• Nenhum resultado encontrado

As amostras de ZnO sintetizadas com diferentes concentrações do líquido iônico TEA-PS.BF4 apresentaram pureza superior a 93 % em uma única fase, conforme con- firmado pela técnica de difração de raios X. O refinamento dos dados de DRX evidenciou a influência do LI no tamanho do cristalito, na microdeformação e na anisotropia da rede cris- talina. O tamanho do cristalito aumentou com a adição do líquido iônico enquanto a aniso- tropia e a microdeformação diminuíram, já que ao aumentar o tamanho do cristalito espera- se a redução de tensões internas na estrutura.

Em relação aos filmes confeccionados, observou-se um aumento da poro- sidade para a amostra com 5 % de LI e analogamente verificou-se um aumento do tamanho médio dos poros. A espectroscopia Raman dos filmes mostrou um aumento do tamanho do cristalito com o aumento da concentração do líquido iônico, reafirmando os resultados ob- servados com o refinamento dos dados de DRX.

A caracterização eletroquímica das células evidenciou a melhoria do fo- toânodo com 5 % de LI, que apresentou uma eficiência de 2,23 % e densidade de corrente de 7,13 mA.cm-², já que em comparação ao fotoânodo sem líquido iônico tem-se uma efici- ência de 1,93 % e densidade de corrente de 4,11 mA.cm-². Observou-se, por espectroscopia de impedância eletroquímica, que o líquido iônico contribuiu para aumento da resistência a transferência de carga, ou seja, diminui a recombinação na interface semicondutor/eletrólito do dispositivo.

Dessa forma, concluiu-se que o líquido iônico influência a estrutura cris- talina e morfologia do óxido de zinco, promovendo a melhora nas respostas eletroquímicas de CSSC nas quais esse material foi aplicado, quando utilizado na proporção de 5 % (m/m). Sugere-se uma análise mais detalhada em relação à porosidade dos filmes, utilizando técni- cas como BET, bem como a análise dos mecanismos cinéticos de oxidação e redução durante a fotoconversão. Além disso, para melhorar a reprodutibilidade da confecção das CSSC’s se faz necessário um estudo reológico da suspensão, visando a otimização e padronização dos filmes.

Nos trabalhou futuros sugere-se alterar a proporção de líquido iônico du- rante a síntese, realizando um planejamento experimental para uma análise estatística das respostas exploradas neste trabalho.

REFERÊNCIAS

ANTONIETTI, M.; KUANG, D.; SMARSLY, B.; ZHOU, Y. Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures.

Angewandte Chemie International Edition, v. 43, n. 38, p. 4988-4992, 2004.

ARGUELLO, S. A. Uso de Líquidos Iônicos na síntese de ZnO para aplicação em células fotoeletroquímicas. 2019. 106 f. Dissertação (Mestrado em Física Aplicada) -

Universidade Federal da Integração Latino-Americana, Foz do Iguaçu.

BAKING, A.; BEHRENDS, A.; WAGNER, A.; WAAG, A. Fabrication of ZnO

Nanostructures. In: WILLANDER, Magnus. Zinc Oxide Nanostructures: Advances and

Applications. Pan Stanford, 2014. Cap 1, p. 1-42.

BRAGA JR., W. B.; MACÊDO, W. N.; PINHO, J. T., 2014. Analysis of characteristic pa- rameters of commercial photovoltaic modules. Energy Procedia, v. 57, p. 4–13, 2014. BRENNAMAN, M. K.; DILLON, R. J.; ALIBABAEI, L.; GISH, M. K.; DARES, C. J.; ASHFORD, D. L.; MEYER, T. J. Finding the way to solar fuels with dye-sensitized photoelectrosynthesis cells. Journal of the American Chemical Society, v. 138, n. 40, p. 13085-13102, 2016.

CHAKRABORTY, M.; ROY, D.; BISWAS, A.; THANGAVEL, R.; UDAYABHANU, G. Structural, optical and photo-electrochemical properties of hydrothermally grown ZnO na- norods arrays covered with α-Fe2O3 nanoparticles. RSC Advances, v. 6, n. 79, p. 75063- 75072, 2016.

CHATTERJEE, S. Performance of Dye-Sensitized Solar Cells (DSSCs) Fabricated with Zinc Oxide (ZnO) Nanpowders and Nanorods. Journal of Materials Engineering and

Performance, v. 27, n. 6, p. 2713-2718, 2018.

CHENG, B.; SAMULSKI, E. T. Hydrothermal synthesis of one-dimensional ZnO

nanostructures with different aspect ratios. Chemical Communications, n. 8, p. 986-987, 2004.

