• Nenhum resultado encontrado

A literatura científica e patentária aponta uma série de ácidos de base biológica passíveis de serem obtidos a partir da biomassa. Alguns têm processos produtivos consolidados, enquanto outros têm o grande desafio de superar as barreiras técnicas e econômicas para se consolidarem em um mercado altamente competitivo, dominado por produtos petroquímicos. Indiscutivelmente, os maiores mercados são os mais atrativos, e pequenas melhorias em produtos e processos pré ‑existentes podem representar grandes ganhos para a indústria. Assim, para os ácidos da Classe 1, nota‑ ‑se uma busca continuada por melhoria de processos, especialmente a diversificação de matérias ‑primas. Para os ácidos da Classe 2, entretanto, além das questões técnicas e econômicas, há a barreira de entrar em um mercado de grandes commodities, liderado pela tradicional indústria petroquímica, cujo mercado não irá facilmente aceitar a substituição se não houver incentivos (ou exigências) para uma cadeia mais complexa a ser formada de matérias ‑primas renováveis, especialmente em se tratando de biomassas.

Resta assim a perspectiva de novo produtos, com propriedades diferenciadas, com maior valor agregado. Assim, têm ‑se os produtos da Classe 3, com a possiblidade de novos intermediários para fármacos, agricultura e principalmente, para abarcar uma fatia dos polímeros petroquímicos. Por possuírem características únicas, como biodegradabilidade ou biocompatibilidade, podem justificar custos mais elevados de produção ou uma cadeia logística mais complexa.

Nesse sentido, é imprescindível a consulta recorrente da literatura científica, seja ela científica ou patentária. Este estudo mostrou que ainda predomina a pesquisa envolvendo os ácidos de maior volume. No entanto, os produtos da Classe 3 devem ser monitorados para se avaliar quais seguirão nesse cenário e quais não seguirão adiante. Os resultados analíticos aqui expostos indicam um cenário bastante promissor para os ácidos carboxílicos de base biológica.

Referências

AI, B.; CHI, X.; MENG, J.; SHENG, Z.; ZHENG, L.; ZHENG, X.; LI, J. Consolidated bioprocessing for butyric acid production from rice straw with undefined mixed culture.

Frontiers in Microbiology, v. 7, p. 1648, 2016.

AKHTAR, J.; IDRIS, A.; ABD. AZIZ, R. Recent advances in production of succinic acid from lignocellulosic biomass. Applied Microbiology and Biotechnology, v. 98, n. 3, p. 987 ‑1000,

2014.

ALMEIDA, J. R. M.; FAVARO, L. C. L.; QUIRINO, B. F. Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biotechnology for Biofuels, v. 5, n. 1, p. 48 ‑64, 2012.

ALONSO, S. L.; RENDUELES, M.; DÍAZ, M. Microbial production of specialty organic acids from renewable and waste materials. Critical Reviews on Biotechnology, v. 35, n. 4, p. 497

‑513, 2015.

ATSUMI, S.; HANAI, T.; LIAO, J. C. Non ‑fermentative pathways for synthesis of branched ‑chain higher alcohols as biofuels. Nature, v. 451, n. 7174, p. 86 ‑89, 2008.

BABU, T.; YUN, E. J.; KIM, S.; KIM, D. H.; LIU, K. H.; KIM, S. R.; KIM, K. H. Engineering Escherichia coli for the production of adipic acid through the reversed β ‑oxidation pathway.

Process Biochemistry, v. 50, n. 12, p. 2066 ‑2071, 2015.

BAIN & COMPANY. Potencial de diversificação da indústria química brasileira: relatório

6: modelo econômico ‑financeiro: Metionina. Rio de Janeiro, 2014. Disponível em: http://www. abiquim.org.br/pdf/estudos ‑bndes.pdf. Acesso em: 14 dez. 2016.

BAROI, G. N.; GAVALA, H. N.; WESTERMANN, P.; SKIADAS, I. Fermentative production of butyric acid from wheat straw: economic evaluation. Industrial Crops and Products, v. 104, p.

68 ‑80, 2017.

BAUER JUNIOR, W. Methacrylic acid and derivatives. In: ULLMANN’S encyclopedia of industrial chemistry. Weinheim: Wiley ‑VCH, 2005. p. 1–13.

BECKER, J.; LANGE, A.; FABARIUS, J.; WITTMANN, C. Top value platform chemicals: bio‑ ‑based production of organic acids. Current Opinion in Biotechnology, v. 36, p. 168 ‑175,

2015.

