• Nenhum resultado encontrado

Nos grandes mercados produtores de moluscos bivalves, a depuração destes organismos garante um produto final com alto valor comercial e com garantia de boas condições sanitárias. Para que a produção brasileira de ostras e mexilhões possa competir por um espaço no mercado internacional, é necessário que esta esteja de acordo com a legislação dos países concorrentes.

Apesar de a qualidade sanitária dos moluscos bivalves comercializados ser avaliada somente pela presença de bactérias (bactérias coliformes, Escherichia coli e Salmonella), tem sido claramente demonstrado que um controle baseado em parâmetros bacterianos não apresenta co-relação com presença de vírus nesses moluscos. Problemas de saúde humana associados ao consumo de ostras e mexilhões são bem descritos e contaminantes virais têm sido associados a muitos episódios de gastroenterites, considerando que estes moluscos são na maioria das vezes consumidos crus.

Estudos brasileiros sobre depuração de moluscos são raros, mas tornam-se necessários, considerando a necessidade de maior entendimento nesta área, com a finalidade de produzir conhecimento nacional para essa prática e evitar a importação de tecnologias estrangeiras. Nesta perspectiva, os resultados obtidos no presente trabalho são promissores para que a depuração de moluscos cultivados seja implementada no país. Sistemas de depuração de pequeno porte, permitem que esta tecnologia chegue mais facilmente a estabelecimentos comerciais como restaurantes e locais de venda de frutos do mar “in natura, o que traria grandes benefícios ao consumidor destes produtos.

Em breve a produção do Estado de Santa Catarina necessitará ultrapassar as fronteiras nacionais, devido ao grande aumento nos últimos anos. Desta forma, é de grande importância que as áreas de cultivo e a produção de moluscos apresentem uma qualidade microbiológica de acordo com a regulamentação vigente no País.

REFERÊNCIAS CAPÍTULO 3

BALLESTER, N. A.; MALLEY, J. P. Sequential disinfection of adenovirus

type 2 with U.V.-chlorine-chloramine. J. Am. Water Works Assoc, v. 96, p. 97–103, 2004.

BARARDI, C. R. M.; YIP, H.; EMSLIE; K. R.; VESEY; G. SHANKER; S.R.; WILLIAMS; K. L. Flow cytometry and RT-PCR for rotavirus detection in artificially seeded oyster meat. Int. J. Food Microbiol., v. 49, p. 9-18, 1998.

BATTIGELLI, D.A; SOBSEY, M.D.; LOBE, D.C. Inactivation of Hepatitis A virus and other model viruses by U.V. irradiation. Water Sci. Technol, v. 27, n. 3-4, p. 339-342, 1993.

BITTON, G., 1980. Introduction to Environmental Virology. Wiley- Interscience, New York. 326pp.

BITTON, G., 1999. Wastewater Microbiology, second ed. John Wiley and Sons, Inc., New York. 578pp.

CHANG, P.S.; CHEN, L.J.; WANG, Y.C.The effect of ultraviolet irradiation, heat, pH, ozone, salinity and chemical disinfecta nts on the infectivity of white spot syndrome baculovirus. Aquaculture, v. 166, p. 1 –17, 1988.

CALGUA, B.; MENGEWEIN, A.; GRUNERT, A.; BOFILL-MAS, S.; CLEMENTE-CASARES, P.; HUNDESA,A.; WYN-JONES, A.P.; LÓPEZ-PILA, J.M.; GIRONES, R. Development and application of a one-step low cost procedure to concentrate viruses from seawater samples. J Virol Methods, v. 153, n. 2, p. 79-83, 2008.

DAN, L.I.; MIAO, H.E.; SUNNY, C.; JIANG, D. Detection of Infectious Adenoviruses in Environmental Waters by Fluorescence-Activated Cell Sorting Assay. Appl Environ Microbiol, v. 76, n. 5, p. 1442-1448, 2010.

DUHAMEL, S.; JACQUET, S. Flow cytometric analysis of bacteria- and virus-like particles in lake sediments. J Microbiol Methods. v. 64, n. 3, p. 316-332, 2005.

DUIZER, E.; BIJKERK, P.; ROCKX, B.; DE GROOT, A.; TWISK, F.; KOOPMANS, M. Inactivation of calicivirus. Appl. Environ.

