• Nenhum resultado encontrado

com 72 h pós infecção Percentual de

7. CONSIDERAÇÕES FINAIS Este trabalho investigou o papel de

genes da imunidade inata em macrófagos de cães frente à leishmaniose visceral canina, com objetivo de identificar componentes que contribuam para a resistência natural do cão à doença. O estudo solidificou e desenvolveu metodologias. Além disso, demonstrou o perfil de expressão basal de importantes genes associados à imunidade inata em macrófagos caninos. Revelou que macrófagos de cães resistentes e susceptíveis a leishmaniose visceral apresentam expressão de citocinas distinta. Adicionalmente, foi traçada uma correlação entre a expressão de NOD2

e a sobrevivência do parasito intracelular. Resultados, estes, que abrem portas para futuros estudos. Devido à importância para saúde pública da leishmaniose visceral, esta importante linha de pesquisa visa contribuir para um melhor entendimento da resposta imune inata do cão frente à infecção, com consequente ampliação do conhecimento sobre a doença e impacto significativo em seu controle. Finalmente, o potencial de estudos com TLR, NLR e outros genes da imunidade inata em cães é extremamente amplo e pode auxiliar a desvendar a patogênese de inúmeras doenças que acometem essa espécie.

42 8. REFERÊNCIAS BIBLIOGRÁFICAS

ABBAS, A. K.; LICHTMAN, A. H.; PILLAI, S. Imunologia celular e molecular. 6 ed. Brasil: Elsevier, 2008. 576 p.

AJDARY, S.; GHAMILLOUIE, M. M.; ALIMOHAMMADIAN, M. H. et al. Toll- like receptor 4 polymorphisms predispose to cutaneous leishmaniasis. Microbes Infect., v. 13, n. 3, p. 226-231, 2011. ALLENSPACH, K.; HOUSE, A.; SMITH, K. et al. Evaluation of mucosal bacteria and histopathology, clinical disease activity and expression of Toll-like receptors in German shepherd dogs with chronic enteropathies. Vet. Microbiol., v. 146, n. 3-4, p. 326-235, 2010.

ALTET, L.; FRANCINO, O.; SOLANO- GALLEGO, L. et al. Mapping and sequencing of the canine Nramp1 gene and identification of mutations in leishmaniasis-susceptible dogs. Infect. Immun., v. 70, n. 6, p. 2763-2771, 2002. ALVAR, J; VÉLEZ, I. D.; BERN, C. et al. Leishmaniasis Worldwide and Global Estimates of Its Incidence. PLoS One, v.7, n. 5, e35671, 2012.

ARAÚJO, M. S.; ANDRADE, R. A.; SATHLER-AVELAR, R. et al. T-cell- derived cytokines, nitric oxide production by peripheral blood monocytes and seric anti-Leishmania (Leishmania) chagasi IgG subclass patterns following immunization against canine visceral leishmaniasis using Leishvaccine and Leishmune. Vaccine, v. 27, n. 7, p. 1008-1017, 2009.

ASTAKHOVA, N. M.; PERELYGIN, A. A.; ZHARKIKH, A. A. et al. Characterization of equine and other vertebrate TLR3, TLR7, and TLR8 genes. Immunogenetics, v. 61, n. 7, p. 529-539, 2009.

ATHMAN, R.; PHILPOTT, D. Innate immunity via Toll-like receptors and Nod proteins. Curr. Opin. Microbiol., v. 7, n. 1, p. 25-32, 2004.

BECKER, I.; SALAIZA, N.; AGUIRRE, M. et al. Leishmania lipophosphoglycan (LPG) activates NK cells through toll-like receptor-2. Mol. Biochem. Parasitol., v. 130, n. 2, p. 65-74, 2003.

BRADLEY, D. J. Regulation of Leishmania populations within the host. II. Genetic control of acute susceptibility of mice to Leishmania donovani infection. Clin. Exp. Immunol. v. 30, p. 130-140, 1977.

BUENO, R; MELLO, M. N.; MENEZES, C. A. et al. Phenotypic, functional, and quantitative characterization of canine peripheral blood monocyte-derived macrophages. Mem. Inst. Oswaldo Cruz, v. 100, n. 5, p. 521-524, 2005.

