• Nenhum resultado encontrado

Dependˆ encia entre vari´ aveis circulares

No documento Rinaldo Artes. Denise Aparecida Botter (páginas 130-147)

Nesta se¸c˜ao descrevemos uma forma simples de associa¸c˜ao entre vari´aveis cir- culares (T-associa¸c˜ao) e introduzimos um coeficiente de correla¸c˜ao circular criado para med´ı-la (ver Fisher e Lee, 1983, para maiores detalhes). Brec- kling (1989) faz uma extensiva revis˜ao sobre coeficientes de correla¸c˜ao entre vari´aveis circulares dispon´ıveis na literatura.

A B C D R T U w y S

Figura D.1: Representa¸c˜ao gr´afica de T-associa¸c˜ao

Sejam y e w duas vari´aveis circulares. Diz-se que elas possuem uma associa¸c˜ao toroidal (T-associa¸c˜ao) positiva perfeita se

y = w + θ0 (mod 2π), (D.2)

onde θ0 ´e um ˆangulo constante. Analogamente, diz-se que as vari´aveis pos-

suem uma associa¸c˜ao T-linear negativa perfeita quando

y =−w + θ0 (mod 2π). (D.3)

Considere as quatro observa¸c˜oes indicadas na Figura D.1. Note que o gr´afico correspondente `a vari´avel w ´e uma rota¸c˜ao do gr´afico correspondente `a vari´avel

y. Assumindo que as observa¸c˜oes sejam (A,R), (B,S), (C,T) e (D,U), tem-se uma caso de associa¸c˜ao T-toroidal positiva perfeita.

Baseados nessas defini¸c˜oes, Fisher e Lee (1983) desenvolvem um coefici- ente de correla¸c˜ao para medir a intensidade dessa associa¸c˜ao. Tome (y1, w1)

e (y2, w2) independentes e com a mesma distribui¸c˜ao de (y, w). Define-se o

coeficiente de correla¸c˜ao toroidal como

ρT =

E{sen (y1− y2) sen (w1− w2)}

[E{sen2(y

1− y2)} E {sen2(w1− w2)}]1/2

.

Esse coeficiente possui as seguintes propriedades: i. −1 ≤ ρT ≤ 1;

ii. ρT = 1 (ρT = −1) se e somente se a associa¸c˜ao toroidal entre y e w for

iii. ρT ´e invariante quanto a rota¸c˜oes dos dados;

iv. se y e w s˜ao independentes, ent˜ao ρT = 0 e

v. se y e w forem unimodais com alta concentra¸c˜ao, ent˜ao ρT aproxima-se

do coeficiente de correla¸c˜ao de Pearson.

Seja (yi, wi), i = 1, 2, . . . , n, uma amostra aleat´oria de n realiza¸c˜oes das

vari´aveis circulares (y, w). Ent˜ao, o estimador sugerido para ρT ´e

ˆ ρT = ∑ 1≤i<j≤n sen (yi− yj) sen (wi− wj)    ∑ 1≤i<j≤n sen2(yi− yj) ∑ 1≤i<j≤n sen2(wi− wj)    1/2. (D.4)

Fisher e Lee (1983) demonstram que se as m´edias circulares de y e w forem iguais a zero ent˜ao n ˆρT converge em distribui¸c˜ao para uma distribui¸c˜ao dupla

exponencial com densidade (1/2) exp(− | x |), quando n tende a infinito. Segundo Fisher (1993), para facilitar os c´alculos, a express˜ao (D.4) pode ser reescrita como

ˆ ρT = 4(AB− CD) {(n2− E2− F2) (n2− G2− H2)}2, onde A = ni=1 cos (yi) cos (wi), B = ni=1 sen (yi) sen (wi), C = ni=1 cos (yi) sen (wi), D = ni=1 sen (yi) cos (wi), E = ni=1 cos (2yi), F = ni=1 sen (2yi), G = ni=1 cos (2wi) e H = ni=1 sen (2wi).

