• Nenhum resultado encontrado

CONSIDERAÇÕES FINAIS

No documento 2016TimoteoAbrantesdeLacerdaAlmeida (páginas 31-44)

SPIRULINA PLATENSIS EM MODELO DE HEMORRAGIA CEREBRAL EM

4 CONSIDERAÇÕES FINAIS

O estudo das doenças crônicas nos países em desenvolvimento possibilita o desenvolvimento de políticas de saúde voltadas para o atendimento da população em risco, seja através de investimento em pesquisas por novos tratamentos, seja na melhoria do atendimento desses pacientes no processo de fragilidade que os aflingem, secundário à doença de base. No caso específico que tratamos nesse texto, a hemorragia cerebral ilustra uma dessas doenças com alta incidência, alta mortalidade, e com a capacidade de resultar em perda da dignidade humana, com grande número dos sobreviventes vivendo com incapacidades graves.

A população idosa é especialmente susceptível ao sofrimento gerado pela perda de autonomia após um agravo agudo à saúde, uma vez que a esse evento agudo se agregam outros farores biológicos e cuturais decorrente do envelhecimento. Na atualidade, nos encontramos em um processo de envelhecimento gradual da população, o que implica na modificação dos padrões de saúde e doença que enfrentaremos nas próximas décadas. A forma como lidaremos com os problemas futuros está intrínsicamente relacionada com a preparação da população para a percepção dessas mudanças, e o conhecimento cultural, econômico e biológico desse novo arranjo social.

O tratamento da hemorragia cerebral continua um desafio para todos os proficionais da área de saúde e, principalmente, para as pessoas acometidas e seus familiares, que se inserem em um contexto novo e complexo do cuidado de pacientes com incapacidade grave. O futuro do manejo desses pacientes, provavelmente, incluirá tratamentos que visem a redução do dano neuronal secundário e terapias de substituição ou regeneração celular, possibilitando uma recuperação funcional e da autonomia dos pacientes aflingidos por essa patologia.

PPGEH/UPF Avaliação do potencial neuroprotetor da Spirulina platensis em modelo de hemorragia intracerebral experimental

Por fim, da fase de concepção da idéia desse trabalho até a elaboração do presente texto, várias modificações foram necessárias, tanto no âmbito do pensamento, através do melhor conhecimento do problema e de suas implicações na população, quanto no âmbito prático que envolve a elaboração de um projeto de pesquisa e sua posterior execução. A principal mudança em relação ao projeto apresentado para qualificação foi a eliminação do estudo do efeito neuroprotetor da hipotermia em modelo de hemorragia cerebral em ratos. Essa modificação se deveu, principalmente, devido dificuldade na realização da análise imunohistoquímica necessária em tempo hábil à finalização da presente dissertação. Acreditamos na relevância e exequibilidade desse projeto para continuação em fase posterior a liberação dessa dissertação.

REFERÊNCIAS

]

AGUILAR, M. I.; FREEMAN, W. D. Spontaneous intracerebral hemorrhage. Seminars

in neurology, v. 30, n. 5, p. 555–64, nov. 2010.

ALLAN, S. M.; ROTHWELL, N. J. Inflammation in central nervous system injury.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, v. 358, n. 1438, p. 1669–77, 29 out. 2003.

ALLES, Y. C. J.; COSTA, J. C. Desenvolvimento de um modelo experimental de

hemorragia subependimária-intraventricular em ratos recém-nascidos. [s.l.]

Pontifícia Universidade Católica do Rio Grande do Sul, 2009.

BARNHAM, K. J.; BUSH, A. I. Metals in Alzheimer’s and Parkinson's diseases.

Current opinion in chemical biology, v. 12, n. 2, p. 222–8, abr. 2008.

BERG, D.; YOUDIM, M. B. H. Role of iron in neurodegenerative disorders. Topics in

magnetic resonance imaging, v. 17, n. 1, p. 5–17, fev. 2006.

