dissipative sandy beaches. Est. Coast. Shel. Sci. 56: 459 - 468.

Dexter D (1988). The sandy beach fauna of Portugal. Arquivos do museu Bocage, 8 (I): 101 – 110. Dias JM, Lopes JF. Dekeyser I (1999) Hydrological characterization of Ria de Aveiro, Portugal, in

BIBLIOGRAFIA

Dugan J; Hubbard D, McCrary M, Pierson, M (2003) The response of macrofauna communities and shorebirds to macrophyte wrack subsidies on exposed sandy beaches of Southern California. Est. Coast. Shel. Sci. 58 (S): 133 - 148.

Elliot B, Degraer S, Bursey M, Vincx M. (1996) Intertidal zonation of macroinfauna on a dissipative sandy beach at de Panne (Belgium): a pilot study. Biol. Jaarb. Dodonaea. 64: 92 - 108.

Fauchald K, Jumars PA (1979) The diet of worms: a study of polychaete feeding guids. Oceanogr. Mar Biol. Ann. Rev. 17: 193 – 284. .

. , . . . . r Fenchel T, Kofoed LH, Lappalainen A (1975) Particle size selection of two deposit feeders: the

amphipod Corophium volutator and the prosobranch Hydrobia ulvae. Mar. Biol. 30: 119 – 128. Field JG, Clarke KR, Warwick, RM (1982) A practical strategy for analysing multispecies distribution

patterns. Mar Ecol. Prog. Ser. 8: 37 - 52.

Flach E, Muthumbini A, Heip C (2002) Meiofana and macrofauna community structure in relation to sediment composition at the Iberian margin compared to the Gobar Spur (NE Atlantic). Prog Oceanog. 52: 433 - 457.

France, RL, Holmquist JG (1997) 13C Variability of macroalgae: effects of water motion via baffling by seagrasses and mangroves. Mar Eco Prog. Ser. 149: 305 – 308.

Fry B (1999) Using stable isotopes to monitor watershed influences on aquatic trophodynamics. Can. J. Fish Aquat. Sci 56: 2167 – 2171.

Fry B, Sherr EB (1984) δ13C Measurements as indicators of carbon flow in marine and freshwater ecosystems. Contribution in Marine Science. 27: 13 – 46.

Fry B, Brand W, Mersch FJ, Tholke K, Garrit R (1992) Automated analysis system for coupled δ13C and δ15N measurements. Amer. Chem. Soc. 64 (3): 268 – 291.

Galéron J, Sibuet M, Vanreusel A, Mackenzie K, Gooday AJ, Dinet A, Wolff GA (2001) Temporal patterns among meiofauna and macrofauna taxa related to changes in sediment geochemistry at an abyssal NE Atlantic site. Prog. Oceanog. 50: 303 - 324.

Giménez L, Yanicelli B (1997) Variability of zonation patterns in temperate microtidal Uruguayan beaches with different morphodynamic types. Mar Eco. Pro. Ser. 160: 197-207.

Gonçalves S, Marques JC, Pardal MA, Bouslama MF, Gtari EL, Charfi-Cheikrouha F (2003) Comparison of the biology, dynamics and secondary production of Talorchestia B ito (Amphipoda Talitridae) in Atlantic (Portugal) and Mediterranean (Tunisia) populations. Est. Coast. Shel. Sci. 58: 901 – 906.

Guelorget O, Mazoyer-Mayère C (1983) Croissance, biomasse et production de Scrobicularia plana dans une lagune méditerranéenne : l’étang du Prévost à Palavas (Hérault, France). Vie mar. 5 : 13 – 22.

Haines EB, Montague CL (1979). Food sources of estuarine invertebrates analyzed using 13C/12C ratios. Ecology 60 (1): 48 - 56.

Hacking N (1998). Macrofaunal community structure of beaches in northern New South Wales, Australia. Mar Fresh Res. 49: 47 – 53. . .

t .

.

Hughes RN (1970) An energy budget for a tidal flat population of the bivalve Scrobicularia plana (Da Costa). J. Anim. Ecol. 39: 357 – 382.