BECKER, J.; WITTMANN, C. Bio ‑based production of chemicals, materials and fuels – Corynebacterium glutamicum as versatile cell factory. Current Opinion in Biotechnology, v.

23, n. 4, p. 631 ‑640, 2012.

BEERTHUIS, R.; ROTHENBERG, G.; SHIJU, N. R. Catalytic routes towards acrylic acid, adipic acid and ε ‑caprolactam starting from biorenewables. Green Chemistry, v. 17, n. 3, p. 1341

‑1361, 2015.

BIDDY, M. J.; SCARLATA, C.; KINCHIN, C. Chemicals from biomass: a market assessment of

bioproducts with near ‑term potential. [S.l.]: National Renewable Energy Laboratory, 2016. 119 p. BIOTECHNOLOGY INNOVATION ORGANIZATION. Advancing the biobased economy:

and beyond. Washington, DC, 2016. Disponível em: https://www.bio.org/sites/default/files/BIO_ Advancing_the_Biobased_Economy_2016.pdf. Acesso em: 12 abr. 2017.

BLAZECK, J.; MILLER, J.; PAN, A.; GENGLER, J.; HOLDEN, C.; JAMOUSSI, M.; ALPER, H. S. Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production. Applied Microbiology and Biotechnology, v. 98, n. 19, p. 8155 ‑8164, 2014.

BOUDRANT, J. Microbial processes for ascorbic acid biosynthesis: a review. Enzyme and Microbial Technology, v. 12, n. 5, p. 322 ‑329, 1990.

BOZELL, J. J.; PETERSEN, G. R. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited.

Green Chemistry, v. 12, n. 4, p. 539 ‑554, 2010.

BRAGA, M.; FERREIRA, P. M.; ALMEIDA, J. R. M. Screening method to prioritize relevant bio ‑based acids and their biochemical processes using recent patent information. Biofuels, Bioproducts and Biorefining, 5 Oct. 2020.

BREMUS, C.; HERRMANN, U.; BRINGER ‑MEYER, S.; SAHM, H. The use of microorganisms in L ‑ascorbic acid production. Journal of Biotechnology, v. 124, n. 1, p. 196 ‑205, 2006.

BRIDGWATER, A. V.; CHINTHAPALLI, R.; SMITH, P. W. Identification and market analysis of most promising added ­value products to be co ­produced with the fuels. Aston:

Aston University, 2010. Disponível em: https://www.bioref ‑integ.eu/fileadmin/bioref ‑integ/user/ documents/D2total__including_D2.1__D2.2__D2.3_.pdf. Acesso em: 23 jan. 2017.

CAÑETE ‑RODRÍGUEZ, A. M.; SANTOS ‑DUEÑAS, I.; JIMÉNEZ ‑HORNERO, J. E.; EHRENREICH, A.; LIEBL, W.; GARCÍA ‑GARCÍA, I. Gluconic acid: properties, production methods and applications—An excellent opportunity for agro ‑industrial by ‑products and waste bio ‑valorization. Process Biochemistry, v. 51, n. 12, p. 1891 ‑1903, 2016.

CAVALCANTE, W. de A.; LEITÃO, R. C.; GEHRING, T. A.; ANGENENT, L. T.; SANTAELLA, S. T. Anaerobic fermentation for n ‑caproic acid production: a review. Process Biochemistry, v. 54,

p. 106 ‑119, 2017.

CAVANI, F.; ALBONETTI, S.; BASILE, F.; GANDINI, A. Chemicals and fuels from bio ­based building blocks. Weinheim: Wiley ‑VCH, 2016.

CHEN, C. T.; LIAO, J. C. Frontiers in microbial 1 ‑butanol and isobutanol production. FEMS Microbiology Letters, v. 363, n. 5, p. 1 ‑13, 2016.

CHEN, G. S.; SIAO, S. W.; SHEN, C. R. Saturated mutagenesis of ketoisovalerate

decarboxylase V461 enabled specific synthesis of 1 ‑pentanol via the ketoacid elongation cycle.

Scientific Reports, v. 7, n. 11284, 2017a.

CHEN, W. ‑S.; STRIK, D. P. B. T. B.; BUISMAN, C. J. N.; KROEZE, C. Production of caproic acid from mixed organic waste: an environmental life cycle perspective. Environmental Science & Technology, v. 51, n. 12, p. 7159 ‑7168, 20 jun. 2017b.

CHEN, Y.; NIELSEN, J. Biobased organic acids production by metabolically engineered microorganisms. Current Opinion in Biotechnology, v. 37, p. 165 ‑172, 2016.

