• Nenhum resultado encontrado

O presente estudo deixou explícito que houve a formação de nanopartículas esféricas e, que a quitosana teve importância crucial no aumento da atividade funcional do ITT.

Nessa perspectiva, convém ressaltar que, embora o EQ tenha mostrado excelentes resultados de eficiência de incorporação e IC50, nota-se que ele não

confere a formação de NPs e protege a atividade funcional do inibidor apenas na faixa de temperatura entre 40 e 60°C.

Deste modo, o EQPI mostrou-se uma ferramenta de extrema importância para melhorar a atividade do inibidor, protegendo-o contra ações externas e, garantindo melhores resultados inibitórios contra a tripsina em pequenas quantidades. Podendo ser uma veiculação interessante para ser avaliada quanto à melhoria na eficiência da atividade sacietogênica e anti-inflamatória já experimentalmente documentada para o ITT.

Os resultados obtidos no presente estudo permitiram a elaboração de um artigo, intitulado “Chitosan-whey protein nanoparticles improve encapsulation efficiency and stability of a trypsin inhibitor isolated from Tamarindus indica L.”, o qual foi submetido ao periódico “Food Hydrocolloids”.

E, além disso, convém ressaltar que, durante o período vigente do mestrado, houve a co-orientação em um trabalho de conclusão de curso (TCC) de graduação em Nutrição da UFRN; a contribuição em aulas da pós-graduação em Nutrição (PPGNUT/UFRN) abordando a temática/resultados deste projeto e; a participação nas reuniões cientificas do grupo de pesquisa NutriSBioativoS, com apresentação e discussão de artigos e, metodologias pertinentes aos trabalhos desenvolvidos pelo grupo.

REFERÊNCIAS

1. Amidi M, Mastrobattista E, Jiskoot W, Hennink WE. Chitosan-based delivery systems for protein therapeutics and antigens. Adv Drug Deliv Rev. 2010; 62: 59-82.

2. Usman A, Zia KM, Zuber M, Tabasum S, Rehman S, Zia F. Chitin and chitosan based polyurethanes: A review of recent advances and prospective biomedical applications. Int J Biol Macromol. 2016; 86: 630-645.

3. Ali A, Ahmed S. A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol. 2018; 109: 273-286.

4.

Cao X, Chen C, Yu H. Horseradish peroxidase-encapsulated chitosan nanoparticles for enzyme-prodrug cancer therapy. Biotechnol Lett. 2015; 37:81–88.

5. Yang N, Ashton J, Kasapis S. The influence of chitosan on the structural properties of whey protein and wheat starch composite systems. Food Chem. 2015; 179: 60-67.

6. Ribeiro JANC, Serquiz AC, Silva PFS, Barbosa PBBM, Sampaio TBB, Junior, RFA, et al. Trypsin inhibitor from tamarindus indica L. seeds reduces weight gain and food consumption and increases plasmatic cholecystokinin levels. Clinics. 2015; 70: 136-143.

7. Carvalho FMC, Lima VCO, Costa IS, Medeiros AF, Serquiz AC, Lima MCJS, et al. A Trypsin Inhibitor from Tamarind Reduces Food Intake and Improves Inflammatory Status in Rats with Metabolic Syndrome Regardless of Weight Loss. Nutrients. 2016; 8: 1-14.

8. Costa, I.S. (2017). Efeito de proteínas bioativas isoladas do tamarindo secretagogas da CCK e seu sinergismo com leptina em ratos Wistar obesos. Dissertação (Mestrado em Nutrição) - Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, 70f.

9. Chanphai P, Tajmir-Riahi HA. Chitosan nanoparticles conjugate with trypsin and trypsin inhibitor. Carbohydr Polym. 2016; 144: 346-352.

10. Coscueta ER, Pintado ME, Picó GA, Knobel G, Boschetti CE; Malpiedi LP, et al. Continuous method to determine the trypsin inhibitor activity in soybean flour. Food Chem. 2017; 214: 156-161.

