• Nenhum resultado encontrado

 O copolímero quitosana-graft-acrilato de sódio foi obtido por meio de reação de copolimerização por enxertia via reação radicalar.

 A análise elementar e estrutural por FTIR confirmaram a enxertia do acrilato de sódio nas cadeias laterais da quitosana.

 A análise espectroscópica na região do UV-Vis mostrou bandas de absorção na região de 430 nm, confirmando a formação das nanopartículas de prata nas membranas do copolímero quitosana-graft-acrilato de sódio.

 A ótima capacidade de absorção de água do nanocompósito QT-g-NaAc/Ag indica que este apresenta potencial para estudo com possível aplicação como curativo dermatológico.

 O nanocompósito QT-g-NaAc/Ag apresentou atividade antibacteriana contra as espécies Staphylococcus aureus e Pseudomonas aeruginosa.

REFERÊNCIAS

AHMAD, M. B.; TAY, M. Y.; SHAMELI, K. Green synthesis and characterization of silver/chitosan/polyethylene glycol nanocomposites without any reducing agent.

Journal of Molecular Sciences, v. 12, p. 4872-4884, 2011.

ANDRADE, J. E. Síntese, caracterização e modificação de nanopartículas de prata com 5-fluorouracil sob a influência do pH – Dissertação de mestrado, Universidade Federal de Sergipe, 2008.

ANGSPATT, A.; TANVATCHARAPHAN, P.; CHANNASANON, S.; TANODEKAEW, S.; CHOKRUNGVARANONT, P.; SIRIMAHARAJ, W. Comparative study between chitin/polyacrylic acid (PAA) dressing, lipido-colloid absorbent dressing and alginate wound dressing: a pilot study in the treatment of partial-thickness wound. Journal of

the Medical Association of Thailand, v. 93, p. 694-697, 2010.

AROCKIANATHAN, P. M.; SEKAR, S.; KUMARAN, B.; SASTRY, T. P. Preparation, characterization and evaluation of biocomposite films containing chitosan and sago starch impregnated with silver nanoparticles. International Journal of Biological

Macromolecules, v. 50, p. 939-946, 2012.

ATHAWALE, V. D.; LELE, V. Recent trends in hydrogels based on starch-graft- acrylic acid: a review. Journal Starch/Staerke, v. 53, p. 7–13, 2001.

AZAD, A. K.; SERMSINTHAM, N.; CHANDRKRACHANG, S.; STEVENS, W. F. Chitosan Membrane as a Wound-Healing Dressing: Characterization and Clinical Application. Wiley Periodicals, v. 69, p. 216-222, 2004.

AZEVEDO, V. V. C.; CHAVES, S. A.; BEZERRA, D. C. Quitina e quitosana: aplicações como biomateriais. Materiais e Processos, v. 2, p. 27-34, 2007.

BAUER, A. W.; KIRBY, W. M.; SHERRIS, J. C.; TURCK, M. Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Phatology, v. 45, p. 493-496, 1966.

BERGER, J.; REIST, M.; MAYER, J. M.; FELT, O.; PEPPAS, N. A.; GURNY, R. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. European Journal of Pharmaceutics and

Biopharmaceutics, v. 57, p. 19-34, 2004.

BERNI NETO, E. A. Desenvolvimento de nanobiocompósitos contendo

nanopartículas de prata para aplicações bactericidas – Dissertação de Mestrado,

Universidade de São Paulo, 2010.

BERNI NETO, E. A., RIBEIRO, C., ZUCOLOTTO, V. 2008. Síntese de nanopartículas de prata para aplicação na sanitização de embalagens. SP: EMBRAPA/CPPSE. ISSN 1517-478. (Comunicado Técnico, 99).

BISPO, V. M. Estudo do efeito da reticulação por genipina em suportes

biodegradáveis de quitosana-PVA – Tese de doutorado, Universidade Federal de

Minas Gerais, 2009.

BURKATOVSKAYA, M. S. B.; CASTANO, A. P.; DEMIDOVA-RICE, T. N.; TEGOS, G. P.; HAMBLIN, M. R. Effect of chitosan acetate bandage on wound healing in infected and noninfected wounds in mice. Wound Repair and Regeneration, v. 16, p. 425-231, 2008.

CASIMIRO, M. H.; BOTELHO, M. L.; LEAL, J. P.; GIL, M. H. Study on chemical, UV and gamma radiation-induced grafting of 2-hydroxyethyl methacrylate onto chitosan.