CHOU, H.; HSU, H.. The effect of annealing temperatures to prepare ZnO seeds layer on ZnO nanorods array/TiO2 nanoparticles photoanode. Solid-State Electronics, v. 116, p. 15-21, 2016.

ENDRES, F.; ABBOTT, A.; MACFARLANE, D. Electrodeposition from ionic liquids. WILEY-VCH Verlag, 2017.

FABREGAT-SANTIAGO, F.; BISQUERT, J.; GARCIA-BELMONTE, G.; BOSCHLOO, G.; HAGFELDT, A. Influence of electrolyte in transport and recombination in dye-

sensitized solar cells studied by impedance spectroscopy. Solar Energy Materials and

Solar Cells, v. 87, n. 1-4, p. 117-131, 2005.

FAN, J.; GÜELL, F.; FÁBREGA, C.; SHAVEL, A.; CARRETE, A.; ANDREU, T.; CABOT, A. Enhancement of the photoelectrochemical properties of Cl-doped ZnO

nanowires by tuning their coaxial doping profile. Applied Physics Letters, v. 99, n. 26, p. 262102-1-262102-4, 2011.

FAN, K.; YU, J.; HO, W. Improving photoanodes to obtain highly efficient dye-sensitized solar cells: a brief review. Materials Horizons, v. 4, n. 3, p. 319-344, 2017.

FANG, J.; FAN, H.; TIAN, H.; DONG, G. Morphology control of ZnO nanostructures for high efficient dye-sensitized solar cells. Materials Characterization, v. 108, p. 51-57, 2015.

WUU, D.; WU, C.; HORNG, R. Metalorganic Vapor Deposition and Characterization of ZnO-Based Nanostructures and Thin Films. In: FENG, Z. C. Handbook of Zinc Oxide

and Related Materials: Volume One. 1ed. USA, LLC: 2012. Cap. 1, p. 3-57.

FINGER, L. W.; COX, D. E.; JEPHCOAT, A. P. A correction for powder diffraction peak asymmetry due to axial divergence. Journal of Applied Crystallography, v. 27, n. 6, p. 892-900, 1994.

GEMEINER, P.; MIKULA, M.. The relation between TiO2 nano-pastes rheology and dye sensitized solar cell photoanode efficiency. Materials Science in Semiconductor Processing, v. 30, p. 605-611, 2015.

GOÉS, M. S. Análise de Nanoestrutura por Espectrocopia de Impedância para Células

Fotoeletroquímicas. 2010. 134 f. Tese (Doutorado em Química) - Universidade Estadual de São Paulo, Araraquara.

GÓES, M. S.; JOANNI, E.; MUNIZ, E. C.; SAVU, R.; HABECK, T. R.; BUENO, P. R.; FABREGAT-SANTIAGO, F. Impedance spectroscopy analysis of the effect of TiO2 blocking layers on the efficiency of dye sensitized solar cells. The Journal of Physical

Chemistry, v. 116, n. 23, p. 12415-12421, 2012.

GOLDSTEIN, J. I.; NEWBURY, D. E.; MICHAEL, J. R.; RITCHIE, N. W.; SCOTT, J. H. J.; JOY, D. C. Scanning electron microscopy and x-ray microanalysis. Springer, 2018. GONG, J.; SUMATHY, K.; QIAO, Q.; ZHOU, Z. Review on dye-sensitized solar cells (DSSCs): advanced techniques and research trends. Renewable and Sustainable Energy

Reviews, v. 68, p. 234-246, 2017.

GRÄTZEL, M. Photoeletrochemical cells. Nature, v. 414, p. 338-344, 2001.

GRIFFITHS, P. R.; DE HASETH, J. A. Fourier transform infrared spectrometry. John Wiley & Sons, 2007.

GUERIN, V. M.; MAGNE, C.; PAUPORTÉ, T.; LE BAHERS, T.; RATHOUSKY, J. Electrodeposited Nanoporous versus Nanoparticulate ZnO Films of Similar Roughness for Dye-Sensitized Solar Cell Applications. ACS Applied Materials & Interfaces, v. 2, n. 12, p. 3677–3685, 2010.

HAGFELDT, A.; VLACHOPOULOS, N. Dye-Sensitized Solar Cells. In: LIRA-CANTU, M. The future of semiconductor oxides in next-generation solar cells. Elsevier, 2017. cap 6, p. 183-239.