BUENO, R.; CARVALHO NETA, A. V.; XAVIER, M. N. et al. cDNA sequencing and expression of Nramp1 (Slc11a1) in dogs phenotypically resistant or susceptible to visceral leishmaniasis. Vet. Immunol. Immunopathol., v. 127, n. 3-4, p. 332-339, 2009.

BURGENER, I. A.; JUNGI, T. W. Antibodies specific for human or murine Toll-like receptors detect canine leukocytes by flow cytometry. Vet. Immunol. Immunopathol., v. 124, n. 1-2, p. 184-191, 2008.

BURGENER, I. A; KONIG, A.; ALLENSPACH, K. et al. Upregulation of toll-like receptors in chronic enteropathies in dogs. J. Vet. Intern. Med., v. 22, n. 3, p. 553-560, 2008.

43 CEZÁRIO, G. A.; DE OLIVEIRA, L. R.;

PERESI, E. et al. Analysis of the expression of toll-like receptors 2 and 4 and cytokine production during experimental Leishmania chagasi infection. Mem. Inst. Oswaldo Cruz, v. 106, n. 5, p. 573-583, 2011.

CHANDRA, D.; NAIK, S. Leishmania donovani infection down-regulates TLR2- stimulated IL-12p40 and activates IL-10 in cells of macrophage/monocytic lineage by modulating MAPK pathways through a contact-dependent mechanism. Clin. Exp. Immunol., v. 154, n. 2, p. 224-234, 2008. CHANG, J. S.; RUSSELL, G. C.; JANN, O. et al. Molecular cloning and characterization of Toll-like receptors 1-10 in sheep. Vet. Immunol. Immunopathol., v. 127, n. 1-2, p. 94-104, 2009.

CHOTIMANUKUL, S.;

SIRIVAIDYAPONG, S. Differential expression of Toll-like receptor 4 (TLR4) in healthy and infected canine endometrium. Theriogenology, v. 76, n. 6, p. 1152-1161, 2011.

CHOTIMANUKUL, S.;

SIRIVAIDYAPONG, S. The Localization of Toll-like Receptor 2 (TLR2) in the Endometrium and the Cervix of Dogs at Different Stages of the Oestrous Cycle and with Pyometra. Reprod. Dom. Anim., v. 47, n. 6, p. 351–355, 2012.

CRISTOFARO, P.; OPAL, S. M. Role of Toll-like receptors in infection and immunity: clinical implications. Drugs, v. 66, n. 1, p. 15-29, 2006.

DAIFALLA, N. S.; BAYIH, A. G.; GEDAMU, L. Leishmania donovani recombinant iron superoxide dismutase B1 protein in the presence of TLR-based adjuvants induces partial protection of BALB/c mice against Leishmania major

infection. Exp. Parasitol., v. 131, n. 3, p. 317-324, 2012.

DE VEER, M. J.; CURTIS, J. M.; BALDWIN, T. M. et al. MyD88 is essential for clearance of Leishmania major: possible role for lipophosphoglycan and Toll-like receptor 2 signaling. Eur. J. Immunol., v. 33, n. 10, p. 2822-2831, 2003. DINIZ, S. A.; SILVA, F. L.; CARVALHO NETA, A. C. et al. Animal reservoirs for visceral leishmaniasis in densely populated urban areas. J. Infect. Dev. Ctries, v. 2, n. 1, p. 24-33, 2008.

FIUZA, J. A.; SANTIAGO, H. C.; SELVAPANDIYANE, A. et al. Induction of immunogenicity by live attenuated Leishmania donovani centrin deleted parasites in dogs. Vaccine, v. 31, p. 1785- 1792, 2013.

FLANDIN, J. F.; CHANO, F.; DESCOTEAUX, A. RNA interference reveals a role for TLR2 and TLR3 in the recognition of Leishmania donovani promastigotes by interferon-gamma- primed macrophages. Eur. J. Immunol., v. 36, n. 2, p. 411-420, 2006.

