• Nenhum resultado encontrado

2 REVISÃO DE LITERATURA: A CICATRIZAÇÃO CUTÂNEA: CÉLULAS, BIOMOLÉCULAS E LASERTERAPIA – UMA REVISÃO NARRATIVA

2.3 Considerações finais

A cicatrização cutânea reproduz a maioria dos fenômenos biológicos que caracterizam este processo em diferentes tecidos e se constitui um excelente modelo de estudo para avaliar as múltiplas fases do reparo tecidual. Estas etapas são finamente reguladas por moléculas sinalizadoras produzidas por uma grande variedade de células presentes na matriz extracelular. Novos estudos são necessários a fim de detalhar as possíveis interações epitélio- mesênquima que contribuem para a histodiferenciação, em especial, investigações que contemplem a influência de adjuvantes, a exemplo do laser

de baixa potência, sobre as vias sinalizadoras e processos biológicos deflagrados pela lesão inicial.

Referências

1. Shaw T, Martin P. Wound repair at a glance. J Cell Sci. 2009;122(18):3209- 3213.

2. Eming S, Krieg T, Davidson J. Inflammation in wound repair: molecular and cellular mechanisms. Journal Invest Dermatol 2007;127:514-525.

3. Mitchel RN, Kumar V,Abbas AK, Fausto N, Aster JC Robbins and Cotran: Pathologic. Basis of disease . 8 ed, Philadelphia; 2012.

4. Nayac BS, Sandifor S, Maxiwell A. Evaluation of wound healing of ethanolic extract of Morinda cetrifolia L leaf. Evid Based Complement Alternat Med. 2009;6(3):351-356.

5. Martin P. Wound Healing - Aiming for a perfect skin regeneration. Science 1997;276:75-81.

6. Medrado ARAP, Pugliese LS, Reis SRA, Andrade ZA. Influence of low level laser therapy on wound healing and its biological action upon myofibroblasts. Lasers Surg Med 2003;32:239-244.

7. Buckley C. Why does chronic inflammation persist: na unexpected role of fibroblastos. Immunol Lett. 2011;138:12-14.

8. Gurtner GC, Werner S, Barrandon Y, Longaker M. Wound Repair and Regeneration. Nature 2008;453:314-321.

9. Nunes PS, Albuquerque-Junior RLC, Cavalcante DRR, Dantas MDM, Cardoso JC, Bezerra MS et al. Collagen-based films containing liposomes loaded using acid as dressing for dermal burn healing. J Biomed Biotech 2011;2011:01-09.

10. Thuraisingam T, Xu YZ, Eadie K. MAPKAPK-2 signaling is critical for cutaneous wound healing. J Invest Dermato 2010: 130:278-278.

11. Rodero MP, Khosrotehrani K. Skin wound healing modulation by macrophages. Int J Clin Exp Pathol. 2010;3(7):643–653.

12. Singer A, Clark R. Cutaneous Wound Healing. N Engl J Med 1999;341(10):738-746.

13. Tidball JG. Inflammation process in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol 2005;288:345-353.

14. Li J, Chen J, Kirsner R. Pathophisiology of acute wound healing. Clin Dermatol 2007;25:9-18.

15. Mendonça RJ, Coutinho-Netto J. Aspectos celulares da cicatrização. An Bras Dermatol 2009;84(3):257-262.

16. Rosen LS. Clinical experience with angiogenesis signaling inhibitors:focus on vascular endothelial growth factor (VEGF) blockers. Cancer Control 2002; 9(2):36-44.

17. Gonçalves RV, Souza NTA, Silva PH, Barbosa FS, Neves CA. Influência do laser de arseneto de gálio-alumínio em feridas cutâneas de ratos. Fisoter Mov 2010;23(3):381-388.

18. Carmeliet P. Angiogenesis in health and disease Nature Med 2003;9(6):653-660.

19. Crocker DJ, Murad TM, Geer JC. Role of the pericyte in wound healing an ultrastructural study. Exp Mol Pathol 1970;13:51-65.

20. Alon R, Nourshargh S. Learning in motion: pericytes instruct migrating innate leukocytes. Nature Immunol 2013;4(1):14-15.

21. Ribatti D, Nico B, Crivelatto E. The role of pericytes in Angiogenesis. Int J Dev Biol 2011; 55: 261-268.

22. Armulik A, Genove G, Betsholtz C. Pericytes: Developmental, Physiological and Pathological Perspectives, Problems and Promises. Dev Cell 2011;21:193- 215.

23. Xian X, Hakansson J, Stahlberg A, Lindblom P, Betsholtz C, Gerhardt H, et al. Pericytes limit tumor cell metastasis. J Clin Invest 2006;116:642-651.