BERMEJO-BESCÓS, P.; PIÑERO-ESTRADA, E.; VILLAR DEL FRESNO, A. M. Neuroprotection by Spirulina platensis protean extract and phycocyanin against iron- induced toxicity in SH-SY5Y neuroblastoma cells. Toxicology in vitro, v. 22, n. 6, p. 1496–502, set. 2008.

BERMEJO, P.; PIÑERO, E.; VILLAR, Á. M. Iron-chelating ability and antioxidant properties of phycocyanin isolated from a protean extract of Spirulinaplatensis. Food

Chemistry, v. 110, n. 2, p. 436–445, 2008.

BERTOLIN, T. E. et al. Antioxidant Effect of Phycocyanin on Oxidative Stress Induced with Monosodium Glutamate in Rats. Brazilian archives of biology and technology, v. 54, n. August, p. 733–738, 2011.

PPGEH/UPF Avaliação do potencial neuroprotetor da Spirulina platensis em modelo de hemorragia intracerebral experimental

response in Friedreich’s ataxia. Journal of the neurological sciences, v. 233, n. 1-2, p. 145–62, 15 jun. 2005.

CAMARANO, A. A.; MELO, J. L. Cuidados de longa duração para a população

idosa: um novo risco social a ser assumido? [s.l.] IPEA, 2010.

CDC. Vital Signs: Avoidable Deaths from Heart Disease, Stroke, and Hypertensive Disease — United States, 2001–2010. Morbidity and mortality weekly report, v. 62, n. 35, p. 721-727, 2013.

CHU, W.-L. et al. Protective effect of aqueous extract from Spirulina platensis against cell death induced by free radicals. BMC complementary and alternative medicine, v. 10, p. 53, 2010.

DARROW, V. C. et al. Histologic evolution of the reactions to hemorrhage in the premature human infant’s brain. A combined ultrasound and autopsy study and a comparison with the reaction in adults. The American journal of pathology, v. 130, n. 1, p. 44–58, jan. 1988.

DOUBLE, K. L. et al. Impaired iron homeostasis in Parkinson’s disease. Journal of

neural transmission. Supplementum, n. 60, p. 37–58, jan. 2000.

ENZMANN, D. R. et al. Natural history of experimental intracerebral hemorrhage: sonography, computed tomography and neuropathology. American journal of

neuroradiology, v. 2, n. 6, p. 517–26, jan. 1981.

FERREIRA, P. C. S.; TAVARES, D. M. S.; RODRIGUES, R. A. P. Características sociodemográficas, capacidade funcional e morbidades entre idosos com e sem declínio cognitivo. Acta Paulista de Enfermagem, v. 24, n. 1, p. 29–35, 2011.

GO, A. S. et al. Heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation, v. 129, n. 3, p. e28–e292, 21 jan. 2014. GONG, C.; HOFF, J. T.; KEEP, R. F. Acute inflammatory reaction following experimental intracerebral hemorrhage in rat. Brain research, v. 871, n. 1, p. 57–65, 14 jul. 2000.

PPGEH/UPF Avaliação do potencial neuroprotetor da Spirulina platensis em modelo de hemorragia intracerebral experimental

Timóteo Abrantes de Lacerda Almeida 35

GÖTZ, M. E. et al. The relevance of iron in the pathogenesis of Parkinson’s disease.

Annals of the New York Academy of Sciences, v. 1012, p. 193–208, mar. 2004.

HALLIWELL, B. Reactive oxygen species and the central nervous system. Journal of

neurochemistry, v. 59, n. 5, p. 1609–23, nov. 1992.

HALLIWELL, B. Free radicals, proteins and DNA: oxidative damage versus redox regulation. Biochemical Society transactions, v. 24, n. 4, p. 1023–7, nov. 1996.

HATAKEYAMA, T. et al. Deferoxamine reduces cavity size in the brain after intracerebral hemorrhage in aged rats. Acta neurochirurgica, v. Suppl 111, p. 185–90, jan. 2011.