CHO, C.; CHOI, S. Y.; LUO, Z. W.; LEE, S. Y. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering. Biotechnology Advances, v. 33, n. 7, p. 1455 ‑1466, 2015.

CLÉMENT ‑LAROSIÈRE, B.; SCHIEB, P. ‑A.; LESCIEUX ‑KATIR, H.; THÉNOT, M. Biorefinery 2030: future prospects for the bioeconomy. Londres: Springer, 2015.

COBAN, H. B.; DEMIRCI, A. Applied research perspectives of alpha ‑keto acids: from production to applications. In: GRUMEZESCU, A. M.; HOLBAN, A. M. (ed.). Food biosynthesis. [s.l.]

Elsevier, 2017. p. 427 ‑447.

COELHO, L. F.; LIMA, C. J. B. de; RODOVALHO, C. M.; BERNARDO, M. P.; CONTIERO, J. Lactic Acid production by new Lactobacillus plantarum LMISM6 grown in molasses: optimization of medium composition. Brazilian Journal of Chemical Engineering, v. 28, n. 1, p. 27 ‑36,

2011.

CONWAY, R. Preface. In: U.S. BIOBASED products market potential and projections through 2025. Washington, DC: USDA, 2008.

COUTINHO, P.; BOMTEMPO, J. V. Roadmap tecnológico em matérias ‑primas renováveis: uma base para a construção de políticas e estratégias no Brasil. Quimica Nova, v. 34, n. 5, p.

910 ‑916, 2011.

CUKALOVIC, A.; STEVENS, C. V. Feasibility of production methods for succinic acid derivatives: a marriage of renewable resources and chemical technology. Biofuels, Bioproducts and Biorefining, v. 2, n. 6, p. 505 ‑529, 2008.

DE JONG, E.; HIGSON, A.; WALSH, P.; WELLISCH, M. Bio ­based chemicals: value added

products from biorefineries. Wageningen: IEA Bioenergy, 2012. Disponível em: http://www. ieabioenergy.com/wp ‑content/uploads/2013/10/Task ‑42 ‑Biobased ‑Chemicals ‑value ‑added‑ ‑products ‑from ‑biorefineries.pdf. Acesso em: 14 dez. 2016.

DE JONG, E.; STICHNOTHE, H.; BELL, G.; JORGENSEN, H. Bio ­based chemicals: a 2020

update. [Wageningen]: IEA Bioenergy, 2020.

DENG, Y.; MA, L.; MAO, Y. Biological production of adipic acid from renewable substrates: current and future methods. Biochemical Engineering Journal, v. 105, part A, p. 16 ‑26, 2016.

DENG, Y.; MAO, Y. Production of adipic acid by the native ‑occurring pathway in hermobifida fusca B6. Journal of Applied Microbiology, v. 119, n. 4, p. 1057 ‑1063, 2015.

DENG, Y.; MAO, Y.; ZHANG, X. Metabolic engineering of E. coli for efficient production of glycolic acid from glucose. Biochemical Engineering Journal, v. 103, p. 256 ‑262, 2015.

DISHISHA, T. Microbial production of bio ­based chemicals: a biorefinery perspective. Lund:

Lund University, 2013.

DISHISHA, T.; PYO, S. ‑H.; HATTI ‑KAUL, R. Bio ‑based 3 ‑hydroxypropionic ‑ and acrylic acid production from biodiesel glycerol via integrate integrated microbial and chemical catalysis.

Microbial Cell Factories, v. 14, n. 200, p. 1 ‑11, 2015.

DU PONT. Fermentation process for carboxylicacds. [S.l.: s.n.], 1989.

EBNER, H.; ENENKEL, A. Two stage process for the production of vinegar with high acetic acid concentration. 28 fev. 1978. Disponível em: http://www.freepatentsonline.

EWING, F. The biorefinery roadmap for Scotland. Glasgow: Chemical Sciences Scotland,

2015. Disponível em: https://www.sdi.co.uk/media/1005/biorefinery ‑roadmap ‑for ‑scotland‑ ‑jan ‑2015.pdf. Acesso em: 30/09/2017

FROM the sugar platform to biofuels and biochemicals: final report for the European Commission Directorate ‑General Energy. Wageningen: E4tech, 2015. Disponível em: https:// ec.europa.eu/energy/sites/ener/files/documents/EC Sugar Platform final report.pdf. Acesso em: 6 fev. 2017.