FUKUI, A.; INOUE, N.; MATSUMOTO M. et al. Molecular cloning and functional characterization of chicken toll-like receptors. A single chicken toll covers multiple molecular patterns. J. Biol. Chem., v. 276, n. 50, p. 47143-47149, 2001.

GRIMALDI, G.; TESH, R. B. Leishmaniases of the New World: current concepts and implications for future research. Clin. Microbiol. Rev., v. 6, n. 3, p. 230-50, 1993.

GROS, P.; SKAMENE, E.; FORGET, A. Genetic control of natural resistance to

44 Mycobacterium bovis (BCG) in mice. J.

Immunol. v. 127, p. 2417-2421, 1981. GUERRA, C. S.; SILVA, R. M.;

CARVALHO, L. O. et al.

Histopathological analysis of initial cellular response in TLR-2 deficient mice experimentally infected by Leishmania (L.) amazonensis. Int. J. Exp. Pathol., v. 91, n. 5, p. 451-459, 2010.

HANSSON, G. K.; EDFELDT, K. Toll to be paid at the gateway to the vessel wall. Arterioscler. Thromb. Vasc. Biol., v. 25, n. 6, p. 1085-1087, 2005.

HARHAY, M. O.; OLLIARO, P. L.; COSTA, D. L. et al. Urban parasitology: visceral leishmaniasis in Brazil. Trends Parasitol., v. 27, n. 9, p. 403-409, 2011. HASHIMOTO, M.; ASAHINA, Y.; SANO, J. et al. Cloning of canine toll-like receptor 9 and its expression in dog tissues. Vet. Immunol. Immunopathol., v. 106, n. 1- 2, p. 159-163, 2005.

HOUSE, A. K.; GREGORY, S. P.; CATCHPOLE, B. Pattern-recognition receptor mRNA expression and function in canine monocyte/macrophages and relevance to canine anal furunuclosis. Vet. Immunol. Immunopathol., v. 124, n. 3-4, p. 230-240, 2008.

HOUSE, A. K; BINNS, M. M.; GREGORY, S. P.; CATCHPOLE, B. Analysis of NOD1, NOD2, TLR1, TLR2, TLR4, TLR5, TLR6 and TLR9 genes in anal furunculosis of German shepherd dogs. Tissue Antigens, v. 73, n. 3, p. 250- 254, 2009.

HUBER, S.; ROOSJE, P. J.; JANDA, J. et al. Characterization of antibodies specific for canine TLR4, 5 and 9 by ELISA,

Western blotting and

immunohistochemistry. Vet. Immunol.

Immunopathol., v. 144, n. 3-4, p. 247-254, 2011.

JAYAKUMAR, A.; CASTILHO, T. M.; PARK, E. et al. TLR1/2 activation during heterologous prime-boost vaccination (DNA-MVA) enhances CD8+ T Cell responses providing protection against Leishmania (Viannia). PLoS Negl. Trop. Dis., v. 5, n. 6, e1204, 2011.

KANNEGANTI, T.; LAMKANFI, M.; NÚÑEZ, G. Intracellular NOD-like receptors in host defense and disease. Immunity, v. 27, n. 4, p. 549-559, 2007. KARMAKAR, S.; BHAUMIK, S. K.; PAUL, J.; DE, T. TLR4 and NKT cell synergy in immunotherapy against visceral leishmaniasis. PLoS Pathog., v. 8, n. 4, e1002646, 2012.

KATHRANI, A.; HOUSE, A.; CATCHPOLE, B. et al. Polymorphisms in the TLR4 and TLR5 gene are significantly associated with inflammatory bowel disease in German shepherd dogs. PLoS One, v. 5, n. 12, e15740, 2010.

KAVOOSI, G.; ARDESTANI, S. K.; KARIMINIA, A. The involvement of TLR2 in cytokine and reactive oxygen species (ROS) production by PBMCs in response to Leishmania major phosphoglycans (PGs). Parasitology, v. 136, n. 10, p. 1193-1199, 2009.

KROPF, P.; FREUDENBERG, M. A.; MODOLELL, M. et al. Toll-like receptor 4 contributes to efficient control of infection with the protozoan parasite Leishmania major. Infect. Immun., v. 72, n. 4, p. 1920- 1928, 2004.