HATAKEYAMA, T. et al. Deferoxamine reduces neuronal death and hematoma lysis after intracerebral hemorrhage in aged rats. Translational stroke research, v. 4, n. 5, p. 546–53, out. 2013.

HEMPHILL, J. C. et al. Guidelines for the Management of Spontaneous Intracerebral Hemorrhage: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke, v. 46, n. 7, p. 2032–60, 28 maio 2015.

HICKENBOTTOM, S. L. et al. Nuclear factor-kappaB and cell death after experimental intracerebral hemorrhage in rats. Stroke, v. 30, n. 11, p. 2472–7; discussion 2477–8, nov. 1999.

HIRSCH, E. C.; FAUCHEUX, B. A. Iron metabolism and Parkinson’s disease.

Movement disorders, v. 13, n. Suppl 1, p. 39–45, jan. 1998.

HUANG, F.-P. et al. Brain edema after experimental intracerebral hemorrhage: role of hemoglobin degradation products. Journal of neurosurgery, v. 96, n. 2, p. 287–93, fev. 2002.

JENKINS, A.; MAXWELL, W.; GRAHAN, D. Experimental intracerebral hematoma in the rat: sequential light microscopic changes. Neuropathol Appl Neurobiol, v. 15, p. 477–86, 1989.

PPGEH/UPF Avaliação do potencial neuroprotetor da Spirulina platensis em modelo de hemorragia intracerebral experimental

JURÁNEK, I.; BEZEK, S. Controversy of free radical hypothesis: reactive oxygen species - cause or consequence of tissue injury? General physiology and biophysics, v. 24, n. 3, p. 263–78, set. 2005.

KAMBLE, S. P. et al. Extraction and purification of C-phycocyanin from dry Spirulina powder and evaluating its antioxidant, anticoagulation and prevention of DNA damage activity. Journal of Applied Pharmaceutical Science, v. 3, n. 8, p. 149–153, 2013. KASE, C. S.; KAPLAN, L. R. Intracerebral hemorrhage. Boston: Butterworth-

Heinemann, 1994.

KATHIRVELU, B.; CARMICHAEL, S. T. Intracerebral hemorrhage in mouse models: therapeutic interventions and functional recovery. Metabolic Brain Disease, v. 30, n. 2, p. 449–459, 2015.

KHAN, Z.; BHADOURIA, P.; BISEN, P. S. Nutritional and therapeutic potential of Spirulina. Current pharmaceutical biotechnology, v. 6, n. 5, p. 373–9, out. 2005. KUMAR, N. et al. Evaluation of protective efficacy of Spirulina platensis against collagen-induced arthritis in rats. Inflammopharmacology, v. 17, n. 3, p. 181–90, jun. 2009.

KUTTY, R. K.; MAINES, M. D. Purification and characterization of biliverdin reductase from rat liver. The Journal of biological chemistry, v. 256, n. 8, p. 3956–62, 25 abr. 1981.

LEE, K. R. et al. Edema from intracerebral hemorrhage: the role of thrombin. Journal

of neurosurgery, v. 84, n. 1, p. 91–6, jan. 1996.

LEE, K. R. et al. Mechanisms of edema formation after intracerebral hemorrhage: effects of thrombin on cerebral blood flow, blood-brain barrier permeability, and cell survival in a rat model. Journal of neurosurgery, v. 86, n. 2, p. 272–8, fev. 1997. LI, H.; SWIERCZ, R.; ENGLANDER, E. W. Elevated metals compromise repair of oxidative DNA damage via the base excision repair pathway: implications of pathologic iron overload in the brain on integrity of neuronal DNA. Journal of neurochemistry, v. 110, n. 6, p. 1774–83, set. 2009.

PPGEH/UPF Avaliação do potencial neuroprotetor da Spirulina platensis em modelo de hemorragia intracerebral experimental

Timóteo Abrantes de Lacerda Almeida 37

MAJDOUB, H. et al. Anticoagulant activity of a sulfated polysaccharide from the green alga Arthrospira platensis. Biochimica et Biophysica Acta - General Subjects, v. 1790, n. 10, p. 1377–1381, 2009.