FU, Z.; CHEN, W.; WANG, P. Studies on the optimization of D ‑erythorbic acid production by Penicillium griseoroseum FZ ‑13 in relevant fermented culture medium. African Journal of Microbiology Research, v. 7, n. 9, p. 730 ‑735, 2013.

GALLO, J. M. R.; TRAPP, M. A. The chemical conversion of biomass ‑derived saccharides: an overview. Journal of the Brazilian Chemical Society, v. 28, n. 9, p. 1586 ‑1607, 2017.

GATTO, S. J. Innovative processes for renewable chemicals. 2012. Disponível em: http://

www.platts.com/IM.Platts.Content/ProductsServices/ConferenceandEvents/2012/xc240/ presentations/Steve_Gatto.pdf. Acesso em: 13 maio. 2017.

GERMAN. Federal Government. Biorefineries roadmap. Berlin, 2012.

GRANDA, C. B. Short ­and medium ­chain fatty acids as the basis for a renewable chemical platform in the 21st Century. San Diego: [s.n.], 2016.

HANCOCK, R. D.; VIOLA, R. Biotechnological approaches for l ‑ascorbic acid production.

Trends in Biotechnology, v. 20, n. 7, p. 299 ‑305, 2002.

HARMSEN, P. F. H.; HACKMANN, M. M.; BOS, H. L. Green building blocks for bio ‑based plastics. Biofuels, Bioproducts and Biorefining, v. 8, n. 3, p. 306 ‑324, 2014.

HUSTEDE, H.; HABERSTROH, H. ‑J.; SCHINZIG, E. Gluconic acid. In: ULLMANN’S encyclopedia of industrial chemistry. 7. ed. Weinheim: Wiley ‑VCH, 2012. p. 1 ‑7.

ISIKGOR, F. H.; BECER, R. Lignocellulosic biomass: a sustainable platform for the production of bio ‑based chemicals and polymers. Polymer Chemistry, v. 6, n. 25, p. 4497 ‑4559, 2015.

IUPAC. Compendium of Chemical Technology. 2019. Disponível em: https://goldbook.iupac.org/. Acesso em 15/12/2020.

JANG, Y. S.; KIM, B.; SHIN, J. H.; CHOI, Y. J.; CHOI, S.; SONG, C. W.; LEE, J.; PARK, H. G.; LEE, S. Y. Bio ‑based production of C2 ‑C6 platform chemicals. Biotechnology and Bioengineering, v. 109, n. 10, p. 2437 ‑2459, 2012.

JANTAMA, K.; ZHANG, X.; MOORE, J. C.; SHANMUGAM, K. T.; SVORONOS, S. A.; INGRAM, L. O. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnology and Bioengineering, v. 101, n. 5, p. 881 ‑893, 2008.

JI, X. J.; HUANG, H.; OUYANG, P. K. Microbial 2,3 ‑butanediol production: a state ‑of ‑the ‑art review. Biotechnology Advances, v. 29, n. 3, p. 351 ‑364, 2011.

JIANG, J.; ZHANG, Y.; LI, K.; WANG, Q.; GONG, C.; LI, M. Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate. Bioresource Technology, v.

JIN, F.; YUN, J.; LI, G.; KISHITA, A.; TOHJI, K.; ENOMOTO, H. Hydrothermal conversion of carbohydrate biomass into formic acid at mild temperatures. Green Chemistry, v. 10, n. 6, p.

612 ‑615, 2008.

KIM, H. T.; KHANG, T. U.; BARITUGO, K. ‑A.; HYUN, S. M.; KANG, K. H.; JUNG, S. H.; SONG, B. K.; PARK, K.; OH, M. ‑K.; KIM, G. B.; KIM, H. U.; LEE, S. Y.; PARK, S. J.; JOO, J. C. Metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical. Metabolic Engineering, v. 51, p. 99 ‑109, 2019.

KOIVISTOINEN, O. M.; KUIVANEN, J.; BARTH, D.; TURKIA, H.; PITKANEN, J. ‑P.; PENTTILA, M.; RICHARD, P. Glycolic acid production in the engineered yeasts Saccharomyces cerevisiae and Kluyveromyces lactis. Microbial Cell Factories, v. 12, n. 1, p. 82, 2013.

KOMESU, A.; OLIVEIRA, J. A. R.; MARTINS, L. H. S.; MACIEL, M. R. W.; MACIEL FILHO, R. Lactic acid production to purification: a review. BioResources, v. 12, n. 2, p. 4364 ‑4383, 2017.

KRAUSE, F. S.; BLOMBACH, B.; EIKMANNS, B. J. Metabolic engineering of Corynebacterium glutamicum for 2 ‑ketoisovalerate production. Applied and environmental microbiology, v. 76,

n. 24, p. 8053 ‑8061, 2010.