Incera M, Cividanes SP, Lastra M, López J (2003) Temporal and spatial variability of sedimentary organic matter in sandy beaches on the northwest coast of the Iberian Peninsula. Est. Coas . Shel. Sci 58 (S): 55 - 61.

Jedrzejczak MF (2002) Stranded Zostera marina L. vs wrack fauna community interaction on a Baltic sandy beach (Hel, Poland): a short-term pilot study. Part I: Driftilen effects of fragmented detritivoty leaching and decay rates. Oceanologia 44 (2): 273 - 286.

Jennings S, Renones O, Morales-Nin B, Polunin N, Moranta J, Coll J (1997) Spatial variation in the 15N and 13C stable isotope composition of plants, invertebrates and fishes on Mediterranean reefs: implications for the study of trophic pathways. Mar. Ecol. Prog. Ser. 146: 109 - 116. Junoy J, Viéitz JM (1992) Macrofaunal abundance analyses in the Ria de Foz (Lugo, Northwest

Spain). Cah Biol. Mar. 33: 331 – 345.

Lajtha K, Michener RH (1994) Stable isotopes in ecology and environmental science. Blackwell Scientific Publications, 316 pp.

Lambshead PJ, Platt H, Shaw K (1983) The detection of differences among assemblages of marine benthic species based on an assessment os dominance and diversity. Journal of Natural History, 17: 859-874.

Lardici C, Abbiati M, Crema R, Morri C, Bianchi CN, Castelli (1993) The distribution of polychaetes along environmental gradients: an example from the Orbetello Laggon, Italy. Mar. Ecol. 14 (1): 35 - 52.

Lillebo AI, Pardal MA, Marques JC (1999). Population structure, dynamics and production of Hydrobia ulvae (Pennant) (Mollusca: Prosobranchia) along an eutrophication gradient in the Mondego estuary (Portugal). Acta oecologia 20 (4): 289 – 304.

Lercari D, Defeo O (2003) Variation of a sandy beach macrobenthic community along a human- induced environmental gradient. Est. Coast. Shel. Sci. 58 (S): 17 - 24.

Lewis W, Hamilton S, Rodriguez M, Saunders J, Lasi M (2001) Food web analysis of the Orinoco floodplain based on production estimates and stable isotope data. J.N. Am. Benthol. Soc. 20 (2): 241 – 254.

Luís AS (1998) Influência de factores humanos e naturais nas limícolas (Aves, Charadrii) invernantes na Ria de Aveiro, com especial referência ao Pilrito-comum (Calidris alpina L.). Ph.D. Thesis. Universidade de Aveiro, Portugal, 126 pp.

Machás, R, Santos R (1999). Sources of organic matter in Ria Formosa revealed by stable isotope analysis. Acta oecologica 20 (4): 463 – 469.

BIBLIOGRAFIA

Machás R, Santos R, Peterson B (2003). Tracing the flow of organic matter from primary producers to filter feedres in Ria Formosa laggon, southern Portugal. Estuaries. 26 (4ª): 846 – 856. McClelland J, Valiella I, Michener R (1997). Nitrogen-stable isotope signatures in estuarine food-

webs: a record of increasing urbanization in coastal watersheds. Limnol. Oceanog. 42 (5): 930 – 937.

McClelland J, Valiella I (1998) Changes in food web structure under the influence of increased antropogenic nitrogen inputs to estuaries. Mar Ecol. Prog. Ser 168: 259 – 271. . .

.

t.

t

tr r

McLachlan A, Turner I (1994) The instersticial environment of sandy beaches. Marine Ecology 15(3/4): 177 - 211.

McLachlan A, Jaramillo E (1995) Zonation on sandy beaches. Oceanography and Marine Biology: an Annual Review. 33: 305 – 333.

Meire PM, Dereu J (1990) Use of the abundance/biomass comparison method for detecting environmental stress. Some considerations based on intertidal macrozoobenthos and bird communities. J. Appl. Ecol. 27: 210 - 223.

Mistri M, Rossi R, Fano EA (2001). Structure and secondary production of a soft bottom macrobenthic community in a Brackish Laggon (Sacca di Goro – north-eastern Italy). Es Coast. Shel. Sci. 52: 605 – 616.