MARLET, J. M.; BARRETO FONSECA, J. DE P. Experimental determination of time of intracranial hemorrhage by spectrophotometric analysis of cerebrospinal fluid.

Journal of forensic sciences, v. 27, n. 4, p. 880–8, out. 1982.

MATTSON, M. P. Metal-catalyzed disruption of membrane protein and lipid signaling in the pathogenesis of neurodegenerative disorders. Annals of the New York Academy

of Sciences, v. 1012, p. 37–50, mar. 2004.

MATTSON, M. P.; MEFFERT, M. K. Roles for NF-kappaB in nerve cell survival, plasticity, and disease. Cell death and differentiation, v. 13, n. 5, p. 852–60, maio 2006.

MCCARTY, M. F.; BARROSO-ARANDA, J.; CONTRERAS, F. Oral phycocyanobilin may diminish the pathogenicity of activated brain microglia in neurodegenerative disorders. Medical Hypotheses, v. 74, n. 3, p. 601–605, 2010.

MIN, S. K. et al. Assessment of C-phycocyanin effect on astrocytes-mediated neuroprotection against oxidative brain injury using 2D and 3D astrocyte tissue model.

Sci.Rep., v. 5, n. 2045-2322 (Electronic), p. 14418, 2015.

MITRA, S.; SIDDIQUI, W. A.; KHANDELWAL, S. C-Phycocyanin protects against acute tributyltin chloride neurotoxicity by modulating glial cell activity along with its anti-oxidant and anti-inflammatory property: A comparative efficacy evaluation with N- acetyl cysteine in adult rat brain. Chemico-Biological Interactions, v. 238, n. June, p. 138–150, 2015.

NAKAMURA, T. et al. Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage. Journal of

neurosurgery, v. 100, n. 4, p. 672–8, abr. 2004.

OMS / Opas. Envelhecimento humano: uma política de saúde. Brasília, 2005.

PPGEH/UPF Avaliação do potencial neuroprotetor da Spirulina platensis em modelo de hemorragia intracerebral experimental

therapeutic time window and optimal duration. Stroke, v. 41, n. 2, p. 375–82, fev. 2010. PAXINOS, G.; WATSON, C. The Rat Brain in Stereotaxic Coordinates. Sixth ed. [s.l.] Academic Press, 2008.

PENTÓN-ROL, G. et al. C-Phycocyanin is neuroprotective against global cerebral ischemia/reperfusion injury in gerbils. Brain Research Bulletin, v. 86, n. 1-2, p. 42–52, 2011a.

PENTÓN-ROL, G. et al. C-Phycocyanin ameliorates experimental autoimmune encephalomyelitis and induces regulatory T cells. International

Immunopharmacology, v. 11, n. 1, p. 29–38, 2011b.

PEREZ, C. A.; TONG, Y.; GUO, M. Iron Chelators as Potential Therapeutic Agents for Parkinson’s Disease. Current bioactive compounds, v. 4, n. 3, p. 150–158, 1 out. 2008.

QURESHI, M. A.; ALI, R. A. Spirulina platensis exposure enhances macrophage phagocytic function in cats. Immunopharmacology and immunotoxicology, v. 18, n. 3, p. 457–63, ago. 1996.

RIMBAU, V. et al. Protective effects of C-phycocyanin against kainic acid-induced neuronal damage in rat hippocampus. Neuroscience letters, v. 276, n. 2, p. 75–78, 1999a.

RIMBAU, V. et al. Protective effects of C-phycocyanin against kainic acid-induced neuronal damage in rat hippocampus. Neuroscience letters, v. 276, n. 2, p. 75–8, 3 dez. 1999b.

SAHA, R. N.; LIU, X.; PAHAN, K. Up-regulation of BDNF in astrocytes by TNF- alpha: a case for the neuroprotective role of cytokine. Journal of neuroimmune

pharmacology, v. 1, n. 3, p. 212–22, set. 2006.