LAMSEN, E. N.; ATSUMI, S. Recent progress in synthetic biology for microbial production of C3 ‑C10 alcohols. Frontiers in Microbiology, v. 3, p. 196, 2012.

LBNET. UK Top bio ­based chemicals opportunities. York: E4tech, 2017. Disponível em:

www.e4tech.com. Acesso em: 30/09/2019.

LEBEAU, J.; EFROMSON, J. P.; LYNCH, M. D. A review of the biotechnological production of methacrylic acid. Frontiers in Bioengineering and Biotechnology. 20 mar. 2020. Disponível

em: https://www.frontiersin.org/articles/10.3389/fbioe.2020.00207/full. Acesso em: 10/07/2020 LI, Y.; JIA, S.; ZHONG, C.; WANG, H.; GUO, . Scale ‑up of 5 ‑keto ‑Gluconic acid production by Gluconobacter oxydans HGI ‑1. Lecture Notes in Electrical Engineering, v. 249, p. 305 ‑312,

2014.

LIU, Z.; LIU, T. Production of acrylic acid and propionic acid by constructing a portion of the 3 ‑hydroxypropionate/4 ‑hydroxybutyrate cycle from Metallosphaera sedula in Escherichia coli.

Journal of Industrial Microbiology & Biotechnology, v. 43, n. 12, p. 1659 ‑1670, 2016.

LOHBECK, K.; HAFERKORN, H.; FUHRMANN, W.; FEDTKE, N. Maleic and fumaric acids. In: ULLMANN’S encyclopedia of industrial chemistry. 7. ed. Weinheim: Wiley ‑VCH, 2012. p. 12. MANDAL, S. K.; BANERJEE, P. C. Submerged production of oxalic acid from glucose by immobilized Aspergillus niger. Process Biochemistry, v. 40, n. 5, p. 1605 ‑1610, 2005.

MARKETSANDMARKETS. Organic acids market by type (acetic acid, citric acid, formic acid, lactic acid, propionic acid, ascorbic acid, gluconic acid, fumaric acid), application (food and beverages, feed, pharmaceuticals, and industrial), and Region ­ Global forecast to 2022. 2017. Disponível em: https://

www.marketsandmarkets.com/Market ‑Reports/organic ‑acid ‑market ‑30190158.

html?gclid=Cj0KCQiAxZPgBRCmARIsAOrTHSbig0ZD1kvuKRZFVoc3mE0Zc_XPtGTVqo4mc_ vY3UtOH5QxoO1 ‑RP0aAnvIEALw_wcB. Acesso em: 3 dez. 2018.

MARTIN ‑DOMINGUEZ, V.; ESTEVEZ, J.; OJEMBARRENA, F. B.; SANTOS, V. E.; LADERO, . Fumaric acid production: a biorefinery perspective. Fermentation, v. 4, n. 2, p. 33, 2018.

MCCOY, M. The final chapter for succinic acid. C&EN Global Enterprise, v. 97, n. 12, p. 15,

2019.

MEIJNEN, J. P. C5 ­technology in Pseudomonas putida S12: construction, analysis and

implementation of D ‑xylose metabolic pathways. [S.l.]: Meijnen J.P., 2010.

MEYER, H. Biotechnology for the production of chemicals, intermediates and pharmaceutical ingredients. In: PATEL, R. N. (ed.). Green bioctalysis. New Jersey: Wiley, 2016. p. 643 ‑674.

MILTENBERGER, K. Hydroxycarboxylic acids, aliphatic. In: ULLMANN’S encyclopedia of industrial chemistry. Weinheim: Wiley ‑VCH, 2005. p. 11.

MOGHIMIPOUR, E. Hydroxy acids, the most widely used anti ‑aging agents. Jundishapur Journal of Natural Pharmaceutical Products, v. 7, n. 1, p. 9 ‑10, 2012. Disponível em: https://

sites.kowsarpub.com/jjnpp/articles/18289.html. Acesso em: 20/07/2016.

MURALI, N.; SRINIVAS, K.; AHRING, B. K. Biochemical production and separation of carboxylic acids for biorefinery applications. Fermentation, v. 3, n. 2, p. 1 ‑25, 2017.

MUSSER, M. T. Adipic acid. In: ULLMANN’S encyclopedia of industrial chemistry. Weinheim: Wiley ‑VCH, 2005. p. 11.

