• Nenhum resultado encontrado

Com a metodologia empregada neste estudo, podemos concluir que:

 A temperatura basal da polpa dental humana anestesiada de pré-molares in vivo é de 35,3°C e pode variar de 35 a 35,7°C.

 Todos os modos de exposição do LED testado produzem um aumento da temperatura pulpar significativo em comparação com os valores basais.

 O modo de exposição 60s/H foi capaz de promover um aumento da temperatura pulpar maior do que aquele considerado pela literatura como seguro à polpa, (5,5 °C), em 4/12 dos espécimes avaliados.

 O aumento da temperatura pulpar não apresentou correlações nem com o volume coronal nem com volume da câmara pulpar, assim como a maioria dos parâmetros avaliados.

REFERÊNCIAS

1. Zach L, Cohen G. Thermogenesis in operative techniques: Comparison of four methods. The Journal of Prosthetic Dentistry. 1962;12(5):977-84.

2. O'Leary J, Barnett T, Parkin T, Dixon P, Barakzai S. Pulpar temperature changes during mechanical reduction of equine cheek teeth: Comparison of different motorised dental instruments, duration of treatments and use of water cooling. Equine Veterinary Journal. 2013 May;45(3):355-60.

3. Öztürk B, Üşümez A, Öztürk AN, Ozer F. In vitro assessment of temperature change in the pulp chamber during cavity preparation. The Journal of Prosthetic Dentistry. 2004 May;91(5):436-40.

4. Hussey D, Biagioni P, Lamey P-J. Thermographic measurement of temperature change during resin composite polymerization in vivo. Journal of Dentistry. 1995 Oct;23(5):267-71.

5. Grajower R, Shaharbani S, Kaufman E. Temperature rise in pulp chamber during fabrication of temporary self-curing resin crowns. The Journal of Prosthetic Dentistry. 1979 May;41(5):535-40.

6. Castelnuovo J, Tjan AH. Temperature rise in pulpal chamber during fabrication of provisional resinous crowns. The Journal of Prosthetic Dentistry. 1997 Nov;78(5):441-6.

7. Anić I, Pavelić B, Perić B, Matsumoto K. In vitro pulp chamber temperature rises associated with the argon laser polymerization of composite resin. Lasers in Surgery and Medicine. 1996;19(4):438-44.

8. Martins GR, Cavalcanti BN, Rode SM. Increases in intrapulpal temperature during polymerization of composite resin. The Journal of Prosthetic Dentistry. 2006 Nov;96(5):328-31.

9. Lee D-H, Murakami S, Khan SZ, Matsuzaka K, Inoue T. Pulp Responses After CO2 Laser Irradiation of Rat Dentin. Photomedicine and Laser Surgery. 2013 Feb;31(2):59-64.

10. Al-Qudah A, Mitchell C, Biagioni P, Hussey D. Effect of composite shade, increment thickness and curing light on temperature rise during photocuring. Journal of Dentistry. 2007 Mar;35(3):238-45.

11. Asmussen E, Peutzfeldt A. Temperature rise induced by some light emitting diode and quartz‐tungsten‐halogen curing units. European Journal of Oral Sciences. 2005 Feb;113(1):96-8.

12. Gomes M, DeVito-Moraes A, Francci C, Moraes R, Pereira T, Froes-Salgado N et al. Temperature Increase at the Light Guide Tip of 15 Contemporary LED

Units and Thermal Variation at the Pulpal Floor of Cavities: An Infrared Thermographic Analysis. Operative Dentistry. 2013 May-Jun;38(3):324-33.

13. Galan D, Kasloff Z, Williams P. Effects of warm air-drying on intra-pulpal temperature. American Journal of Dentistry. 1991 May;4(4):162-6.

14. Mank S, Steineck M, Brauchli L. Influence of various polishing methods on pulp temperature. Journal of Orofacial Orthopedics. 2011 Oct;72(5):348-57.

15. Hahn P, Schondelmaier N, Wolkewitz M, Altenburger MJ, Polydorou O. Efficacy of tooth bleaching with and without light activation and its effect on the pulp temperature: an in vitro study. Odontology. 2013 Jan;101(1):67-74.

16. Klaric E, Rakic M, Sever I, Tarle Z. Temperature rise during experimental light- activated bleaching. Lasers in Medical Science. 2013 Jun;19:1-10.

17. Spierings TA, Peters M, Bosman F, Plasschaert A. The influence of cavity geometry on heat transmission in restored teeth. Journal of Dentistry. 1986 Apr;14(2):47-51.

18. Millen C, Ormond M, Richardson G, Santini A, Miletic V, Kew P. A study of temperature rise in the pulp chamber during composite polymerization with different light-curing units. Journal Contemp Dent Pract. 2007 Nov 1;8(7):29- 37.

19. Baroudi K, Silikas N, Watts DC. In vitro pulp chamber temperature rise from irradiation and exotherm of flowable composites. International Journal of Paediatric Dentistry. 2009 Jan;19(1):48-54.