SALVADOR, G. A. Iron in neuronal function and dysfunction. BioFactors (Oxford,

PPGEH/UPF Avaliação do potencial neuroprotetor da Spirulina platensis em modelo de hemorragia intracerebral experimental

Timóteo Abrantes de Lacerda Almeida 39

SÁNCHEZ, M. et al. SPIRULINA (ARTHROSPIRA): AN EDIBLE

MICROORGANISM: A REVIEWUniversitas Scientiarum, 10 jan. 2003.

SCOGLIO, S. et al. Selective monoamine oxidase B inhibition by an Aphanizomenon flos-aquae extract and by its constitutive active principles phycocyanin and mycosporine-like amino acids. Phytomedicine, v. 21, n. 7, p. 992–997, 2014.

SIMPORE, J. et al. Nutrition rehabilitation of undernourished children utilizing Spiruline and Misola. Nutrition journal, v. 5, p. 3, jan. 2006.

SUZUKI, J.; EBINA, T. Sequential changes in tissue surrounding ICH. In: PIA, W.; LONGMAID, C.; ZIERSKI, J. (Eds.). . Spontaneous intracerebral hematomas. [s.l: s.n.]. p. 121–128.

UNICOVSKY, M. A. R. Idoso com Sarcopenia: uma abordagem do cuidado da enfermeira. Revista Brasileira de Enfermagem, v. 57, n. 3, p. 298–302, 2004.

WAN, S. et al. Deferoxamine reduces CSF free iron levels following intracerebral hemorrhage. Acta neurochirurgica, v. Suppl 96, p. 199–202, jan. 2006.

WILSON, J. X. Antioxidant defense of the brain: a role for astrocytes. Canadian

journal of physiology and pharmacology, v. 75, n. 10-11, p. 1149–63, jan. 1997.

WU, H. et al. Iron toxicity in mice with collagenase-induced intracerebral hemorrhage.

Journal of cerebral blood flow and metabolism, v. 31, n. 5, p. 1243–50, maio 2011.

WU, J. et al. Iron and iron-handling proteins in the brain after intracerebral hemorrhage.

Stroke, v. 34, n. 12, p. 2964–9, dez. 2003.

XI, G.; KEEP, R. F.; HOFF, J. T. Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats. Journal of neurosurgery, v. 89, n. 6, p. 991–6, dez. 1998.

XI, G.; KEEP, R. F.; HOFF, J. T. Mechanisms of brain injury after intracerebral haemorrhage. The Lancet. Neurology, v. 5, n. 1, p. 53–63, jan. 2006.

PPGEH/UPF Avaliação do potencial neuroprotetor da Spirulina platensis em modelo de hemorragia intracerebral experimental

YANG, G. Y. et al. Experimental intracerebral hemorrhage: relationship between brain edema, blood flow, and blood-brain barrier permeability in rats. Journal of

neurosurgery, v. 81, n. 1, p. 93–102, jul. 1994.

YANG, L. et al. Predominant suppression of apoptosome by inhibitor of apoptosis protein in non-small cell lung cancer H460 cells: therapeutic effect of a novel polyarginine-conjugated Smac peptide. Cancer research, v. 63, n. 4, p. 831–7, 15 fev. 2003.

ZECCA, L. et al. A proposed dual role of neuromelanin in the pathogenesis of Parkinson’s disease. Neurology, v. 67, n. 7 Suppl 2, p. S8–11, 10 out. 2006.

ZHENG, H.; BLAT, D.; FRIDKIN, M. Novel neuroprotective neurotrophic NAP analogs targeting metal toxicity and oxidative stress: potential candidates for the control of neurodegenerative diseases. Journal of neural transmission. Supplementum, n. 71, p. 163–72, jan. 2006.

No documento 2016TimoteoAbrantesdeLacerdaAlmeida (páginas 31-44)

Documentos relacionados