Radiation Physics and Chemistry, v. 72, p. 731–735, 2005.

CASTRO, M. L. Copolímeros estatísticos biodegradáveis de ε-caprolactona e l, l- dilactídeo-síntese, caracterização e propriedades – Tese de doutorado, Universidade

de São Paulo, 2006.

CHALOUPKA, K.; MALAM, Y.; SEIFALIAN, M. A. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends in Biotechnology, v. 28, 2010.

CHEN, X.; PARK, H. Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions. Carbohydrate Polymers, v. 53, p. 355-359, 2003. CHEN, X., SCHLUESENER, H.J., Nanosilver: a nanoproduct in medical application,

Toxicology Letters, v. 176, 1, 2008.

CHUANG, C.Y.; DON, T.M.; CHIU, W.Y. Synthesis and properties of chitosan- modified poly(acrylic acid). Journal of Applied Polymer Science, v. 109, p. 3382- 3389, 2008.

CHUNMENG, S.; YING, Z.; XINZE, R.; MENG, W. Therapeutic potential of chitosan and its derivatives in regenerative medicine. Surgical Research, v. 133, p. 185–192,

2006.

CLASEN, C.; WILHELMS, T.; KULICKE, W. M. Formation and characterization of chitosan membranes. Biomacromolecules, v. 7, p. 3210-3222, 2006.

COSTA SILVA, H. S. R.; SANTOS, K. S. C. R.; FERREIRA, E. I. Quitosana: derivados hidrossolúveis, aplicações farmacêuticas e avanços. Química Nova, v. 29, p. 776-785, 2006.

D’ AGOSTINI, O. J. Síntese, Caracterização e avaliação da biocompatibilidade e

bioadesão de nanopartículas de n – carboximetilquitosana em redes híbridas com ácido poliacrílico - Dissertação de Mestrado, Universidade do Vale do Itajaí, 2009.

DALLAN, P. R. M. Síntese e caracterização de membranas de quitosana para

aplicação na regeneração de pele – Tese de doutorado, Universidade Estadual de

DASH, M.; CHIELLINI, F.; OTTENBRITE, R. M.; CHIELLINI, E. Chitosan- a versalite semi-synthetic polymer in biomedical applications. Journal Progress in Polymer

Science, v.36, p. 981-1014, 2011.

DON, T. M.; CHUANG, C.Y.; CHIU, W.Y. Studies on the degradation behavior of chitosan-g-poly(acrylic acid) copolymers. Journal of Science and Engineering, v. 5, p. 235-240, 2002 a.

DON, T. M.; KING, C. F.; CHIU, W. Y. Synthesis and properties of chitosan-modified poly(vinyl acetate). Journal of Applied Polymer Science, v. 86, p. 3057–3063, 2002 b. DONGWEI, W.; WUYONG, S.; WEIPING, Q.; YONGZHONG, Y.; XIAOYUAN, M. The synthesis of chitosan-based silver nanoparticles and their antibacterial activity.

Carbohydrate Research, v. 344, p. 2375-2382, 2009.

DUBINSKY, S.; GRADER, G. S.; SHTER, G. E.; SILVERSTEIN, M. S. Thermal degradation of poly(acrylic acid) containing copper nitrate. Polymer Degradation and

Stability, v. 86, p. 171-178, 2004.

FABREGA, J., FAWCETT, S. R., RENSHAW, J. C. AND LEAD, J. R. Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environmental Science & Technology, v. 43, p. 7285–7290, 2009.

FERNANDES, L. L. Produção e caracterização de membranas de quitosana e quitosana com sulfato de condroitina para aplicações biomédicas – Trabalho de conclusão de curso, Rio de janeiro, 2009.

FERREIRA, P.; COELHO, F. J. F.; SANTOS, K. S. C. R.; FERREIRA, E. I.; GIL, M. H. Thermal characterization of chitosan-grafted membranes to be used as wound dressing. Journal of Carbohydrate Chemistry, v. 25, p. 233-251, 2006.

FU, J.; JI, J.; FAN, D.; SHEN, J. Construction of antibacterial multilayer films containing nanosilver via layer-by-layer assembly of heparin and chitosan-silver ions complex. Wiley Periodicals, v. 79, p. 665-674, 2006.

GOY, R. C.; BRITO, D.; ASSIS, O. B. G. A Review of the antibacmicrobial activity of chitosan. Polímeros: Ciência e Tecnologia, v. 19, p. 241-247, 2009.

