• Nenhum resultado encontrado

Experimentos com Agrupamento de Pixels

7.4 Considerações finais

um peso diferente para cada palavra. A atribuição suave possui alguma semelhança com as técnicas de agrupamento difuso, as quais poderiam ser utilizadas em algoritmos de agrupamento de características.

• Outra proposta é utilizar agrupamento de características na saída do BoW para tentar eliminar a redundância dos dados.

• Utilizar os algoritmos de agrupamento de superpixels (VARGAS et al., 2014; RAUBER et al., 2013) na técnica Pedaços-por-Valor.

• Waveletfaces é uma técnica que apresenta bom desempenho para o reconhecimento de fa- ces (CHIEN; WU, 2002). Waveletfaces foi construído utilizando apenas a função Wavelet de Haar. Porém existe um conjunto de funções Wavelets infinito. É possível explorar o espaço das funções Wavelets, através de Wavelets parametrizáveis (TEWFIK; SINHA; JORGENSEN, 1992). Esta proposta consiste em buscar uma função Wavelet que seja mais adequada para o reconhecimento de faces.

7.4

Considerações finais

Esta pesquisa começou ao se observar o método Waveletfaces (CHIEN; WU, 2002). Constatou- se que, para algumas bases de imagens de face, as imagens poderiam ser bastante reduzidas sem prejudicar o reconhecimento. Para tentar explicar este fato foi proposta a metodologia de Agrupamento de Pixels. Esta metodologia é utilizada para definir métodos que definem regiões para as imagens de face. Então uma característica é extraída para cada região.

Autofaces é o método de referência para extração de características no reconhecimento de faces. Foi necessário aprofundar-se neste método para verificar a relevância dos métodos propostos. Percebeu-se que este também apresenta motivações para a metodologia de Agrupa- mento de Pixels. Com a recente proposta da matriz de covariância fracionária (GAO; ZHOU; PU, 2013) e seus benefícios para o reconhecimento de faces, surgiu a hipótese de adequar esta técnica ao Autofaces. A partir daí foram propostos três métodos que combinam a teoria da

matriz de covariância fracionária e Autofaces.

Esta tese propõe métodos de projeções para extração de características em problemas de Re- conhecimento de Faces. Todos os métodos propostos são projeções lineares não-supervisionadas, como PCA. Alguns métodos fracionários realizam uma transformação não-linear antes da pro- jeção linear dos dados. Acredita-se que esta pesquisa é relevante e atual no seu tema. Espera-se que muitas outras pesquisas possam derivar desta.

Referências

AVIDAN, S. Eigensegments: A spatio-temporal decomposition of an ensemble of images. In: Computer Vision ECCV 2002. [S.l.]: Springer Berlin Heidelberg, 2002. p. 747–758.

AVIDAN, S.; BUTMAN, M. The power of feature clustering: An application to object detection. In: Advances in Neural Information Processing Systems (NIPS). [S.l.: s.n.], 2004. BAKER, L. D.; MCCALLUM, A. K. Distributional clustering of words for text classification. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY, USA: ACM, 1998. p. 96–103. BANDYOPADHYAY, S. et al. Integration of dense subgraph finding with feature clustering for unsupervised feature selection. Pattern Recognition Letters, v. 40, p. 104 – 112, 2014. BARRETO, R. M.; TSANG, I. R.; CAVALCANTI, G. D. C. L2-norm metric learning applied to unconstrained face pair-matching. In: Image Processing (ICIP), 2012 19th IEEE International Conference on. [S.l.: s.n.], 2012. p. 581–584.

BARSHAN, E. et al. Supervised principal component analysis: Visualization, classification and regression on subspaces and submanifolds. Pattern Recognition, v. 44, n. 7, p. 1357 – 1371, 2011.

BEKKERMAN, R. et al. Distributional word clusters vs. words for text categorization. Journal of Machine Learning Research, v. 3, p. 1183–1208, 2003.

BELHUMEUR, P.; HESPANHA, J.; KRIEGMAN, D. Eigenfaces vs. fisherfaces: recognition using class specific linear projection. Pattern Analysis and Machine Intelligence, IEEE Transactions on, v. 19, n. 7, p. 711–720, 1997.

BISHOP, C. M. Pattern Recognition and Machine Learning (Information Science and Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006. ISBN 0387310738. BUTTERWORTH, R.; PIATETSKY-SHAPIRO, G.; SIMOVICI, D. On feature selection through clustering. In: Data Mining, Fifth IEEE International Conference on. [S.l.: s.n.], 2005. CARVALHO, T. B. A. de. Relatório do Projeto de Processamento de Sinais Digitais (PDS), Waveletfaces. UFPE, Recife, Brasil, 2008. 1-8 p.