Na Tabela D.1 encontram-se dados relativos `a dire¸c˜ao tomada por pombos ap´os 30 e 60 segundos da soltura. O objetivo do experimento era avaliar a possibilidade de existˆencia de alguma estrat´egia de vˆoo em animais dessa esp´ecie. Os dados foram coletados em 1982 e correspondem aos pombos soltos no local I, durante o per´ıodo da manh˜a e com informa¸c˜oes completas. Para a estimativa de ˆρT, tem-se A = 2, 659, B = 4, 733, C = −0, 596,

D = 0, 838, E = 2, 139, F =−4, 914, G = −3, 018 e H = −0, 756, resultando

Tabela D.1: Dire¸c˜ao tomada por pombos ap´os 30 e 60 segundos da soltura

Tempo ap´os Tempo ap´os Tempo ap´os

soltura soltura soltura

Pombo 30 60 Pombo 30 60 Pombo 30 60

1 240 250 11 15 10 21 50 50 2 300 290 12 330 305 22 200 195 3 225 210 13 100 95 23 330 320 4 285 325 14 35 65 24 325 315 5 210 205 15 340 345 25 330 290 6 265 240 16 320 325 26 280 285 7 310 330 17 340 335 27 180 155 8 330 315 18 355 25 28 50 25 9 325 285 19 40 330 29 20 0 10 290 335 20 225 220

Considere zi ∼ N (0, σ2i), i = 1, 2, com Corr (z1, z2) = ρ e defina yi =

zi(mod 2π). Ent˜ao a correla¸c˜ao toroidal entre y1 e y2 ´e dada por

ρT =

senh (2ρσ1σ2)

{senh (2σ2

1) senh (2σ22)}

. (D.5)

Outros conceitos de dependˆencia podem ser encontrados em Fisher (1993), Breckling (1989) e Upton e Fingleton (1989).

Complemento da aplica¸ao do

Capitulo 5

Neste apˆendice s˜ao apresentadas as estimativas preliminares das matrizes de correla¸c˜ao envolvidas na aplica¸c˜ao. Wˆi e ˆWoi correpondem `as matrizes de

correla¸c˜ao entre senos e cossenos dos ˆangulos centrados na m´edia circular, repectivamente.

Local: CMC-I, per´ıodo de soltura: matutino

ˆ Wi =    1, 00 0, 81 0, 63 0, 81 1, 00 0, 83 0, 63 0, 83 1, 00    Wˆ 0i =    1, 00 0, 85 0, 38 0, 85 1, 00 0, 64 0, 38 0, 64 1, 00   .

Local: CMC-I, per´ıodo de soltura: meio-dia

ˆ Wi =    1, 00 0, 85 0, 78 0, 85 1, 00 0, 90 0, 78 0, 90 1, 00    Wˆ 0i =    1, 00 0, 84 0, 80 0, 85 1, 00 0, 94 0, 80 0, 94 1, 00   .

Local: CMC-I, per´ıodo de soltura: tarde

ˆ Wi =    1, 00 0, 70 0, 56 0, 70 1, 00 0, 60 0, 56 0, 60 1, 00    Wˆ 0i =    1, 00 0, 70 0, 06 0, 70 1, 00 0, 50 0, 06 0, 50 1, 00   .

Local: CMC-II, per´ıodo de soltura: matutino 135

ˆ Wi =    1, 00 0, 67 0, 69 0, 67 1, 00 0, 93 0, 69 0, 93 1, 00    Wˆ 0i =    1, 00 0, 19 0, 22 0, 19 1, 00 0, 66 0, 22 0, 66 1, 00   .

Local: CMC-II, per´ıodo de soltura: meio-dia

ˆ Wi =    1, 00 0, 38 0, 15 0, 38 1, 00 0, 57 0, 15 0, 57 1, 00    Wˆ 0i =    1, 00 0, 88 0, 60 0, 88 1, 00 0, 79 0, 60 0, 79 1, 00   .