,

GHOSH P.; DAS D. Modification of cotton by acrylic acid (AA) in the presence of NaH2PO4 and K2S2O8 as catalysts under thermal treatment. European Polymer Journal, v. 36, p. 2505-2511, 2000.

GUILHERME, M. R.; CAMPESE, G. M.; RADOVANOVIC, E.; RUBIRA, A. F.; FEITOSA, J. P. A., MUNIZ, E. C. Morphology and water affinity of superabsorbent hydrogels composed of methacrylated cashew gum and acrylamide with good mechanical properties. Polymer, v. 46, p. 7867-7873, 2005.

reduction method and their antibacterial activity. International Journal of chemical

and Biological Engineering, v. 2, p. 104-111, 2009.

HASELL, T., YANG, J., WANG, W., BROWN, P. D., HOWDLE, S. M. A facile synthetic route to aqueous dispersions of silver nanoparticles. Materials Letters, v. 61, p. 4906-4910, 2007.

HOFFMAN, A. S. Hydrogels for Biomedical Applications. Advanced Drug Delivery

Reviews, v. 54, p. 3-12, 2002.

HUANG, H.; YUAN, Q.; YANG, X. Preparation and characterization of metal– chitosan nanocomposites. Colloids and Surfaces B: Biointerfaces, v. 39, p. 31–37,

2004.

JAIN, J.; ARORA, S.; RAJWADE, J. M.; OMRAY, S. K.; V, K. M. Silver Nanoparticles in Therapeutics: Development of an Antimicrobial Gel Formulation for Topical Use.

Molecular Pharmaceutics, v. 6, p. 1388-1401, 2009.

JAYAKUMAR, R.; PRABAHARAN, M.; KUMAR, P. T. S.; TAMURA, S. V. N. Biomaterials based on chitin and chitosan in wound dressing applications.

Biotechnology Advances, v. 29, p. 322-337, 2001.

JENKINS, D. W.; HUDSON S. M. Review of vinyl graft copolymerization featuring recent advances toward controlled radical-based reactions and illustrated with chitin/chitosan trunk polymers. Chemical Reviews, v. 101, p. 3245, 2001.

JIANGHUA, L.; QIN, W.; AIQIN, W. Synthesis and characterization of chitosan-g- poly(acrylic acid)/sodium humate superabsorbent. Carbohydrate Polymers, v. 70, p. 166–173, 2007.

JING, A.; XIAOYAN, Y.; QUINGZHI, L.; DESONG, W. Preparation of chitosan-graft- (methyl methacrylate)/Ag nanocomposite with antimicrobial activity. Polymer

International, v. 59, p. 62-70, 2010.

KIM, Y. H., LEE, D. K., CHA, H. G., KIM, C. W. AND KANG, Y. S., Synthesis and characterization of antibacterial Ag–SiO2 nano-composite. Journal of Physical Chemistry C, v. 111, p. 3629–3635, 2007.

KONG, H., JANG, J. Antibacterial properties of novel poly(methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir, v. 24, p. 2051–2056, 2008. KUMAR, P. T. S.; ABHILASH, S.; MANZOOR, K.; NAIR, S.V.; TAMURA, H.; JAYAKUMAR, R. Preparation and characterization of novel -chitin/nanosilver composite scaffolds for wound dressing applications. Carbohydrate Polymers, v. 80, p. 761–767, 2010.

LEE, J. S.; KUMAR, R. N.; ROZMAN, H. D.; AZEMI, B. M. N. Pasting, swelling and solubility properties of UV initiated starch-graft-poly(AA). Food Chemistry, v. 91, p. 203–211, 2005.

LEITINHO, J. L. Novos hidrogéis à base de glicerina de biodiesel derivado do óleo

de mamona– Tese de Doutorado, Universidade Federal do Ceará, 2006.

LIMA, M. S. P. Preparo e caracterização de membranas de quitosana modificadas

com poli(ácido acrílico) – Dissertação de mestrado, Universidade Federal do Rio

Grande do Norte, 2006.

LIU, J.; WANG, Q.; WANG, A. Synthesis and characterization of chitosan-g- poly(acrylic acid)/sodium humate superabsorbent. Carbohydrate Polymers, v. 70, p. 166-173, 2007.

LIU, J.; WANG, Q.; WANG, A. Synthesis, characterization, and swelling behaviors of chitosan-g-poly(acrylic acid)/poly(vinyl alcohol) semi-IPN superabsorbent hydrogels.