CARVALHO, T. B. A. de et al. Supervised fractional eigenfaces. In: Image Processing (ICIP), 2015 22nd IEEE International Conference on. Quebec, CA: [s.n.], 2015.

CARVALHO, T. B. A. de et al. Fractional eigenfaces. In: Image Processing (ICIP), 2014 21st IEEE International Conference on. Paris, FR: [s.n.], 2014.

CAVALCANTI, G. D. C.; TSANG, I. R.; PEREIRA, J. F. Weighted modular image principal component analysis for face recognition. Expert Systems with Applications, v. 40, n. 12, p. 4971 – 4977, 2013.

CHáVEZ, E. et al. Searching in metric spaces. ACM Computing Surveys, v. 33, n. 3, p. 273–321, 2001.

CHIEN, J.-T.; WU, C.-C. Discriminant waveletfaces and nearest feature classifiers for face recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions on, v. 24, n. 12, p. 1644–1649, 2002.

COPPERSMITH, D.; HONG, S.; HOSKING, J. Partitioning nominal attributes in decision trees. Data Mining and Knowledge Discovery, v. 3, n. 2, p. 197–217, 1999.

COVõES, T. F.; HRUSCHKA, E. R. An experimental study on unsupervised clustering-based feature selection methods. In: Intelligent Systems Design and Applications, 2009. ISDA ’09. Ninth International Conference on. [S.l.: s.n.], 2009. p. 993–1000.

COVõES, T. F.; HRUSCHKA, E. R. Towards improving cluster-based feature selection with a simplified silhouette filter. Information Sciences, v. 181, n. 18, p. 3766 – 3782, 2011.

COVõES, T. F. et al. A cluster-based feature selection approach. In: Hybrid Artificial Intelligence Systems. [S.l.]: Springer Berlin Heidelberg, 2009.

DALMAU, M. C.; FLOREZ, O. W. M. Experimental results of the signal processing approach to distributional clustering of terms on reuters-21578 collection. In: Advances in Information Retrieval. [S.l.]: Springer Berlin Heidelberg, 2007. p. 678–681.

DHILLON, I. S.; MALLELA, S.; KUMAR, R. Enhanced word clustering for hierarchical text classification. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2002. p. 191–200. DHILLON, I. S.; MALLELA, S.; KUMAR, R. A divisive information theoretic feature clustering algorithm for text classification. Journal of Machine Learning Research, v. 3, p. 1265–1287, 2003.

ER, M. J.; CHEN, W.; WU, S. High-speed face recognition based on discrete cosine transform and RBF neural networks. Neural Networks, IEEE Transactions on, v. 16, n. 3, p. 679–691, 2005.

GAO, C.; ZHOU, J.; PU, Q. Theory of fractional covariance matrix and its applications in PCA and 2D-PCA. Expert Systems with Applications, v. 40, n. 13, p. 5395 – 5401, 2013. GONZALEZ, R. C.; WOODS, R. E. Digital Image Processing (3rd Edition). Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2006. ISBN 013168728X.

REFERÊNCIAS 153

GOTTUMUKKAL, R.; ASARI, V. K. An improved face recognition technique based on modular pca approach. Pattern Recognition Letters, v. 25, n. 4, p. 429–436, 2004.

GUMUS, E. et al. Evaluation of face recognition techniques using PCA, wavelets and SVM. Expert Systems with Applications, v. 37, n. 9, p. 6404 – 6408, 2010.

HASTIE, T.; TIBSHIRANI, R.; FRIEDMAN, J. The Elements of Statistical Learning. New York, NY, USA: Springer New York Inc., 2001.

HUANG, G. B. et al. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. In: Faces in Real-Life Images Workshop in European Conference on Computer Vision (ECCV). [S.l.: s.n.], 2008.

HUGHES, G. On the mean accuracy of statistical pattern recognizers. Information Theory, IEEE Transactions on, v. 14, n. 1, p. 55–63, 1968.

IENCO, D.; MEO, R. Exploration and reduction of the feature space by hierarchical clustering. In: Proceedings of the SIAM International Conference on Data Mining (SDM). Atlanta, Georgia, USA: [s.n.], 2008. p. 577–587.

JASKOWIAK, P. A. et al. A comparative study on the use of correlation coefficients for redundant feature elimination. In: Neural Networks (SBRN), 2010 Eleventh Brazilian Symposium on. [S.l.: s.n.], 2010. p. 13–18.