NATTRASS, L.; BIGGS, C.; BAUEN, A.; PARISI, C.; RODRIGUEZ CEREZO, E.; GOMEZ BARBERO, M. The EU bio ­based industry: results from a survey. [S.l]: European Union, 2016.

Disponível em: http://publications.jrc.ec.europa.eu/repository/bitstream/JRC100357/jrc100357. pdf. Acesso em: 15/05/2018

NEE’NIGHAM, P. S.; PANDEY, A. (ed.). Biotechnology for agro ­industrial residues utilization. [S.l.]: Springer, 2009.

O’NEIL, M. J. (ed.). The Merck Index: an encyclopedia of chemicals, drugs, and biologicals. 5.

ed. New Jersey: RSC, 2006.

OECD. Meeting policy challenges for a sustainable bioeconomy. Paris, 2018.

OSTER, B.; FECHTEL, U. Vitamins, 7. Vitamin C (L ‑Ascorbic Acid). In: ULLMANN’S encyclopedia of industrial chemistry. 7. ed. Weinheim: Wiley‑VCH., 2012. p. 16. OZMERAL, C. Advancements in renewable chemical manufacturing and

commercialization. 2014. Disponível em: https://www.bio.org/sites/default/files/Cenan

Ozmeral.pdf. Acesso em: 21 out. 2018.

PAPPENBERGER, G.; HOHMANN, H. ‑P. Industrial production of l ‑ascorbic acid (Vitamin C) and d ‑isoascorbic acid. Advances in Biochemical Engineering/Biotechnology, v. 143, p.

143 ‑188, 2013.

PARK, S. J.; KIM, E. Y.; NOH, W.; PARK, H. M.; OH, Y. H.; LEE, S. H.; SONG, B. K.; JEGAL, J.; LEE, S. Y. Metabolic engineering of Escherichia coli for the production of 5 ‑aminovalerate and glutarate as C5 platform chemicals. Metabolic Engineering, v. 16, p. 42 ‑47, 2013.

PATEL, M. K.; CRANK, M.; DORNBURG, V.; HERMANN, B.; ROES, A. L.; HUSING, B.; OVERBEEK, L. S. van; TERRAGNI, F.; RECCHIA, E. Medium and Long ­term opportunities and risks of the biotechnological production of bulk chemicals from renewable resources. Utrecht: [s.n.], 2006. Disponível em: https://www.researchgate.

Biotechnological_Production_of_Bulk_Chemicals_from_Renewable_Resources ‑The_BREW_ Project. Acesso em: 23 jan. 2017.

PATERAKI, C.; PATSALOU, M.; VLYSIDIS, A.; KOPSAHELIS, N.; WEBB, C.; KOUTINAS, A. A.; KOUTINAS, M. Actinobacillus succinogenes: advances on succinic acid production and prospects for development of integrated biorefineries. Biochemical Engineering Journal, v.

112, p. 285 ‑303, 2016.

PHILP, J. C. Biobased chemicals and bioplastics: finding the right policy balance. Industrial Biotechnology, v. 10, n. 6, p. 379 ‑383, 2014.

POLEN, T.; SPELBERG, M.; BOTT, M. Toward biotechnological production of adipic acid and precursors from biorenewables. Journal of Biotechnology, v. 167, n. 2, p. 75 ‑84, 2013.

POLTRONIERI, P.; D ’URSO, O. F. (ed.). Biotransformation of agricultural waste and by­ ­products. [Roma]: Elsevier, 2016.

RAMACHANDRAN, S.; FONTANILLE, P.; PANDEY, A.; LARROCHE, C. Gluconic acid:

properties, applications and microbial production. Food Technology and Biotechnology, v. 44,

n. 2, p. 185 ‑195, 2006.

REICHERT, J.; BRUNNER, B.; JESS, A.; WASSERSCHEID, P.; ALBERT, J. Biomass oxidation to formic acid in aqueous media using polyoxometalate catalysts – boosting FA selectivity by in ‑situ extraction. Energy & Environmental Science, v. 8, n. 10, p. 2985 ‑2990, 2015.

REUTEMANN, W.; KIECZKA, H. Formic acid. In: ULLMANN’s encyclopedia of industrial chemistry. Weinheim: Wiley ‑VCH, 2005. p. 22.

RIBÉREAU ‑GAYON, P.; GLORIES, Y.; MAUJEAN, A.; DUBOURDIEU, D. Handbook of enology: volume 2: the chemistry of wine stabilization and treatments. 2. ed. Chinchester:

Wiley ‑VCH, 2006.