HAGFELDT, A.; BOSCHLOO, G.; SUN, L.; KLOO, L.; PETTERSSON, H. Dye- sensitized solar cells. Chemical Reviews, v. 110, n. 11, p. 6595-6663, 2010. HASSANIEN, A. S.; AKL, A. A.; SÁAEDI, A. H. Synthesis, crystallography,

microstructure, crystal defects, and morphology of BixZn1−xO nanoparticles prepared by sol–gel technique. CrystEngComm, v. 20, n. 12, p. 1716-1730, 2018.

HEWLETT, R. M.; MCLACHLAN, M. A. Surface structure modification of ZnO and the impact on electronic properties. Advanced Materials, v. 28, n. 20, p. 3893-3921, 2016. HOLLARS, D. R. Thin-film solar cells. U.S. Patent n. 6,974,976, 13 dez. 2005.

HUANG, Y.; LIU, M.; LI, Z.; ZENG, Y.; LIU, S. Raman spectroscopy study of ZnO-based ceramic films fabricated by novel sol–gel process. Materials Science and Engineering, v. 97, n. 2, p. 111-116, 2003.

JAROSIK, A.; KRAJEWSKI, S. R.; LEWANDOWSKI, A.; RADZIMSKI, P. Conductivity of ionic liquids in mixtures. Journal of Molecular Liquids, v. 123, n. 1, p. 43-50, 2006. KANG, X.; SUN, X.; HAN, B. Synthesis of functional nanomaterials in ionic

liquids. Advanced Materials, v. 28, n. 6, p. 1011-1030, 2016.

KAR, S.; PAL, B. N.; CHAUDHURI, S.; CHAKRAVORTY, D. One-Dimensional ZnO Nanostructure Arrays: Synthesis and Characterization. Journal of Physical Chemistry B. v. 110, n. 10, p. 4605-4611, 2006.

KIM, H. S.; LEE, C. R.; IM, J. H.; LEE, K. B.; MOEHL, T.; MARCHIORO, A.; GRÄTZEL, M. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports, v. 2, p. 591, 2012. KIM, K.; UTASHIRO, K.; ABE, Y.; KAWAMURA, M. Structural properties of zinc oxide nanorods grown on Al-doped zinc oxide seed layer and their applications in dye-sensitized solar cells. Materials, v. 7, n. 4, p. 2522-2533, 2014.

KLINGSHIRN, C. F.; WAAG, A.; HOFFMANN, A.; GEURTS, J. Zinc Oxide. 1ed. USA, Springer: 2010.

KUMAR, R.; UMAR, A.; KUMAR, G.; NALWA, H. S.; KUMAR, A.; AKHTAR, M. S. Zinc oxide nanostructure-based dye-sensitized solar cells. Journal of Materials Science, v. 52, n. 9, p. 4743-4795, 2017.

LARKIN, P. Infrared and Raman spectroscopy: principles and spectral interpretation. Elsevier, 2011.

Alamos, New Mexico: Los Alamos National Laboratory Report LAUR,. p. 86-748, 2000. LEE, W. J.; RAMASAMY, E.; LEE, D. Y.; SONG, J. S. Dye-sensitized solar cells: Scale up and current-voltage characterization. Solar Energy Materials and Solar Cells, v. 91, n. 18, p. 1676-1680, 2007.

LI, Z.; JIA, Z.; LUAN, Y.; MU, T. Ionic liquids for synthesis of inorganic nanomaterials.

Current Opinion in Solid State and Materials Science, v. 12, n. 1, p. 1–8, 2008.

LIN, J.; HU, P.; ZHANG, Y.; FAN, M.; HE, Z.; NGAW, C. K.; TAN, T. T. Y.

Understanding the photoelectrochemical properties of a reduced graphene oxide–WO3 heterojunction photoanode for efficient solar-light-driven overall water splitting. RSC

Advances, v. 3, n. 24, p. 9330-9336, 2013.

LIMA, R. D. M. C.; MEDEIRO, R. A. D.; FONSECA, M. G.; DHERE, N. G.; SHINDE, O.; SCHNELLER, E.; CRUZ, L. R. Characterization of CIGS thin film solar

cells. Matéria (Rio de Janeiro), v. 22, 2017.

MARTINSON, A. B.; GÓES, M. S.; FABREGAT-SANTIAGO, F.; BISQUERT, J.; PELLIN, M. J.; HUPP, J. T. Electron transport in dye-sensitized solar cells based on ZnO nanotubes: evidence for highly efficient charge collection and exceptionally rapid

dynamics. The Journal of Physical Chemistry A, v. 113, n. 16, p. 4015-4021, 2009. MAYRINCK, C.; RAPHAEL, E.; FERRARI, J. L.; SCHIAVON, M. A. Síntese, propriedades e aplicações de óxido de zinco nanoestruturado. Revista Virtual de

Química, v. 6, n. 5, p. 1185-1204, 2014.