Moncreiff C, Sullivan M (2001) Trophic importance of epiphytic algae in subtropical seagrass beds: evidence from multiple stable isotope analysis. Mar. Ecol. Prog. Ser. 215: 93 – 106.

Monteiro PMS, James AG, Sholto-Douglas AD, Field J (1991) The 13C trophic position isotope spectrum as a tool to define and quantify carbon pathways in marine food webs Mar. Eco. Prog. Ser. 78: 33 - 40

Moreira MH (1988). Estudo da comunidade bêntica num banco de lodo intertidal da Ria de Aveiro, com especial incidência no crescimento, biomassa e produção do berbigão, Cardium edule (L.). Cienc. Biol. Ecol. Syst. 8(1/2): 47 - 75.

Moreira MH, Queiroga H, Machado MM, Cunha MR (1993) Environmental gradients in a southern Europe estuarin system: Ria de Aveiro, Portugal. Implications for soft bottom macrofauna colonization. Neth. J. Aquat. Ecol. 27 : 465 – 482.

Morin A, Bourassa N (1992) Modèles empiriques de la production annuelle et du rapport P/B d’invertebrés benthiques d’eau courante. Can. J. Fish. Aquat. Sci. 29: 532 – 539.

Nadelhoffer KJ, Fry B (1994) Nitrogen isotope studies in forest ecosystems. In Lajtha K, Michener RH (eds) S able isotopes in ecology and environmental science. Blackwell Scientific Publications, 316 pp.

Nagle JS (1968) Distribution of the epibiota of macroepibenthic plants. Con ib. Ma . Sci. 13: 105 - 144.

Nithart M (1998) Population dynamics and secondary production of Nereis diversicolor in a North Norfolk saltmarsh (UK) J. Mar. Biol. Assoc. UK 78: 131 - 143.

O’Reilly CM, Hecky RE, Cohen AS, Plisnier PD (2002) Interpreting stable isotopes in food webs: Recognizing the role of time averaging at different trophic levels. Limnol. Oceanogr. 47 (1): 306 – 309.

Orvain F, Sauriau PG (2002) Environmental and behavioural factors affecting activity in the intertidal gastropod Hydrobia ulvae. J Exp. Mar Biol. Ecol. 272: 191 – 216. . .

. . . . t. . .

Overman N, Parrish D (2001) Stable composition of walleye; 15N accumulation with age and area- specific differences in δ13C. Can. J. Fish. Aquatic. Sci. 58: 1253 – 1260.

Page HM (1997) Importance of vascular plant and algal production to macro-invertebrate consumers in a Southern California Salt Marsh. Est. Coast. Shel. Sci. 45: 823 – 834.

Pardal MA, Marques JC, Bellan G (1993) Spatial distribution and seasonal variation of subtidal polychaeta populations in the Mondego estuaty (western Portugal). Cah Biol. Mar. 34: 497 – 512.

Peterson BJ (1999). Stable isotopes as tracers of organic matter input and transfer in benthic food webs: a review. Acta oecologica 20 (4): 479 – 487.

Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Ann. Rev Ecol. Syst. 18: 293-320. Peterson BJ, Howarth RW, Garrit RH (1985). Multiple stable isotopes used to trace the flow of

organic matter in estuarine food webs. Science 227: 1361 – 1363.

Pombo LM (1998). A ictiofauna da Ria de Aveiro: Estrutura, dinâmica e população. MsC Thesis. Universidade de Aveiro, 126 pp.

Rafaelli D, Hawkins S (1996). Intertidal Ecology. Chapman & Hall. 356 pp.

Riera P, Richard P (1996) Isotopic determination of food sources of Crassostrea gigas along a trophic gradient in the estuarine bay of Marennes-Oléron. Est. Coast. Shelf. Sci 42: 347 - 360. Riera P, Richard P (1997) Temporal variation of δ13C in particulate organic matte rand oyster

Crassostrea gigas in Marennes-Oléron Bay (France): effect of freshwater inflow. Mar Ecol. Prog. Ser. 147 : 105 – 115.