JIANG, J.-Y.; LEE, S.-J. A weight-based feature extraction approach for text classification. In: Innovative Computing, Information and Control, 2007. ICICIC ’07. Second International Conference on. [S.l.: s.n.], 2007. p. 164–164.

JIANG, J.-Y.; LIOU, R.-J.; LEE, S.-J. A fuzzy self-constructing feature clustering algorithm for text classification. Knowledge and Data Engineering, IEEE Transactions on, v. 23, n. 3, p. 335–349, 2011.

JIANG, J.-Y.; SU, Y.-L.; LEE, S.-J. Mikm: A mutual information-based k-medoids approach for feature selection. In: Machine Learning and Cybernetics (ICMLC), 2011 International Conference on. [S.l.: s.n.], 2011. v. 1, p. 102–107.

JIANG, J.-Y.; YIN, K.-T.; LEE, S.-J. A confidence-based hierarchical feature clustering algorithm for text classification. In: Intelligent Pervasive Computing, 2007. IPC. The 2007 International Conference on. [S.l.: s.n.], 2007. p. 161–164.

JOLLIFFE, I. Principal Component Analysis 2nd Ed. [S.l.]: Springer, 2002.

JONES, M. J. Face recognition: Where we are and where to go from here. IEEJ Transactions on Electronic, Information and Systems, v. 129, n. 5, p. 770–777, 2009.

KIRBY, M.; SIROVICH, L. Application of the karhunen-loeve procedure for the characterization of human faces. Pattern Analysis and Machine Intelligence, IEEE Transactions on, v. 12, n. 1, p. 103–108, 1990.

LI, G. et al. A novel unsupervised feature selection method for bioinformatics data sets through feature clustering. In: Granular Computing, 2008. GrC 2008. IEEE International Conference on. [S.l.: s.n.], 2008. p. 41–47.

LU, G.-F.; WANG, Y.; ZOU, J. Improved complete neighbourhood preserving embedding for face recognition. Computer Vision, IET, v. 7, n. 1, p. 71–79, 2013.

MITRA, P.; MURTHY, C. A.; PAL, S. K. Unsupervised feature selection using feature similarity. Pattern Analysis and Machine Intelligence, IEEE Transactions on, v. 24, n. 3, p. 301–312, 2002.

MURRAY, J. D.; RYPER, W. V. Encyclopedia of Graphics File Formats. 2nd edition. ed. [S.l.]: O’Reilly & Associates, 1996. Http://www.fileformat.info/mirror/egff/.

NASEEM, I.; TOGNERI, R.; BENNAMOUN, M. Linear regression for face recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions on, v. 32, n. 11, p. 2106–2112, 2010.

OH, S.-K.; YOO, S.-H.; PEDRYCZ, W. Design of face recognition algorithm using PCA-LDA combined for hybrid data pre-processing and polynomial-based RBF neural networks : Design and its application. Expert Systems with Applications, v. 40, n. 5, p. 1451 – 1466, 2013.

PENATTI, O. A. et al. Visual word spatial arrangement for image retrieval and classification. Pattern Recognition, v. 47, n. 2, p. 705 – 720, 2014.

PEREIRA, F.; TISHBY, N.; LEE, L. Distributional clustering of English words. In: Proceedings of the ACL. [S.l.: s.n.], 1993. p. 183–190.

PEREIRA, J. F. et al. A robust feature extraction algorithm based on class-modular image principal component analysis for face verification. In: Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on. [S.l.: s.n.], 2011. p. 1469–1472.

PEREIRA, J. F.; CAVALCANTI, G. D. C.; TSANG, I. R. Modular image principal component analysis for face recognition. In: Neural Networks, 2009. IJCNN 2009. International Joint Conference on. [S.l.: s.n.], 2009. p. 2481–2486.

PRESS, W. H. et al. Numerical Recipes in C, 2nd ed.: The Art of Scientific Computing. New York, NY, USA: Cambridge University Press, 1992. ISBN 0-521-43108-5.

RAO, K.; AHMED, N. Orthogonal transforms for digital signal processing. In: Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP ’76.[S.l.: s.n.], 1976. v. 1, p. 136–140.

RAUBER, P. et al. Interactive segmentation by image foresting transform on superpixel graphs. In: Graphics, Patterns and Images (SIBGRAPI), 2013 26th SIBGRAPI - Conference on. [S.l.: s.n.], 2013. p. 131–138.

REFERÊNCIAS 155

SAMARIA, F.; HARTER, A. Parameterisation of a stochastic model for human face identification. In: Proceedings of 2nd IEEE Workshop on Applications of Computer Vision. [S.l.: s.n.], 1994.