11. Chanphai P, Tajmir-Riahi HA. Trypsin and trypsin inhibitor bind PAMAM nanoparticles: Effect of hydrophobicity on protein–polymer conjugation. J Colloid Interface Sci. 2016; 461: 419-424.

12. Damiani D, Damiani D. Sinalização cerebral do apetite. Rev Bras Clin Med. 2011; 9: 138-45.

13. Nakajima S, Hira T, Tsubata M, Takagaki K, Hara H. Potato Extract (Potein) Suppresses Food Intake in Rats through Inhibition of Luminal Trypsin Activity and Direct Stimulation of Cholecystokinin Secretion from Enteroendocrine Cells. J Agric Food Chem. 2011; 59: 9491-9496.

14. Chen W, Hira T, Nakajima S, Tomozawa H, Tsubata M, Yamaguchi K, et al. Suppressive Effect on Food Intake of a Potato Extract (Potein®) Involving Cholecystokinin Release in Rats. Biosci Biotechnol Biochem. 2012; 76: 1104- 1109.

15. Serquiz AC, Machado RJA, Serquiz RP, Lima VCO, Carvalho FMC; Carneiro MAA, et al. Supplementation with a new trypsin inhibitor from peanut is associated with reduced fasting glucose, weight control, and increased plasma CCK secretion in an animal model. J Enzyme Inhib Med Chem. 2016; 31: 1261-9.

16. Cummings DE, Overduin J. Gastrointestinal regulation of food intake. J Clin Invest. 2007, 17: 13-23.

17. Devi N, Sarmah M, Khatun B, Maji T. Encapsulation of active ingredients in polysaccharide–protein complex coacervates. Adv Colloid Interface Sci. 2016; 239:135-145.

18. Nedovic V, Kalusevic A, Manojlovic V, Levic S, Bugarski B. An overview of encapsulation technologies for food applications. Procedia Food Sci. 2011; 1: 1806-1815.

19. Pagels RF, Prud'homme RK. Polymeric nanoparticles and microparticles for the delivery of peptides, biologics, and soluble therapeutics. J Control Release. 2015; 219: 519-535.

20. Chen L, Remondetto GE, Subirade M. Food protein-based materials as nutraceutical delivery systems. Trends Food Sci Technol. 2006; 17: 272-283. 21. Dasgupta N, Ranjan S, Mundekkad D; Ramalingam C; Shanker R; Kumar A.

Nanotechnology in agro-food: From field to plate. Food Res Int. 2005; 69: 381- 400.

22. Momin JK, Jayakumar C, Prajapati JB. Potential of nanotechnology in functional foods. Emir. J. Food Agric. 2013, 25: 10-19.

23. Handford CE; Dean M; Henchion M; Spence M; Elliott CT; Campbell K. Implications of nanotechnology for the agri-food industry: Opportunities, benefits and risks. Trends Food Sci Technol. 2014; 40: 226-241.

24. Kobsa S, Saltzman WM. Bioengineering Approaches to Controlled Protein Delivery. Pediatr Res. 2008; 63: 513-9.

25. Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine. 2006; 2: 8-21.

26. Reis CP, Neufeld RJ, Veiga F. Nanoencapsulation II. Biomedical applications and current status of peptide and protein nanoparticulate delivery systems. Nanomedicine. 2006; 2: 53-65.

27. Melo CS, Junior ASC; Fialho SL. Formas farmacêuticas poliméricas para a administração de peptídeos e proteínas terapêuticos. Rev Ciênc Farm Básica Apl. 2012; 33: 469-477.

28. Liu, Z; Jiao, Y; Wang, Y; Zhou, C; Zhang, Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Ver. 2008; 60: 1650- 1662.

29. Vos P, Faas MM, Spasojevic M, Sikkema J. Encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int Dairy J. 2010; 20: 292-302.

30. Joye IJ, McClements DJ. Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application. Curr Opin Colloid Interface Sci. 2014; 19: 417-427.

31. Rao JP, Geckeler KE. Polymer nanoparticles: Preparation techniques and size-control parameters. Prog Polym Sci. 2011; 36: 887-913.