Microbiol, v. 70, p. 4538–4543, 2004.

EICHEID, A.C.; MEYER, J.E.; LINDEN, K.G.. U.V.Disinfection of Adenoviruses: Molecular Indications of DNA Damage Efficiency. Appl. Environ. Microbiol, v. 75, n. 2, p. 23–28, 2009.

FAO (Food and Agriculture Organization of the United Nations). 2008, Fisheries Technical Paper. Available on: <

http://www.fao.org/icatalog/search/result.asp?subcat_id=36>, accessed at October 28, 2009.

FUJIOKA, R.S.; YONEYAMA, B.S. Sunlight inactivation of human enteric viruses and fecal bacteria. Water Sci Technol. v. 46, n. 11-12, p. 291-295, 2002.

FONG, T.T.; LIPP, E.K. Enteric viruses of humans and animals in aquatic environments: health risks, detection, and potential water quality assessment tools.Microbiol Mol Biol Rev, v. 69, n. 2, p. 357-371, 2005.

GERBA, C.P.; SCHAIBERGER, G.E. Aggregation as a factor in loss of viral titer in seawater. Water Res, v. 9, p.567–571, 1975.

GERBA, C.P.; GRAMO, D.M.; NWACHUKU, N. Comparative inactivation of enteroviruses and adenovirus 2 by U.V. light. Appl Environ Microbiol, v. 68, n. 10, p. 5167-5169, 2002.

GANTZER, C.; DUBOIS, E.; CRANCE, J.M.; BILLAUDEL, S.; KOPECKA, H.; SCHWARTZBROD, L.; POMMEPUY, M.;

LEGUYADER, F. Influence of environmental factors on the survival of enteric viruses in seawater. Oceanologica Acta v. 21, p.983–992, 1998.

HIJNEN, W.A.M.; BEERENDONK, E.F.; MEDEMA, G..J. Inactivation credit of U.V. radiation for viruses, bacteria and protozoan (oo)cysts in water: A review. Water Res, v. 40, n. 1, p. 3-22, 2006.

HILL, W. F.; HAMBLET, F. E.; AKIN, G..H; BENTON, W.H.

Ultraviolet Devitalization of Eight Selected Enteric Viruses in Estuarine Water. Applied Microbiology, v. 19, n. 5, p. 805-812, 1970.

HILL, W. F.; HAMBLET, F. E.; AKIN, G..H; BENTON, W.H. Survival of Poliovirus in Flowing Turbid Seawater Treated with Ultraviolet Light. Appl Environ Microbiol, v. 15, n. 3, p. 533-536, 1967.

HITT, D. C.; BOOTH, J.L.; DANDAPANI, L. R.; PENNINGTON, J. M.; GIMBLE, J.K.; METCALF, J. A flow cytometric protocol for titering recombinant adenoviral vectors containing the green fluorescent protein. Mol. Biotechnol, v. 14, p. 197–203, 2000.

JOTHIKUMAR, N.; CROMEANS, T.L.; SOBSEY, M.D.;

ROBERTSON, B.H. Development and evaluation of a broadly reactive TaqMan assay for rapid detection of hepatitis A virus. Appl Environ Microbiol, v. 71, n.6, p. 3359-3363, 2005.

KO, G., T. L; CROMEANS, T.; SOBSEY, M.D.U.V. inactivation of adenovirus type 41 measured by cell culture mRNA RT-PCR. Water Res, v. 39, p.3643–3649, 2005.LEE, J.;

KYUNGDUK, Z.; KO, G. Inactivation and U.V. Disinfection of Murine Norovirus with TiO2 under Various Environmental Conditions. Appl.

Environ. Microbiol, v. 4, p. 2111–2117, 2008.

LE GUYADER, F.; DUBOIS, E.; MENARD, D.; POMMEPUY, M. Detection of hepatitis A virus, rotavirus, and enterovirus in naturally contaminated shellfish and sediment by reverse transcription-seminested PCR. Appl Environ Microbiol, v. 60, p. 3665-3671. 1994.

LINDEN, K.G.; SHIN, G.A.; FAUBERT, G.; CAIRNS, W.; SOBSEY, M.D. U.V. disinfection of giardia lamblia cysts in water. Environ Sci Technol, v.36, n. 11; p. 2519-22, 2002.