Polymers for Advanced Technologies, v. 22, p. 627-634, 2011.

LIU, Y.; ZHANG, R.; ZHANG, J.; ZHOU, W.; LI, S. Graft copolymerization of sodium acrylate onto chitosan via redox polymerization. Iranian Polymer Journal, v. 15, p. 935-942, 2006.

LU, S.; GAO, W.; GU, H. Y. Construction, application and biosafety of silver nanocrystalline chitosan wound dressing. Burns, v. 34, p. 623–628, 2008.

MACEDO, M. O. C. Modificação de membranas de quitosana por plasma para uso

biológico – Dissertação de mestrado, Universidade Federal do Rio Grande do Norte,

2009.

MARTINS, P. Avaliação da atividade antimicrobiana, mutagênica e toxicidade aguda

de derivados anfifílicos da o-carboximetilquitosana – Dissertação de mestrado,

Universidade do Vale do Itajaí, 2010.

MORONES, J. R.; ELECHIGUERRA, J. L.; CAMACHO, A.; HOLT, K.; KOURI, J. B.; RAMÍREZ, J. T.; YACAMAN, M. J. The bactericidal effect of silver nanoparticles.

Nanotechnology, v. 16, p. 2346–2353, 2005.

MOUNTAINSIDE MEDICAL. http://www.mountainside-medical.com.br. ACESSO em 05 de setembro de 2012.

MOURYA, V. K.; INAMDAR, N. N. Chitosan-modifications and applications: opportunities galore. Reactive & Functional Polymers, v. 68, p. 1013–1051, 2008. MURUGADOSS, A.; CHATTOPADHYAY, A. A ‘green’ chitosan–silver nanoparticle composite as a heterogeneous as well as micro-heterogeneous catalyst.

Nanotechnology, v. 19, p. 15603, 2008.

MUZZARELLI, R. A. A. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydrate Polymers, v. 76, p. 167–182, 2009.

NIMESH, S.; MANCHANDA, R.; KUMAR, R.; SAXENA, A.; CHAUDHARY, P.; YADAV, V.; MOZUMDAR, S.; CHANDRA, R. Preparation, characterization and in

vitro drug release studies of novel polymeric nanoparticles. International Journal of Pharmaceutics, v. 323, p. 146–152, 2006.

PALLAB, S.; MURRUGADOSS, A.; DURGAP, P. P. V.; SIDDHARTHA, S. G.; ARUN, C. The antibacterial properties of a novel chitosan-Ag-nanoparticle composite.

International Journal of Food Microbiology, v. 124, p. 142-146, 2008.

PANACEK, A.; KVITEK, L.; PRUCEK, R.; KOLAR, M.; VECEROVÁ, R.; PIZUROVÁ, N,; SHARMA, V.; ZBORIL, R. Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. The Journal of Physical Chemistry B, v. 110, p. 16248-16253, 2006.

PINTO, R. J. B.; FERNANDES, S. C. M.; FREIRE, C. S. R.; SADOCCO, P.; CAUSIO, J.; PASCAL, N. C.; TRINDADE, T. Antibacterial activity of optically transparent nanocomposite films based on chitosan or its derivatives and silver nanoparticles. Carbohydrate Research, v. 348, p. 77-83, 2012.

POREL, S.; RAMAKRISHNA, D.; HARIPRASAD, E.; GUPTA, D. A.; RADHAKRISHNAN, T. P. Polymer thin film with in situ synthesized silver nanoparticles as a potent reusable bactericide. Current science, v. 101, p. 927-934,

2011.

PRASHANTH, K. V. H.; THARANATHAN, R. N. Studies on graft copolymerization of chitosan with synthetic monomers. Carbohydrate Polymers, v. 53, p. 343-351, 2003. RABEA, E. I.; BADAWY, M. E. T.; STEVENS, C. V.; SMAGGHE, G.; STEURBAUT, W. Chitosan an antimicrobial agent: applications and mode of action.

Biomacromolecules, v. 4, p. 1457-1465, 2003.

RAI, M.; YADAV, A.; GADE, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, v. 27, p. 76–83, 2009.

RASIKA, T.; BAJPAI, S. K. Silver-nanoparticle-loaded chitosan lactate films with fair antibacterial properties. Journal of Applied Polymer Science, v. 115, p. 1894–1900,

2010.

RUPARELIA, J. P.; CHATTERJEE, A. K. CHATTERJEE, A. K.; DUTTAGUPTA, S. P.; MUKHERJI, S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomaterialia, v. 4, p. 707–716, 2008.