Riera P, Richard P, Grémare A, Blanchard G (1996) Food source of intertidal nematods in the Bay of Marennes-Oléron (France), as determined by dual stable isotope analysis. Mar. Ecol. Prog. Ser. 142 : 303 – 309.

Riera P, Stal LJ, Nieuwenhuize J (2000) Heavy δ15N in intertidal benthic algae and invertebrates in the Scheldt Estuary (The Netherlands) : effect of river nitrogen inputs. Est. Coas Shel. Sci. 51(3): 365 - 372.

Riera P, Stal LJ, Nieuwenhuize J (2002) δ13C versus δ15N co-occurring molluscs within a community dominated by Crassostrea gigas and Crepidula fornicata (Oosterschelde, The Netherlands). Mar. Ecol. Prog. Ser 240: 291 – 295.

Salvat B (1964) Les conditions hydrodynamiques interstitielles des sediments meubles intertidaux et la reparation verticale de la jeuve endogee. C R. Acad. Sci Paris 259, 1576 - 1579.

BIBLIOGRAFIA

Schwinghamer P, Hargrave B, Peer D, Hawkins CM (1986) Partitioning of production and respiration among size groups of organisms in an intertidal benthic community. Mar. Ecol. Prog. Ser. 31: 131 – 142.

Short AD, Wright LD (1983) Physical variability of sandy beaches. In McLachlan A, Erasmus T (eds) Sandy beaches as Ecossys ems W. Junk, The Hague, 133 - 144 pp. t ,

. .

t

.

Smith H, Wood PJ, Gunn J (2003) The influence of habitat structure and flow permanence on invertebrate communities in karst spring systems. Hydrob. 510: 53 – 66.

Sola JC (1996) Population dynamics, reproduction, growth and secondary production of the mud- snail Hydrobia ulvae (Pennant). J Exp. Mar Biol. Ecol. 205: 49 – 62.

Sprung M (1993) Estimating macrobenthic secondary production from body weight and biomass: a field test in a non-boreal intertidal habitat. Mar. Ecol. Prog. Ser. 100: 103 – 109.

Sprung M, Asmus H, Asmus R (2001). 11 : Energy flow in benthic assemblages of tidal basis: Ria Formosa (Portugal) and Sylt-Romo Bay (North Sea) Compared. In Keise K (ed). Ecological studies, vol. 151 – Ecological comparisons of sedimentary shores. Springer – Verlarg Berlin, 237 – 254 pp.

Teia dos Santos AM, Coimbra J (1995) Growth and production of raft – cultured Mytilllus edulis L. in Ria de Aveiro: gonad symbiotic infestation. 132 (3-4): 195 – 211.

Teles M, Negro M, Rodrigues M (1990) Elaboração de um sistema de modelos matemáticos para apoio da sua gestão integrada. IV Encontro Nacional de Saneamento Básico; Ria de Aveiro: Que Futuro?, GRIA/UA, 99-112 pp.

Thompson M, Schaffner L (2001) Population biology and secondary production of the suspension feeding polychaeta Chaetopterus cf. variopeda us : Implication for the benthic-pelagic coupling in lower Chesapeake Bay. Limnol. Oceanogr. 46 (8): 1899 – 1907.

Vander-Zanden MJ, Rasmussen, JB (1999). Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology 80 (4) : 1395 – 1404.

Vicente CM (1985) Caracterização hidráulica e aluvionar da Ria de Aveiro. Utilização de modelos hidráulicos no estudo de problemas da Ria. In Jornadas da Ria de Aveiro, vol. III. Câmara Municipal de Aveiro, Aveiro pp. 41 - 68.

Vizzini S, Sara G, Michener RH, Mazzola A (2002). The role and contribution of the seagrass Posidonia oceânica (L) Delile organic matter for secondary consumers as revealed by carbon and nitrogen stable isotope analysis. Acta oecologica, 23: 277 – 285.

Warwick RM (1986) A new method for detecting pollution effects on marine macrobenthic communities. Mar Biol. 92: 557 – 562.

Wetzel RG, Likens GE (1991) Limnological analyses, 2nd edition, Springer Verlag New York 156-161 pp.

Wright LD, Short AD (1983) Ecology of beach and surf-zonemysid shrimps in the eastern Cape,

Documentos relacionados