LIPP, E.K.; KURZ, R.; VINCENT, R.; RODRIGUEZ-PALACIOS, C.; FARRAH, S.R.; ROSE, J.B. The effects of seasonal variability and weather on microbial fecal pollution andenteric pathogens in a subtropical estuary. Estuaries, v. 24, p. 238–248, 2001.

QUIROS, C.M.; HERRERO, L. A.; GARCIA, M; DIAZ, M. Application of flow

cytometry to segregated kinetic modeling based on the physiological states of microorganisms. Appl. Environ. Microbiol, v. 73, p. 3993– 4000, 2007.

RICHARDS, G.P.; MCLEOD, C.; LE GUYADER, F. Processing Strategies to Inactivate Enteric Viruses in Shellfish. Food Environ Virol, v. 2, p. 183–193, 2010.

RODRICK, G.E.; SCHNEIDER, K. R. Molluscan Shellfish Depuration. In: VILLABOA, A., REGUERA, B., ROMALDE, J., REIS, R. (ed). Proceedings of the 4th International Conference on Molluscan Shellfish Safety, Santiago de Compostela, Spain, 2002, june 4-8, Consellería de Pesca y Asuntos Maritimos de Xunta de Galicia and Intergovernamental Oceanographic Commision of UNESCO, 2003.

SINTON, L.W.; HALL, C.H.; LYNCH, P.A.; DAVIES-COLLEY, R.J. Sunlight inactivation of fecal indicator bacteria and bacteriophages from waste stabilization pond effluent in fresh and saline waters. Appl Environ Microbiol, v. 68, n. 3, p. 1122-1131, 2002.

SIRIKANCHANA, K.; SHISLER, J.L.; MARIÑAS, B.J.Effect of exposure to U.V.-C irradiation and monochloramine on adenovirus serotype 2 early protein expression and DNA replication. Appl Environ Microbiol, v. 74, n. 12, p. 3774-3782, 2008.

SHIN, G.A.; LEE, J.K.; LINDEN, K.G. Enhanced effectiveness of medium-pressure ultraviolet lamps on human adenovirus 2 and its possible mechanism. Water Sci Technol. v. 60, n. 4, p. 851-877, 2009.

SHIN, G.A;LINDEN, K.G.; SOBSEY, M.D. Low pressure ultraviolet inactivation of pathogenic enteric viruses and bacteriophages. Environ. Eng. Sci, v. 4, p.7–11, 2005.

THOMPSON, S. S.; JACKSON, J. L.; SUVA-CASTILLO, M.;

YANKO, W. A.; JACK, Z. E.; KUO, J.; CHEN, C.L.; WILLIAMS, F. P.; SCHNURR, D. P. Detection of

infectious human adenovirus in tertiary-treated and ultraviolet- disinfected

wastewater. Water Environ. Res, v. 75, p.163–170, 2003.

THURSTON-ENRIQUEZ, J. A.; HAAS, C. N.; JACANGELO, J.; RILEY, K.; GERBA, C.P. Inactivation of feline calicivirus and adenovirus type 40 by U.V.

UPADHYAYA, G.S.; CURRY, R.D.; NICHOLS, L. The Design and Comparison of Continuous and Pulsed Ultraviolet Reactors for Microbial Inactivation in Water. Trans. Plasma Sc, v. 32, n. 5, 2004. TREE, J. A.;

ADAMS, M. R; LEES, D. Disinfection of feline calicivirus (a surrogate for Norovirus) in wastewaters. J. Appl. Microbiol v. 98, p.155–162, 2005.

WETZ, J.J.; LIPP, E.K.; GRIFFIN, D.W.; LUKASIK, J.; WAIT, D.; SOBSEY, M.D.; SCOTT, T.M.; ROSE, J.B. Presence, infectivity, and stability of enteric viruses in seawater: relationship to marine water quality in the Florida Keys. Mar. Pollut. Bull, v. 48, n.7-8, p. 698-704, 2004.

ZIMMER, J.L.; SLAWSON, R.M; Potential repair of Escherichia coli DNA following exposure to U.V. radiation from both medium- and low- pressure U.V. sources used in drinking water treatment.. Appl Environ Microbiol, v. 68, n. 7, p.3293-3299, 2002.

Documentos relacionados