24. Takakura N. Role of hematopoietic lineage cells as accessory components in blood vessel formation. Cancer Sci 2006;97:568-574.

25. Medrado AP, Costa T, Prado T, Reis SRA, Andrade ZA. Phenotype characterization of pericytes during tissue repair following low-level laser therapy. Photodermatol Photoimmunol Photomed 2010;26:192-197.

26. Farrington-Rock C, Crofts NJ, Doherty MJ, Ashton BA, Phil D, Griffi-Jones C, Canfield AE. Chondrogenic and adipogenic potential of microvascular pericytes. Circulation 2004;110:2226-2232.

27. Calin MA, Coman T, Calin MR. The effect of low level laser therapy on surgical wound healing. Rom Rep in Phys 2010;62(3):617-627.

28. Tonnesen M, Feng X, Clark R. Angiogenesis in wound healing. JID Symp Proc 2000;5(1):40-46.

29. Raphael I, Nalawade S, Eagar TN, Forsthuber TG T cells subsets and theur signature cytokines in autoimmune and inflammatory diseases Cytokine 2015; 74: 5-17.

30. Mason DE, Mitchell KE, Li Y, Finley MR, Freeman LC. Molecular basis of voltage-dependent potassium currents in porcine granulosa cells. Mol Pharmacol. 2002 Jan;61(1):201-13.

31. Isaac C, Ladeira PRS, Rego FMP, Aldunate JCB, Ferreira MC. Processo de cura das feridas: Cicatrização Fisiológica. Rev. Med. 2010; 89(3/4):125-131.

32. Tazima MFGS, Vicente YAMV, Moriya T. Biologia da Ferida e Cicatrização Simpósio – Fundamentos em Clínica Cirúrgica 2008; 4(3): 259- 264.

33. Rutter DJ, Schlingemann RO, Westphal JR, Rietveld EJR, de Waal RMW. Angiogenesis in wound healing and tumor metastasis. Behring Inst Mitt, 1993; 92:258-272.

34. Sampaio SA, Rivitti E. Dermatologia. 2a ed. São Paulo: Artes Médicas; 2001

35. Midwood KS, Williams LV, Schwarzbauer JE. Tissue repair and the dynamics of the extracellular matrix. Int J iochem Cell Biol 2004;36:1031–1037.

36. Badylak SF The extracellular matrix as a scaffold for tissue reconstruction. Cell Developm Biol 2002;13:377–383.

37. Fonseca MA, Almeida RR, Reis SRA, Medrado ARAP. Repercussão de doenças sistêmicas no reparo tecidual. Rev Bahian Odont 2012;3(1):63-75.

38. Friedman SL. Mechanisms of hepatic fibrogenesis Gastroenterology. 2008;134:1655-1669.

39. Choi S, Diehl AM. Epithelial-to-Mesenchymal transitions in liver. Hepatology. 2009;50:2007–2013.

40. Liu J, Cao J, Zhao X. miR-221 facilitates the TGFbeta1-induced epithelial- mesenchymal transition in human bladder cancer cells by targeting STMN1. BMC Urol 2015;28(15):1-9.

41. Tome-Garcia J, Ghazaryan S, Shu L, Wu L. ERBB2 increases metastatic potentials specifically in androgen-insensitive prostate cancer cells. PLoS One 2014;9(6):1-12.

42. Zeisberg M, Neilson EG. Biomarkers of epithelial-mesenchymal transitions. J Clin Invest 2009;119(6):1429-1437.

43. DeRouen MC, Oro AE. The primary cillium: a small yet mighty organelle. J Invest Dermatol 2009; 129(2): 264-265.

44. Shi Y, Shu B, Yang R, Xu Y, Xing B, Liu J, Chen L, Qi S, Liu X, Wang P, Tang J, Xie J. Wnt and Notch signaling pathway involved in wound healing by targeting separately c-Myc and Hes1. Stem Cell Res Ther 2015;6(1):120.

45. Sicklick J, Li Y, Jayaraman A, Kanngai R, Qi Y, Vivekanadan P, Ludlow JW, Owzar K, et al. Dysregulation of the Hedgehog pathway in human hepatocarcinogenesis Carcinogenesis 2006;27(4):746-757.

46. Nybakken K, Perrimon N. Hedgehog signal transduction: recent findings. Curr. Opin. Genet. Dev. 2002;2(5):503-511.

47. Nüsslein-Volhard, C, Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 1980;287:795-801.

48. King PJ, Guasti L, Laufer E. Hedgehog signalling in endocrine development and disease. J Endocrinol. 2008;198(3):439-50.

49. Teglund S, Toftgard R. Hedgehog beyond medulloblastoma and basal cell carcinoma Biochim. Biophys. Acta 2010;181–208.

50. Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA, et al. Sonic Hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 1993;75(7): 1417–1430.

51. Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes & Dev. 2001;15:3059-3087.

52. Omenetti A, Choi S, Michelotti G, Diehl AM. Hedgehog signaling in the liver. J. Hepatol 2011; 54(2):336-373.

53. Pepinsky RB, Zeng C, Wen D, Rayhorn P, Baker DP, Williams KP, Bixler SA, et al. Identification of a palmitic acid-modified form of human Sonic Hedgehog. J Biol Chem. 1998;273(22):14037-45.

54. Cohen Jr MM. Hedgehog signaling update. Am J Med Gen 2010;152(8):1875–1914.

55. Luo J-D, Hu T-P, Wang L, Chen M-S, Liu S-M, Chen AF. Sonic Hedgehog improves wound healing via enhancing cutaneous nitric oxide function in diabetes. Am J Physiol. Endocrinol Metab 2009;297:525-531.

56. Pereira ANP, Eduardo CP, Matson E,Marques MM Effect of low-power laser irradiation on cell growth and procollagen synthesis of cultured fibroblasts Lasers Surg Med, 2002; 31:307-313.

57. Gál,P; Vidinsky B, Toporcer T, Mokry M, Mozes S, Longauer F. Histological assessement of the effect of laser irradiation on skin wound healing in rats. Photomedicine and Laser Surgery, 2006; 24(4): 480-488.

58. Gonçalves RV, Souza, NTA, Silva PH; Barbosa FS, Neves CA. Influência do laser arseneto de gálio-alumínio em feridas cutâneas de ratos. Fisioter Mov, 2010;23(3): 381-388.

59. Mester E, Lúdany G, Sellyei M, Szende B, Tota J. The stimulating effect of low power laser rays on biological systems. Laser Rev 1968; 1:3.

60. Mester E, Spiry T, Szende B, Tota JG. Effect of laser rays on wound healing. Am J Surg 1971; 122(4):532-535.

61. Reddy GK. Comparison of the photostimulatory effects of visible He-Ne and infrared Ga-As lasers on healing impaired diabetic rat wounds. Lasers Surg Med 2003; 33(5): 344-351.

62. Dederich DN, Bushick RD. Lasers in dentistry: separating science from hype. Journal Am Dent Assoc 2004; 135(2): 204-212.

63. Prockt AP, Takahashi A, Pagnoncelli RM. Uso da terapia com laser de baixa intensidade na cirurgia bucomaxilofacial. Rev Port Estomatol Ci Maxilofac 2008; 49(4): 247-255.

64. Yasukawa A, Hrui H, Koyama Y, Nagai M, Takakuda K. The effect of low reactive-level laser therapy (LLLT) with helium-neon laser on operative wound healing in a rat model. J Vet Med Sci 2007; 69(8): 799-806.

65. Vilela DDC, Chamusca FV, Andrade JCS, Vallve MLF, Gonzalez AC, Andrade ZA, Medrado ARAP, Reis SRA. Influence of the HPA axis on the inflammatory response in cutaneous wounds with the use of 670-nm laser photobiomodulation. Journal Photochemistry Photobiology B:Biology 2012; 116: 114-120.

66. Fung DTC, NG GYF, Leung MCP, Tay DKC. Effects of a therapeutic laser on the ultrastructural morphology of repairing medial collateral ligament on a rat model. Lasers Surg Med 2003; 32:286-293.

67. Enwemeka CS; Parker JC, Dowdy DS, Harkness EE, Sanford LE, Woodruff LD. The efficacy of low-power lasers in tissue repair and pain control. A meta- analysis study. Photomedicine Laser Surg 2004; 22:323-329.

68. Pugliese LS, Medrado ARAP, Reis SRA, Andrade ZA. The influence of therapy of laser of low level in biomodulation of collagen and elastic fibers. Pesqui Odontol Bras 2003;17(4):307-313.

69. Garavello I, Baranauskas V, da Cruz-Hofling MA. The effects of low laser irradiation on angiogenesis in injured rat tibiae. Histol Histopathol 2004; 19(1): 43-48.

70. Reis SRA, Medrado ARAP, Marchionni AMT, Figueira C, Fracassi LD, Knop LAH. Effect of 670-nm laser therapy and dexamethasone on tissue repair: a histological and ultrastructural study. Photomed Laser Surg 2008; 26:307-313.

71. Schindl A, Schindl L, Jurecka W, Honisgsmann H, Breier F. Increased

dermal angiogenesisafter low-intensity laser therapy for a chronic radiation ulcer determined by a video measuring system. J acad Dermatol 1999; 40:481-484.

72. Medrado ARAP, Trindade E, Reis SRA. Andrade ZA Action of low-level laser therapy on living fatty tissue of rats. Lasers Med Sci 2006; 21:19-23.

Documentos relacionados