KUROKI, K.; STOKER, A. M.; SIMS, H. J.; COOK, J. L. Expression of Toll-like receptors 2 and 4 in stifle joint synovial tissues of dogs with or without

45 osteoarthritis. Am. J. Vet. Res., v. 71, n. 7,

p. 750-754, 2010.

LEE, C. C.; AVALOS, A. M.; PLOEGH, H. L. Accessory molecules for Toll-like receptors and their function. Nat. Rev. Immunol., v. 12, n. 3, p. 168-179, 2012.

LIESE, J.; SCHLEICHER, U.; BOGDAN, C. TLR9 signaling is essential for the innate NK cell response in murine cutaneous leishmaniasis. Eur. J. Immunol., v. 37, n. 12, p. 3424-3434, 2007.

LISSNER, C. R.; SWANSON, R. N.; O’BRIEN, A. D. Genetic control of the innate resistance of mice to Salmonella typhimurium: expression of the Ity gene in peritoneal and splenic macrophages isolated in vitro. J. Immunol. v. 131, p. 3006-3013, 1983.

LIVAK, J.; SCHMITTGEN, D. Analysis of relative gene expression data using real- time quantitative PCR and the 2 Ct Method. Methods, v. 25, n. 4, p. 402-408, 2001.

LOPES, E. G. P. Distribuição temporal e espacial da leishmaniose visceral em humanos e cães em Belo Horizonte-MG, 1993 a 2007. 2009. 95f. Dissertação (Mestrado em Ciência Animal) - Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte.

MAURICIO, I.L.; HOWARD, M.K.; STOTHARD, J.R. et al. Genetic diversity in the Leishmania donvani complex. Parasitology, v. 119, p. 237-246, 1999. MCMAHON, L. A.; HOUSE, A. K.; CATCHPOLE, B. et al. Expression of Toll- like receptor 2 in duodenal biopsies from dogs with inflammatory bowel disease is associated with severity of disease. Vet.

Immunol. Immunopathol., v. 135, n. 1-2, p. 158-163, 2010.

MEDZHITOV, R.; PRESTON-

HURLBURT, P.; JANEWAY, C. A. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature, v. 388, n. 6640, p. 394- 397, 1997.

MERCIER, E.; PETERS, I. R.; DAY, M. J. et al. Toll- and NOD-like receptor mRNA expression in canine sino-nasal aspergillosis and idiopathic lymphoplasmacytic rhinitis. Vet. Immunol. Immunopathol., v. 145, n. 3-4, p. 618-624, 2012.

MUIR, P.; SCHAEFER, S. L.; MANLEY, P. A. et al. Expression of immune response genes in the stifle joint of dogs with oligoarthritis and degenerative cranial cruciate ligament rupture. Vet. Immunol. Immunopathol., v. 119, n. 3-4, p. 214-221, 2007.

MURAILLE, E.; DE TREZ, C.; BRAIT, M. et al. Genetically resistant mice lacking MyD88-adapter protein display a high susceptibility to Leishmania major infection associated with a polarized Th2 response. J. Immunol., v. 170, n. 8, p. 4237-4241, 2003.

OKUI, Y.; KANO, R.; MARUYAMA, H. et al. Cloning of canine Toll-like receptor 7 gene and its expression in dog tissues. Vet. Immunol. Immunopathol., v. 121, n. 1-2, p. 156-160, 2008.

PALATNIK-DE-SOUSA, C. B.; DAY, M. J. One Health: the global challenge of epidemic and endemic leishmaniasis. Parasit. Vectors, v. 4, p. 197, 2011. PAUL, J.; KARMAKAR, S.; DE, T. TLR mediated distinct IFN- /IL-10 pattern induces protective immunity against

46 murine visceral leishmaniasis. Eur. J.

Immunol., v. 42, n.8, p. 2087-2099, 2012. PAUN, A.; BANKOTI, R.; JOSHI, T. et al. Critical role of IRF-5 in the development of T helper 1 responses to Leishmania donovani infection. PLoS Pathog., v. 7, n. 1, e1001246, 2011.