20. Nyborg H, Brännström M. Pulp reaction to heat. The Journal of Prosthetic Dentistry. 1968 Jun;19(6):605-12.

21. Zach L, Cohen G. Pulp response to externally applied heat. Oral Surgery, Oral Medicine, Oral Pathology. 1965 Apr;19(4):515-30.

22. Baldissara P, Catapano S, Scotti R. Clinical and histological evaluation of thermal injury thresholds in human teeth: a preliminary study. Journal of Oral Rehabilitation. 1997 Nov;24(11):791-801.

23. Jakubinek MB, O’Neill C, Felix C, Price RB, White MA. Temperature excursions at the pulp–dentin junction during the curing of light-activated dental restorations. Dental Materials. 2008 Nov;24(11):1468-76.

24. Preiskorn M, Zmuda S, Trykowski J, Panas A, Preiskorn M. In vitro investigations of the heat transfer phenomena in human tooth. Acta of Bioengineering and Biomechanics. 2003;5(2):23-36.

25. Park S, Roulet J, Heintze S. Parameters influencing increase in pulp chamber temperature with light-curing devices: Curing lights and pulpal flow rates. Operative Dentistry. 2010 May-Jun;35(3):353-61.

26. Daronch M, Rueggeberg FA, Hall G, De Goes MF. Effect of composite temperature on in vitro intrapulpal temperature rise. Dental Materials. 2007 Oct;23(10):1283-8.

27. Kodonas K, Gogos C, Tziafa C. Effect of simulated pulpal microcirculation on intrachamber temperature changes following application of various curing units on tooth surface. Journal of Dentistry. 2009 Jun;37(6):485-90.

28. Kodonas K, Gogos C, Tziafas D. Effect of simulated pulpal microcirculation on intrapulpal temperature changes following application of heat on tooth surfaces. International Endodontic Journal. 2009 Mar;42(3):247-52.

29. Yazici A, Müftü A, Kugel G, Perry R. Comparison of temperature changes in the pulp chamber induced by various light curing units, in vitro. Operative Dentistry. 2006;31(2):261-5.

30. Leprince J, Devaux J, Mullier T, Vreven J, Leloup G. Pulpal-temperature rise and polymerization efficiency of LED curing lights. Operative Dentistry. 2010 Mar-Apr;35(2):220-30.

31. Hargreaves KM, Goodis HE, Tay FR. Seltzer and Bender's dental pulp: Quintessence Publishing Company; 2002.

32. Amano T, Muramatsu T, Amemiya K, Kubo K, Shimono M. Responses of rat pulp cells to heat stress in vitro. Journal of Dental Research. 2006 May;85(5):432-5.

33. Kitamura C, Nishihara T, Ueno Y, Nagayoshi M, Kasugai S, Terashita M. Thermotolerance of pulp cells and phagocytosis of apoptotic pulp cells by surviving pulp cells following heat stress. Journal of cellular biochemistry. 2005 Mar 1;94(4):826-34.

34. Rueggeberg FA. State-of-the-art: dental photocuring a review. Dental Materials. 2011 Jan;27(1):39-52.

35. Rueggeberg F. Contemporary issues in photocuring. Compendium of Continuing Education in Dentistry.(Jamesburg, NJ: 1995). Supplement. 1999(25):S4-15; quiz S73.

36. Nammour S, Zeinoun T, Bogaerts I, Lamy M, Geerts S, Saba SB et al. Evaluation of dental pulp temperature rise during photo-activated decontamination (PAD) of caries: an in vitro study. Lasers in Medical Science. 2010 Sep;25(5):651-4.

37. Santini A, Watterson C, Miletic V. Temperature rise within the pulp chamber during composite resin polymerisation using three different light sources. The Open Dentistry Journal. 2008 Dec 5;2:137-41.

38. Randolph LD, Palin WM, Watts DC, Genet M, Devaux J, Leloup G et al. The effect of ultra-fast photopolymerisation of experimental composites on shrinkage stress, network formation and pulpal temperature rise. Dental Materials. 2014 Nov;30(11):1280-9.

39. Eldeniz AU, Usumez A, Usumez S, Ozturk N. Pulpal temperature rise during light‐activated bleaching. Journal of Biomedical Materials Research B Applied Biomaterials. 2005 Feb 15;72(2):254-9.

40. Oberholzer T, Makofane M, du Preez I, George R. Modern high powered led curing lights and their effect on pulp chamber temperature of bulk and incrementally cured composite resin. The European Journal of Prosthodontics and Restorative Dentistry. 2012 Jun;20(2):50-5.

41. Baik JW, Rueggeberg FA, Liewehr FR. Effect of Light‐Enhanced Bleaching on In Vitro Surface and Intrapulpal Temperature Rise. Journal of Esthetic and Restorative Dentistry. 2001;13(6):370-8.