32. Blouza IL, Charcosset C, Sfar S, Fessi H. Preparation and characterization of spironolactone-loaded nanocapsules for paediatric use. Int J Pharm Compd. 2006; 325: 124-131.

33. Mora-Huertas CE, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int J Pharm Compd. 2010; 385: 113-142.

34. George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan — a review. J Control Release. 2006; 114: 1-14.

35. Agnihotri AS, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan- based micro- and nanoparticles in drug delivery. J Control Release. 2004; 100: 5-28.

36. Bernkop-Schnürch A, Dünnhaupt S. Chitosan-based drug delivery systems. Eur J Pharm Biopharm. 2012; 8: 463-469.

37. Patel S. Functional food relevance of whey protein: A review of recent findings and scopes ahead. J Funct Foods. 2015; 19: 308-319.

38. Abbasi A, Emam-Djomeh Z, Mousavi MAE, Davoodi D. Stability of vitamin D3 encapsulated in nanoparticles of whey protein isolate. Food Chem. 2014; 143: 379-383.

39. Tamhane VA, Dhaware DG, Khandelwal N, Giri AP, Panchagnula V. Enhanced permeation, leaf retention, and plant protease inhibitor activity with bicontinuous microemulsions. J Colloid Interface Sci. 2012; 383:177-83.

40. Levoguer C. Using laser diffraction to measure particle size and distribution. MPR. 2013; 68:15-18.

41. Smith MC, Crist RM, Clogston JD, Mcneil SE. Zeta potential: a case study of cationic, anionic, and neutral liposomes. Anal Bioanal Chem. 2017; 409: 5779- 5787.

42. Bhattacharjee S. DLS and zeta potential – What they are and what they are not? J Control Release. 2016; 235: 337-351.

43. Das R, Sarkar, S. X-ray diffraction analysis of synthesized silver nanohexagon for the study of their mechanical properties. Materials Chemistry and Physics. 2015; 167: 97-102.

44. Gustafson J. et al. High-Energy Surface X-ray Diffraction for Fast Surface Structure Determination. Science. 2014; 343: 758-761.

45. Bortolato SA, Thomas KE, McDonough K, Gurney RW, Martino DM. Evaluation of photo-induced crosslinking of thymine polymers using FT-IR spectroscopy and chemometric Analysis. Polymer. 2012; 53: 5285-5294. 46. Silverstein RM, Webster FX, Kiemle DJ. (1998). Infrared Spectrometry. In

Spectrometric Identification of Organic Compounds (pp.72-126). New York: Wiley.

47. Aichele CP, Venkataramani D, Smay JE, McCann MH, Richter S, Khanzadeh-Moradllo M, et al. A comparison of automated scanning electron microscopy (ASEM) and acoustic attenuation spectroscopy (AAS) instruments for particle sizing. Colloids Surf A Physicochem Eng Asp. 2015; 479: 46-51. 48. Buhr E, Senftleben N, Klein T, Bergmann D, Gnieser D, Frase CG, et al.

Characterization of nanoparticles by scanning electron microscopy in transmission mode. Meas. Sci. Technol. 2009; 20: 1-10.

49. Kämmer E, Götz I, Bocklitz T, Stöckel S, Dellith A, Cialla-May D, et al. Single particle analysis of herpes simplex virus: comparing the dimensions of one and the same virions via atomic force and scanning electron microscopy. Anal Bioanal Chem. 2016; 408: 4035-4041.

50. Kakade ML, Rackis JJ, Mcghee JE, Puski G. Determination of trypsin inhibitor activity of soy product: a collaborative analysis of an improved procedure. Cereal Chem. 1974; 51: 376-381.

51. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976; 72: 248-254.

52. Kumari R, Gupta S, Singh AR, Ferosekhan S, Kothari DC, Pal AK, et al. Chitosan Nanoencapsulated Exogenous Trypsin Biomimics Zymogen-Like Enzyme in Fish Gastrointestinal Tract. Chin W-C, editor. PLoS One. 2013; 8:1- 13.

Documentos relacionados