PITCHER, D. G.; SAUNDERS, N. A.; OWEN, R. J. Rapid extraction of bacterial genomic DNA with guanidium thiocyonate. Lett. Appl. Microbiol, v. 8, p. 151-156, 1989.

QUINNELL, R. J.; KENNEDY, L. J.; BARNES, A. et al. Susceptibility to visceral leishmaniasis in the domestic dog is associated with MHC class II polymorphism. Immunogenetics, v. 55, n. 1, p. 23-28, 2003.

REIS, A. B.; MARTINS-FILHO, O. A.; TEIXEIRA-CARVALHO, A. et al. Systemic and compartmentalized immune response in canine visceral leishmaniasis. Vet. Immunol. Immunopathol., v. 128, n. 1- 3, p. 87-95, 2009.

SAFAIYAN, S.; BOLHASSANI, A.; NYLEN, S. et al. Contribution of human neutrophils in the development of protective immune response during in vitro Leishmania major infection. Parasite Immunol., v. 33, n. 11, p. 609-620, 2011. SANCHEZ-ROBERT, E.; ALTET, L.; UTZET-SADURNI, M. et al. Slc11a1 (formerly Nramp1) and susceptibility to canine visceral leishmaniasis. Vet. Res., v. 39, n. 3, p. 36, 2008.

SARIDOMICHELAKIS, M. N. Advances in the pathogenesis of canine leishmaniosis: epidemiologic and diagnostic implications. Vet. Dermatol., v. 20, n. 5-6, p. 471-489, 2009.

SCHLEICHER, U.; LIESE, J.; KNIPPERTZ, I. et al. NK cell activation in visceral leishmaniasis requires TLR9, myeloid DCs, and IL-12, but is independent of plasmacytoid DCs. J. Exp. Med., v. 204, n. 4, p. 893-906, 2007. SILVA, E. S.; ROSCOE, E. H.; ARRUDA, L. Q. et al. Leishmaniose visceral canina: estudo clínico-epidemiológico e diagnóstico. Rev. Bras. Med. Vet., v.23, n.3, p.111-116, 2001.

SILVA, E.; LEITÃO, S.; HENRIQUES, S. et al. Gene transcription of TLR2, TLR4, LPS ligands and prostaglandin synthesis enzymes are up-regulated in canine uteri with cystic endometrial hyperplasia- pyometra complex. J. Reprod. Immunol., v. 84, n. 1, p. 66-74, 2010.

SOUZA, T. D.; TURCHETTI, A. P.; FUJIWARA, R. T.; PAIXÃO, T. A.; SANTOS, R. L. Visceral leishmaniasis in zoo and wildlife. Vet. Parasitol., 2014, in press (DOI: 10.1016/j.vetpar.2013.12.025). SRIVASTAVA, A.; SINGH, N.; MISHRA, M. et al. Identification of TLR inducing Th1-responsive Leishmania donovani amastigote-specific antigens. Mol. Cell. Biochem., v. 359, n. 1-2, p. 359- 368, 2012.

SWERDLOW, M. P.; KENNEDY, D. R.; KENNEDY, J. S. et al. Expression and function of TLR2, TLR4, and Nod2 in primary canine colonic epithelial cells. Vet. Immunol. Immunopathol., v. 114, n. 3-4, p. 313-319, 2006.

TOMAZ-SOCCOL, V.; CASTRO, E. A.; NAVARRO, I. T. et al. Allochthonous cases of canine visceral leishmaniasis in Paraná, Brazil: epidemiological implications. Rev. Bras. Parasitol. Vet., v. 18, n. 3, p. 46-51, 2009.

47 TURIN, L.; RIVA, F. Toll-like receptor

family in domestic animal species. Crit. Rev. Immunol., v. 28, n. 6, p. 513-538, 2008.

VIANA, L. G.; ASSIS, T. S.; ORSINI, M. et al. Combined diagnostic methods identify a remarkable proportion of asymptomatic Leishmania (Leishmania) chagasi carriers who present modulated

cytokine profiles. Trans. R. Soc. Trop. Med. Hyg., v. 102, n. 6, p 548-555, 2008.