RIEMENSCHNEIDER, W. Carboxylic acids, aliphatic. In: ULLMANN’S encyclopedia of industrial chemistry. Weinheim: Wiley‑VCH, 2005. p. 15.

RIEMENSCHNEIDER, W.; TANIFUJI, M. Oxalic acid. In: ULLMANN’S encyclopedia of industrial chemistry. 7. ed. Weinheim: Wiley‑VCH, 2012. p. 14.

RINALDI, R.; SCHÜTH, F. Design of solid catalysts for the conversion of biomass. Energy & Environmental Science, n. 6, p. 610 ‑626, 2009.

RODRIGUEZ, B. A.; STOWERS, C. C.; PHAM, V.; COX, B. M. The production of propionic acid, propanol and propylene via sugar fermentation: an industrial perspective on the progress, technical challenges and future outlook. Green Chemistry, n. 3, p. 1066 ‑1076, 2014.

ROESLER, R. Strategic roadmap for the Brazilian bioeconomy. [S.l.: s.n.], 2017.

ROHLES, C. M.; GLASER, L.; KOHLSTEDT, M.; GIBELMANN, G.; PEARSON, S.; CAMPO, A.; BECKER, J.; WITTMANN, C. A bio ‑based route to the carbon ‑5 chemical glutaric acid and to bionylon ‑6,5 using metabolically engineered Corynebacterium glutamicum. Green Chemistry,

v. 20, n. 20, p. 4662 ‑4674, 2018.

SAHA, B. C. Emerging biotechnologies for production of itaconic acid and its applications as a platform chemical. Journal of Industrial Microbiology & Biotechnology, v. 44, n. 2, p. 303

SAUER, M.; PORRO, D.; MATTANOVICH, D.; BRANDUARDI, P. Microbial production of organic acids: expanding the markets. Trends in Biotechnology, v. 26, n. 2, p. 100 ‑108, 2008.

SHEN, C. R.; LIAO, J. C. A synthetic iterative pathway for ketoacid elongation. Methods in Enzymology, v. 497, p. 469 ‑481, 2011.

SOLOMONS, T. W. G.; FRYHLE, C. .; SNYDER, S. A. Organic chemistry. 11. ed. [S.l.]: John

Wiley &Sons, 2014.

SONG, C. W.; KIM, J. W.; CHO, I. J.; LEE, S. Y. Metabolic engineering of Escherichia coli for the production of 3 ‑ hydroxypropionic acid and malonic acid through beta ‑alanine route. ACS Synthetic Biology, v. 5, n. 11, p. 1256 ‑1263, 2016a.

SONG, H.; LEE, S. Y. Production of succinic acid by bacterial fermentation. Enzyme and Microbial Technology, v. 39, n. 3, p. 352 ‑361, 2006.

SONG, Y.; LI, J.; SHIN, H. ‑D.; LIU, L.; DU, G.; CHEN, J. Biotechnological production of alpha‑ ‑keto acids: current status and perspectives. Bioresource Technology, v. 219, p. 716 ‑724,

2016b.

STAR ‑COLIBRI. European biorefinery joint strategic research roadmap for 2020. [S.l.],

2011.

STRAATHOF, A. J. J. Transformation of biomass into commodity chemicals using enzymes or cells. Chemical Reviews, v. 114, n. 3, p. 1871 ‑1908, 2013.

STRAATHOF, A. J. J.; BAMPOULI, A. Potential of commodity chemicals to become bio ‑based according to maximum yields and petrochemical prices. Biofuels, Bioproducts & Biorefining,

v. 11, n. 5, p. 798 ‑810, 2017.

STRAATHOF, A. J. J.; SIE, S.; FRANCO, T. T.; WIELEN, L. A. M. van der. Feasibility of acrylic acid production by fermentation. Applied Microbiology and Biotechnology, v. 67, n. 6, p.

727 ‑734, 2005.

STRITTMATTER, H.; HILDBRAND, S.; POLLAK, P. Malonic acid and derivatives. In: ULLMANN’S encyclopedia of industrial chemistry. 7. ed. Weinheim: Wiley‑VCH, 2012. p. 18. TASHIRO, Y.; RODRIGUEZ, G. M.; ATSUMI, S. 2‑Keto acids based biosynthesis pathways for renewable fuels and chemicals. Journal of Industrial Microbiology & Biotechnology, v. 42,

n. 3, p. 361 ‑373, 2015.