42. He L-B, Shao M-Y, Tan K, Xu X, Li J-Y. The effects of light on bleaching and tooth sensitivity during in-office vital bleaching: a systematic review and meta- analysis. Journal of Dentistry. 2012 Aug;40(8):644-53.

43. Ebenezar AR, Anilkumar R, Indira R, Ramachandran S, Srinivasan M. Comparison of temperature rise in the pulp chamber with different light curing units: An in-vitro study. Journal of Conservative Dentistry: JCD. 2010;13(3):132.

44. Raab W. Temperature related changes in pulpal microcirculation. Proc Finn Dent Soc. 1992;88(Suppl 1):469-79.

45. Brännström M, Johnson G. Movements of the Dentine and Pulp Liquids on Application of Thermal Stimuli an In Vitro Study. Acta Odontologica Scand. 1970 Mar;28(1):59-70.

46. Eberhard J, Zahl A, Dommisch H, Winter J, Acil Y, Jepsen S. Heat shock induces the synthesis of the inflammatory mediator leukotriene B4 in human pulp cells. International Endodontic Journal. 2005 Dec;38(12):882-8.

47. Farret MM, Gonçalves TS, Lima EMSd, Menezes LMd, Oshima HMS, Kochenborger R et al. Influência de variáveis metodológicas na resistência de união ao cisalhamento. Dental press j. orthod.(Impr.). 2010;15(1):80-8.

48. Wunderlich CA, Reeve JC. The course of temperature in diseases: a guide to clinical thermometry. Am J Med Sci. 1869;57:24.

49. Luehr M, Bachet J, Mohr F-W, Etz CD. Modern temperature management in aortic arch surgery: the dilemma of moderate hypothermia. European Journal of Cardio-Thoracic Surgery. 2014 Jan;45(1):27-39.

50. Wijayatilake DS, Shepherd SJ, Sherren PB. Updates in the management of intracranial pressure in traumatic brain injury. Current Opinion in Anesthesiology. 2012 Oct;25(5):540-7.

51. Porko C, Hietala E. Pulpal temperature change with visible light-curing. Operative Dentistry. 2001;26(2):181-5.

52. Hannig M, Bott B. In-vitro pulp chamber temperature rise during composite resin polymerization with various light-curing sources. Dental Materials. 1999;15(4):275-81.

53. Hansen EK, Asmussen E. Correlation between depth of cure and temperature rise of a light‐activated resin. Scand J Dent Res. 1993 Jun;101(3):176-9. 54. Tjan AH, Dunn JR. Temperature rise produced by various visible light

generators through dentinal barriers. The Journal of Prosthetic Dentistry. 1988 Apr;59(4):433-8.

55. Goodis H, White J, Andrews J, Watanabe L. Measurement of temperature generated by visible-light-cure lamps in an in vitro model. Dental Materials. 1989 Jul;5(4):230-4.

56. Lin M, Liu S, Niu L, Xu F, Lu TJ. Analysis of thermal-induced dentinal fluid flow and its implications in dental thermal pain. Archives of Oral Biology. 2011;56(9):846-54.

57. Linsuwanont P, Palamara J, Messer H. An investigation of thermal stimulation in intact teeth. Archives of Oral Biology. 2007 Mar;52(3):218-27.

58. Goodis HE, Winthrop V, White J. Pulpal responses to cooling tooth temperatures. Journal Endodontics. 2000 May;26(5):263-7.

59. Lin M, Xu F, Lu TJ, Bai BF. A review of heat transfer in human tooth-- experimental characterization and mathematical modeling. Dental Materials. 2010 Jun;26(6):501-13.

60. Godoy EdP, Pereira SK, Carvalho BdM, Martins GC, Franco APGd O. Aparelhos fotopolimerizadores: elevação de temperatura produzida por meio da dentina e durante a polimerização da resina composta [Dissertação]. Ponta Grossa: Faculdade de Odontologia, Universidade Estadual de Ponta Grossa; 2008.

61. Ozturk B, Ozturk A, Usumez A, Usumez S, Ozer F. Temperature rise during adhesive and resin composite polymerization with various light curing sources. Operative Dentistry. 2004 May;29(3):325-32.

62. Brown W, Dewey W, Jacobs H. Thermal properties of teeth. Journal of Dental Research. 1970 Jul-Aug;49(4):752-5.

63. Hashimoto S, Yamashiro M, Fujita K, Yasuda A, Sunada K. Effects of Epinephrine on Lidocaine Pharmacokinetics and Blood Volume in the Dental Pulp. Journal of Endodontics. 2014 Sep;40(9):1370-4.

64. Kim S, Edwall L, Trowbridge H, Chien S. Effects of local anesthetics on pulpal blood flow in dogs. Journal of Dental Research. 1984 May;63(5):650-2.

ANEXO A

Aprovação do projeto pela Comissão de Ética em Pesquisa da Universidade Estadual de Ponta Grossa. COEP - UEPG

ANEXO B

TERMO DE CONSENTIMENTO ESCLARECIDO

Documentos relacionados