REIS, M. O. Desenvolvimento e caracterização de nanocompósitos produzidos a partir de miniemulsão acrílica aquosa contendo nanopartículas de prata – Dissertação de mestrado, Universidade Federal de Minas Gerais, 2011.

RHIM, J. W.; HONG, S. I. PARK, H. M. Preparation and characterization of chitosan- based nanocomposite films with antimicrobial activity. Journal of Agricultural and

Food Chemistry, v. 54, p. 5814−58ββ, 2006.

RODRIGUES, F. H. A.; FRANÇA, F. C. F.; FEITOSA, J. P. A. Comparison between physico-chemical properties of the technical cashew nut shell liquid (CNSL) and

those natural extracted from solvent and pressing. Polímeros, v. 21, p. 156-160,

2011.

SANTOS, K. S. C. R.; COELHO, J. F. J.; FERREIRA, P.; PINTO, I.; LORENZETTI, S. G. Synthesis and characterization of membranes obtained by graft copolymerization of 2-hydroxyethyl methacrylate and acrylic acid onto chitosan.

International Journal of Pharmaceutics, v. 310, p. 37-45, 2006.

SCHALLER, M.; LAUDE, J.; BODEWALDT, H.; HAMM, G.; KORTING, H. C. Toxicity and antimicrobial activity of hydrocolloid dressings containing silver particles in a ex vivo model models of cutaneous infection. Skin Pharmacology and Physiology, v. 17, p. 31-36, 2004.

SHANTHA, K. L.; BALA, U.; RAO, K. P. Tailor-made chitosans for drug delivery.

European Polymer Journal, v. 31, p. 317-382, 1995.

SHI, C.; ZHU, Y.; RAN, X.; WANG, M.; SU, Y.; CHENG, T. Therapeutic potential of chitosan and its derivatives in regenerative medicine. Journal of Surgical Research, v. 133, p. 185–192, 2006.

SHRIVASTAVA, S. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology, v. 18, p. 225103–225112, 2007.

SILVA, D. A. Hidrogéis e copolímeros de Goma do cajueiro e poliacrilamida – Tese de Doutorado, Universidade Federal do Ceará, 2006.

TANODEKAEW, S.; PRASITSILP, M.; SWASDISON, S.; THAVORNYUTIKARN, B.; POTHSREE, T.; PATEEPASEN, R. Preparation of acrylic grafted chitin for wound dressing application. Biomaterials, v. 25, p. 1453–1460, 2004.

TIAN, J.; WONG, K. K. Y.; HO, C. M.; LOK, C. N.; YU, W. Y.; CHE, C. M.; CHIU, J. F.; TAM, P. K. H. Topical delivery of silver nanoparticles promotes wound healing.

ChemMedChem, v. 2, p. 129-236, 2007.

VEIGA, I. G. Uso de xantana em substituição ao alginato em membranas coacervadas de quitosana projetadas para a cicatrização de lesões de pele – Dissertação de mestrado, Universidade Estadual de Campinas, 2009.

VIMALA, K.; MOHAN, Y. M.; SIVUDU, K. S.; VARAPRASAD, K. Fabrication of porous chitosan films impregnated with silver nanoparticles: A facile approach for superior antibacterial application. Colloids and Surfaces B: Biointerfaces, v. 76, p. 248–258, 2010.

YAZADANI-PEDRAM, M.; RETUERT, J.; QUIJADA, R. Hydrogels based on modified chitosan, 1. Synthesis and swelling behavior of poly(acrylic acid) grafted chitosan.

Macromolecular Chemistry and Physics, v. 201, p. 923–930, 2000.

YU, D.-G., LIN, W.-C. AND YANG, M.-C. Surface modification of poly(L-lactic acid) membrane via layer-by-layer assembly of silver nanoparticle-embedded polyelectrolyte multilayer. Bioconjugate Chemistry, v. 18, p. 1521–1529, 2007.

ZHANG, J.; WANG, Q.; WANG, A. Synthesis and characterization of chitosan-g- poly(acrilic acid)/attapulgite superabsorbent composites. Carbohydrate Polymers, v. 68, p. 367-374, 2007.

ZOHURIAAN-MEHR, M. J. Advances in chitin and chitosan modification through graft copolymerization: a comprehensive review. Iranian Polymer Journal, v. 14, p. 235- 265, 2005.

Documentos relacionados