TSUGE, Y.; YAMAMOTO, S.; KATO, N.; SUDA, M.; VERTÈS, A. A.; YUKAWA, H.; INUI, M. Overexpression of the phosphofructokinase encoding gene is crucial for achieving high production of D ‑lactate in Corynebacterium glutamicum under oxygen deprivation. Applied Microbiology and Biotechnology, v. 99, n. 11, p. 4679 ‑4689, 2015.

VAZ JUNIOR, S. (ed.). Biomass and green chemistry: building a renewable pathway. Cham:

Springer International, 2017.

VIDRA, A.; NÉMETH, Á. Bio ‑produced acetic acid: A review. Periodica Polytechnica Chemical Engineering, v. 62, n. 3, p. 245 ‑256, 2018.

WANG, J.; WU, Y.; SUN, X.; YUAN, Q.; YAN, Y. De Novo biosynthesis of glutarate via α ‑Keto acid carbon chain extension and decarboxylation pathway in Escherichia coli. ACS Synthetic Biology, v. 6, n. 10, p. 1922 ‑1930, 2017.

WEI, D.; XU, J.; SUN, J.; SHI, J.; HAO, J. 2 ‑Ketogluconic acid production by Klebsiella pneumoniae CGMCC 1.6366. Journal of Industrial Microbiology and Biotechnology, v. 40,

n. 6, p. 561 ‑570, 2013a.

WEI, D.; YANG, S. ‑T.; LIU, X. Butyric acid production from sugarcane bagasse hydrolysate by Clostridium tyrobutyricum immobilized in a fibrous ‑bed bioreactor. Bioresource Technology, v.

129, p. 553 ‑560, 2013b.

WERPY, T.; PETERSEN, G. (ed.). Top value added chemicals from biomass: volume I—

Results of screening for potential candidates from sugars and synthesis gas energy efficiency and renewable energy. [S.l.]: NREL, 2004.

WOJCIESZAK, R.; SANTARELLI, F.; PAUL, S.; DUMEIGNIL, F.; CAVANI, F.; GONÇALVES, R. V. Recent developments in maleic acid synthesis from bio ‑based chemicals. Sustainable Chemical Processes, v. 3, n. 9, 2015.

XIONG, M.; DENG, J.; WOODRUFF, A. P.; ZHU, M.; ZHOU, J.; PARK, S. W.; LI, H.; FU, Y.; ZHANG, K. A Bio ‑catalytic approach to aliphatic ketones. Scientific Reports, v. 2, n. 1, p. 311,

2012.

XU, K.; XU, P. Efficient production of l ‑lactic acid using co ‑feeding strategy based on cane molasses/glucose carbon sources. Bioresource Technology, v. 153, p. 23 ‑29, 2014.

YAMANE, T.; TANAKA, R. Highly accumulative production of l(+) ‑lactate from glucose by crystallization fermentation with immobilized Rhizopus oryzae. Journal of Bioscience and Bioengineering, v. 115, n. 1, p. 90 ‑95, 1 jan. 2013.

YANG, H.; WANG, Z.; LIN, M.; YANG, S. ‑T. Propionic acid production from soy molasses by Propionibacterium acidipropionici: fermentation kinetics and economic analysis. Bioresource Technology, v. 250, p. 1 ‑9, 2018.

YANG, L.; LÜBECK, M.; LÜBECK, P. S. Aspergillus as a versatile cell factory for organic acid production. Fungal Biology Reviews, v. 31, n. 1, p. 33 ‑49, 2017.

YIN, X.; LI, J.; SHIN, H. ‑D.; DU, G.; LIU, L.; CHEN, J. Metabolic engineering in the

biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: advances and prospects. Biotechnology Advances, v. 33, n. 6, p. 830 ‑841, 2015.

YONEDA, N.; KUSANO, S.; YASUI, M.; PUJADO, P.; WILCHER, S. Recent advances in processes and catalysts for the production of acetic acid. Applied Catalysis A: General, v. 221,

n. 1 ‑2, p. 253 ‑265, 2001.

YU, J. ‑L.; XIA, X. ‑X.; ZHONG, J. ‑J.; QIAN, Z. ‑G. Direct biosynthesis of adipic acid from a synthetic pathway in recombinant escherichia coli. Biotechnology and Bioengineering, v. 111,

n. 12, p. 2580 ‑2586, 2014.

ZELLE, R. M.; HULSTER, E. de; WINDEN, W. A. van; WAARD, P. de; DIJKEMA, C.; WINKLER, A. A.; GEERTMAN, J. ‑M. A.; DIJKEN, J. P. van; PRONK, J. T.; MARIS, A. J. A. van. Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Applied and Environmental Microbiology, v. 74, n. 9, p.

Documentos relacionados