MINISTÉRIO DE MINAS E ENERGIA. Anuário Estatístico de Energia Elétrica 2017. EPE – Empresa de Pesquisa Energética, 232 p., 2017. Disponível em:

http://www.epe.gov.br. Data de acesso em: 17 de julho de 2019.

MORKOÇ, H.; ÖZGÜR, Ü. Zinc oxide fundamentals, materials and device technology. Wiley-VCH, 2009.

NATIONAL RENEWABLE ENERGY LABORATORY. U.S. Department of Energy. Best

Research-Cell Efficiencies. Disponível em: < https://www.nrel.gov/pv/assets/pdfs>. Data

de acesso em: 08 de agosto de 2018.

National Institutes of Health (NIH), ImageJ: Image Processing and Analysis Java

software (Version 1.51). Disponível em: <https://imagej.nih.gov/ij/index.html>. Data de

acesso em: 28 de março de 2019.

OPREA, O.; CIOCIRLAN, O.; BADANOIU, A.; VASILE, E. Synthesis and

characterization of ZnO nanostructures obtained in mixtures of ionic liquids with organic solvents. Open Chemistry, v. 12, n. 7, p. 749-756, 2014.

O'REGAN, B.; GRATZEL, M. A Low-Cost, High-Efficiency Solar-Cell Based on Dye- Sensitized Colloidal TiO2 Films. Nature, v. 353, n. 6346, p. 737-740, 1991.

PEREIRA, E. B.; MARTINS, F. R.; DE ABREU, S. L.; RÜTHER, R. Atlas brasileiro de

energia solar. 2ed. São José dos Campos: INPE, 2017.

RANI, S.; SURI, P.; SHISHODIA, P. K.; MEHRA, R. M. Synthesis of nanocrystalline ZnO powder via sol–gel route for dye-sensitized solar cells. Solar Energy Materials and

Solar Cells, v. 92, n. 12, p. 1639-1645, 2008.

RAVANBAKHSH, A.; RASHCHI, F.; KHAYYAM NEKOUEI, R.; MORTAZAVI SAMA- RIN, M. Synthesis and characterization of porous zinc oxide nano-flakes film in alkaline media. Journal of Ultrafine Grained and Nanostructured Materials, v. 51, n. 1, p. 32- 42, 2018.

RETAMAL, J. R. D., CHEN, C. Y., LAI, K. Y., & HE, J. H. ZnO based Nanostructures. In: FENG, Z. C. Handbook of Zinc Oxide and Related Materials: Volume Two, Devices

and Nano-Engineering, 1ed. USA, CRC: 2013, v. 2, p. 133-174.

RIETVELD, H. M. A profile refinement method for nuclear and magnetic structures. Jour-

nal of Applied Crystallography, v. 2, n. 2, p. 65-71, 1969.

SACCO, A. Electrochemical impedance spectroscopy: Fundamentals and application in dye-sensitized solar cells. Renewable and Sustainable Energy Reviews, v. 79, p. 814– 829, 2017.

SENGUPTA, D.; DAS, P.; MONDAL, B.; MUKHERJEE, K. Effects of doping, morphology and film-thickness of photo-anode materials for dye sensitized solar cell application–A review. Renewable and Sustainable Energy Reviews, v. 60, p. 356-376, 2016.

SHARMA, A.; CHAKRABORTY, M.; THANGAVEL, R.; & UDAYABHANU, G. Hydrothermal growth of undoped and boron doped ZnO nanorods as a photoelectrode for solar water splitting applications. Journal of Sol-Gel Science and Technology, v. 85, n. 1, p. 1-11, 2017.

SHARMA, J.; VASHISHTHA, M.; SHAH, D. O. Crystallite size dependence on structural parameters and photocatalytic activity of microemulsion mediated synthesized ZnO nanoparticles annealed at different temperatures. Global Journal of Science Frontier

Research, v. 14, n. 5, p. 18-32, 2014.

SMITH, E.; DENT, G. Modern Raman spectroscopy: a practical approach. Wiley, 2005.

SOILLE, P. Morphological image analysis: principles and applications. 2ª Ed. Springer, 2013.

SONG, K.; JIANG, Q.; DU, P.; YANG, Y.; XIONG, J.; CUI, C. Novel structure of TiO2- ZnO core shell rice grain for photoanode of dye-sensitized solar cells. Journal of Power

Sources, v. 261, p. 1-6, 2014.

diffraction. Journal of Applied Crystallography, v. 32, n. 2, p. 281-289, 1999. TADROS, T. F. Emulsions: Formation, stability, industrial applications. Walter de Gruyter GmbH & Co KG, 2016.