VIDAL, S.; TREMBLAY, M. L.; GOVONI, G. et al. The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene. J. Exp. Med., v. 182, n. 3, p. 655-666, 1995.

48 9. ANEXOS 9.1. Soluções • Acetato de amônio 7 M Acetato de amônio 57,75 g Água Milli-Q q.s.p. 100 mL • Clorofórmio 2-pentanol Clorofórmio 96 mL Álcool isopropílico 4 mL • EDTA 0,5 M EDTA 18,61 g Água Milli-Q q.s.p. 100 mL pH 8 • Formaldeído 12,3 M Formaldeído 41 mL

Água Milli Q tratada com DEPC q.s.p. 50 mL

• Isotono

Ácido cítrico 2,1 g

Cloreto de sódio (NaCl) 1,4 g

Formol PA 1 mL Água destilada q.s.p 200 mL • PBS Na2HPO4 bibásico 1,09 g NaHPO4 monobásico 0,32 g NaCl 9 g Água destilada q.s.p. 1000 mL pH entre 7,2 e 7,4

• PBS para Elisa R & D Systems

Na2HPO4 bibásico 2,1708 g KH2PO4 monobásico 0,204 g NaCl 7,946 g KCl 0,2025 g Água destilada q.s.p. 1000 mL pH entre 7,2 e 7,4

49 • Reagente diluente BSA 1 g PBS 100 mL pH entre 7,2 e 7,4 • RPMI completo RPMI 500 mL Glutamina 5,5 mL

Aminoácidos não essenciais 5,5 mL

Piruvato 5,5 mL

Bicarbonato de sódio 12 mL Penicilina/estreptomicina 5,5 mL Soro fetal bovino inativado 50 mL

• Sarcosyl 10 %

N-Lauroylsarcosine sodium salt 10 g Água Milli-Q q.s.p. 100 mL • Solução de bloqueio (PBSC) Caseína 20 g PBS 1000 mL • Solução de extração Tiocionato de guanidina 30 g EDTA 0,5 M pH 8 10 mL Sarcosyl 10% 2,5 mL Água Milli-Q q.s.p. 50 mL

• Solução de lavagem (PBS-tween)

PBS 1000 mL Tween 20 0,5 mL pH entre 7,2 e 7,4 • Solução de revelação OPD 0,02 g Tampão citrato 30 mL Peróxido de hidrogênio 12 µL • Solução substrato Tetrametilbenzidina 10 mL Água oxigenada 10 mL

50 • Tampão carbonato (tampão de ligação)

Na2CO3 (carbonato de sódio) 1,59 g

NaHCO3 (bicarbonato de sódio) 2,93 g

Água destilada q.s.p. 1000 mL pH 9,6, conservar a 4ºC

• Tampão citrato (tampão substrato)

Na2HPO4 (fosfato de sódio bibásico) 7,19 g

Ácido cítrico 5,19 g Água destilada q.s.p. 1000 mL pH 5, conservar a 4ºC • Tampão de corrida EDTA 0,5 M pH 8 20 µL Azul de bromofenol 0,025 g Xileno cianol 0,025 g Glicerol 5 mL

Água Milli Q tratada com DEPC q.s.p. 10 mL

• Tampão de lise de hemácias

Tris base 0,20587 g Cloreto de amônio 0,77 g Água Milli Q q.s.p. 100 mL • Tampão MOPS (10x) Acetato de sódio 6,804 g EDTA 1,8612 g MOPS 57,8 g

Água Milli Q tratada com DEPC q.s.p. 500 mL pH 7 • Tampão TBE Tris base 10,8 g Ácido bórico 5,5 g EDTA 0,744 g Água destilada q.s.p. 1000mL • Tampão TE Tris HCl 1 M pH 8 1 mL EDTA 0,5 M pH 8 0,2 mL Água Milli-Q q.s.p. 100 mL

51 • Tris HCl 1 M

Tris base 6,055 g

Água Milli-Q q.s.p. 50 mL pH 8

52 9.2. Certificado do CETEA

Documentos relacionados