SCHENKER, N.; GENTLEMAN, J. F. On judging the significance of differences by examining the overlap between confidence intervals. The American Statistician, v. 55, n. 3, p. 182–186, ago. 2001.

SIMONYAN, K. et al. Fisher Vector Faces in the Wild. In: British Machine Vision Conference. [S.l.: s.n.], 2013.

SIROVICH, L.; KIRBY, M. Low-dimensional procedure for the characterization of human faces. Journal of the Optical Society of America, v. 4, n. 3, p. 519–524, 1987.

SLONIM, N.; TISHBY, N. Agglomerative information bottleneck. In: Proceedings of Neural Information Processing Systems (NIPS99). [S.l.: s.n.], 1999. p. 617–623.

SLONIM, N.; TISHBY, N. The power of word clusters for text classification. In: In 23rd European Colloquium on Information Retrieval Research. [S.l.: s.n.], 2001.

SONG, Q.; NI, J.; WANG, G. A fast clustering-based feature subset selection algorithm for high-dimensional data. IEEE Transactions on Knowledge and Data Engineering, v. 25, n. 1, p. 1–14, 2013. ISSN 1041-4347.

SOTOCA, J. M.; PLA, F. Supervised feature selection by clustering using conditional mutual information-based distances. Pattern Recognition, v. 43, n. 6, p. 2068 – 2081, 2010.

TEWFIK, A.; SINHA, D.; JORGENSEN, P. On the optimal choice of a wavelet for signal representation. Information Theory, IEEE Transactions on, v. 38, n. 2, p. 747–765, 1992. THEODORIDIS, S.; KOUTROUMBAS, K. Pattern Recognition, Fourth Edition. 4th. ed. [S.l.]: Academic Press, 2008. ISBN 1597492728, 9781597492720.

TRIOLA, M. F. Elementary Statistics, 9th ed. [S.l.]: Addison Wesley, 2003.

TURK, M.; PENTLAND, A. Eigenfaces for recognition. J. Cognitive Neuroscience, v. 3, n. 1, p. 71–86, 1991.

VARGAS, J. et al. Superpixel-based interactive classification of very high resolution images. In: Graphics, Patterns and Images (SIBGRAPI), 2014 27th SIBGRAPI Conference on. [S.l.: s.n.], 2014. p. 173–179.

VINH, N. X.; BAILEY, J. Comments on supervised feature selection by clustering using conditional mutual information-based distances. Pattern Recognition, v. 46, n. 4, p. 1220 – 1225, 2013.

VIOLA, P.; JONES, M. Robust real-time object detection. In: International Journal of Computer Vision. [S.l.: s.n.], 2001.

VIOLA, P.; JONES, M. J. Robust real-time face detection. Int. J. Comput. Vision, v. 57, n. 2, p. 137–154, 2004.

VO, N.; CHALLA, S.; MORAN, B. Compressed sensing for face recognition. In:

Computational Intelligence for Image Processing, 2009. CIIP ’09. IEEE Symposium on. [S.l.: s.n.], 2009. p. 104–109.

WANG, Y.; WU, Y. Complete neighborhood preserving embedding for face recognition. Pattern Recognition, v. 43, n. 3, p. 1008 – 1015, 2010.

WANG, Z. et al. Image quality assessment: from error visibility to structural similarity. Image Processing, IEEE Transactions on, v. 13, n. 4, p. 600–612, 2004.

WRIGHT, J. et al. Robust face recognition via sparse representation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, v. 31, n. 2, p. 210–227, 2009.

YAN, J. et al. Effective and efficient dimensionality reduction for large-scale and streaming data preprocessing. IEEE Transactions on Knowledge and Data Engineering, v. 18, n. 3, p. 320–333, 2006.

YANG, Y.; PEDERSEN, J. O. A comparative study on feature selection in text categorization. In: Proceedings of the Fourteenth International Conference on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1997. p. 412–420.

YI, D.; LEI, Z.; LI, S. Z. Towards pose robust face recognition. In: Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on. Portland, OR, USA: IEEE, 2013. p. 3539–3545.

ZHANG, L. et al. Kernel sparse representation-based classifier. Signal Processing, IEEE Transactions on, v. 60, n. 4, p. 1684–1695, 2012.

ZHANG, Z.; HANCOCK, E. R. A hypergraph-based approach to feature selection. In: Computer Analysis of Images and Patterns. [S.l.]: Springer Berlin Heidelberg, 2011. p. 228–235.

ZHAO, W. et al. Face recognition: A literature survey. ACM Computing Surveys, v. 35, n. 4, p. 399–458, 2003.