TAN, W. K.; KAWAMURA, G.; MATSUDA, A. Design of ZnO Nano-Architectures and Its Applications. In: CHEONG, K. Y. Two-Dimensional Nanostructures for Energy-

Related Applications, 1 ed. USA, CRC: 2017, v. 1 p. 296 - 331.

TOBY, B. H. EXPGUI a graphical user interface for GSAS. Journal of Applied

Crystallography, v. 34, n. 2, p. 210-213, 2001.

VITTAL, R.; HO, K. Zinc oxide based dye-sensitized solar cells: A review. Renewable

and Sustainable Energy Eeviews, v. 70, p. 920-935, 2017.

WANG, Q.; MOSER, J. E.; GRÄTZEL, M. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. The Journal of Physical Chemistry B, v. 109, n. 31, p. 14945-14953, 2005.

WANG, Q.; ITO, S.; GRÄTZEL, M.; FABREGAT-SANTIAGO, F.; MORA-SERO, I.; BISQUERT, J.; IMAI, H. Characteristics of high efficiency dye-sensitized solar cells. The

Journal of Physical Chemistry B, v. 110, n. 50, p. 25210-25221, 2006.

WASEDA, Y.; MATSUBARA, E.; SHINODA, K. X-Ray diffraction crystallography

introduction, examples and solved problems. Springer, 2011.

WILKES, J. S.; LEVISKY, J. A.; WILSON, R. A.; HUSSEY, C. L. Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorganic Chemistry, v. 21, n. 3, p. 1263-1264, 1982.

WILL, G. Powder diffraction: The Rietveld method and the two stage method to de-

termine and refine crystal structures from powder diffraction data. Springer Science

& Business Media, 2006.

WILLIAMS, J. Doctor-Blade Process. Technology Ceramic Fabrication Processes -

Treatise on Materials Science and Technology, p. 173–198, 1976.

WIRTH, H.; SCHNEIDER, K. Recent facts about photovoltaics in Germany. Fraunhofer

ISE, 2019. Disponível em: <https://www.pv-fakten.de>. Data de acesso em: 17 de julho de

2019.

WU, L.; WU, Y.; PAN, X.; KONG, F. Synthesis of ZnO nanorod and the annealing effect on its photoluminescence property. Optical Materials, v. 28, n. 4, p. 418-422, 2006. WUU, D.; WU, C.; HORNG, R. Metalorganic Vapor Deposition and Characterization of ZnO-Based Nanostructures and Thin Films. In: FENG, Z. C. Handbook of Zinc Oxide

and Related Materials: Volume One. 1ed. USA, LLC: 2012. Cap. 1, p. 3-57.

Photoluminesence and FTIR study of ZnO nanoparticles: the impurity and defect perspective. Physica Status Solidi C, v. 3, n. 10, p. 3577-3581, 2006.

YENGANTIWAR, A.; PALANIVEL, S.; ARCHANA, P. S.; MA, Y., PAN, S.; GUPTA, A. Direct liquid injection chemical vapor deposition of molybdenum-doped bismuth vanadate photoelectrodes for efficient solar water splitting. The Journal of Physical Chemistry C, v. 121, n. 11, p. 5914-5924, 2017.

YOSHIKAWA, M.; INOUE, K.; NAKAGAWA, T.; ISHIDA, H.; HASUIKE, N.; HARIMA, H. Characterization of ZnO nanoparticles by resonant Raman scattering and cathodoluminescence spectroscopies. Applied Physics Letters, v. 92, n. 11, p. 113115, 2008.

ZHAO, S.; ZHANG, Y.; ZHOU, Y.; ZHANG, C.; SHENG, X.; FANG, J.; YANG, Y. Ionic liquid-assisted synthesis of highly dispersive bowknot-like ZnO microrods for

photocatalytic applications. Applied Surface Science, v. 400, p. 269-276, 2017.

ZHANG, Q.; DANDENEAU, C. S.; ZHOU, X.; CAO, G. ZnO Nanostructures for Dye- Sensitized Solar Cells. Advanced Materials, v. 21, n. 41, p. 4087–4108, 2009.

ZHANG, Z.; YUAN, Y.; LIANG, L.; CHENG, Y.; SHI, G.; JIN, L. Preparation and

photoelectrocatalytic activity of ZnO nanorods embedded in highly ordered TiO2 nanotube arrays electrode for azo dye degradation. Journal of Hazardous Materials, v. 158, n. 2-3, p. 517-522, 2008.

Documentos relacionados