Local: CMC-II, per´ıodo de soltura: tarde

ˆ Wi =    1, 00 0, 58 0, 40 0, 58 1, 00 0, 82 0, 40 0, 82 1, 00    Wˆ 0i =    1, 00 0, 19 0, 30 0, 19 1, 00 0, 61 0, 30 0, 61 1, 00   .

[1] Abramowitz, M. e Stegun, I.A. (1970). Handbook of Mathematical

Functions. New York, Dover Pub. 1046p.

[2] Accardi, L., Cabrera, J. e Watson, G.S. (1987). Some stationary Markov process in discrete time for unit vectors. Metron, 45, 115-133. [3] Albert, P.S. e McShane, L.M. (1995). A generalized estimating

equations approach for spatially correlated binary data: applications to the analysis of neuroimage data. Biometrics 50, 627-38.

[4] Artes, R. (1997). Extens˜oes da Teoria das Equa¸c˜oes de Estima¸c˜ao Ge-

neralizadas a Dados Circulares e Modelos de Dispers˜ao. (Tese de douto-

rado). S˜ao Paulo: IME-USP.

[5] Artes, R. e Jørgensen, B. (2000). Longitudinal data estimating equations for dispersion models. Scandinavian Journal of Statistics 27, 321-34.

[6] Artes, R., Paula, G.A. e Ranvaud, R. (1998). Estudo da dire¸c˜ao tomada por pombos atrav´es de equa¸c˜oes de estima¸c˜ao para dados cir- culares longitudinais. Revista Brasileira de Estat´ıstica, 59, 53-70. [7] Artes, R., Paula, G.A. e Ranvaud, R. (2000). Analysis of longi-

tudinal circular data. Australian and New Zealand Journal of Statistics 42, 347-58.

[8] Atkinson, A.C. (1985). Plots, Transformations and Regressions. Ox- ford: Oxford Statistical Science Series.

[9] Barndorff-Nielsen, O.E. e Jørgensen, B. (1991). Some parame- tric models on the simplex. Journal of Multivariate Analysis 39, 106-16.

[10] Batschelet, E. (1981). Circular Statistics in Biology. London, Aca- demic Press.

[11] Bernoulli, D. (1734). R´echerches Physiques et Astronomiques, Sur le Probl`eme Propos´e Pour la Seconde Fois Par L’Acad´emie Royale des Sciences des Paris.R´ecuiel des Pi`eces Qui Ont Remport´e le prix de L’Acad´emie Ro yale des Sciences, Tome III, 95-134.

[12] Box, G.E.P. e Jenkins, G.M. (1970). Times Series Analysis: Fore-

casting and Control. San Francisco: Holden-Day.

[13] Breckling, J. (1989). Analysis of Directional Time Series: Appli-

cation to Wind Speed and Direction. Berlin, Springer-Verlag. (Lecture

Notes in Statistics, 61).

[14] Brockwell, P.J. e Davis, R.A. (1991). Time Series: Theory and

Method. New York, Springer-Verlag. (Springer Series in Statistics).

[15] Bruscato, A., Toloi, C.M.C. e Artes, R. (2004). Aplica¸c˜ao de modelos de fun¸c˜ao de transferˆencia e equa¸c˜oes de estima¸c˜ao para pre- vis˜ao do n´umero de passageiros em ponte a´erea. Revista Brasileira de

Estat´ıstica. Aceito para publica¸c˜ao.

[16] Campbell, M.J. (1994). Time series regression for counts: an investi- gation between sudden infant death syndrome and environmental tem- perature. Journal of the Royal Statistical Society, 157, 191-208.

[17] Carr, G.J. e Chi, E.M. (1992). Analysis of variance for repeated measures data: a generalized estimation equation approach. Statistics

in Medicine 11, 1033-40.

[18] Chambers, J. (1977). Computational Methods for Data Analysis. New York, John Wiley & Sons. (Wiley Series in Probability and Mathemati- cal Statistics)

[19] Chandrasekar, B. e Kale, B.K. (1984). Unbiased statistical esti- mation functions in presence of nuisance parameter. Journal of Statisti-

cal Planning and Inference 9, 45-54.

[20] Chang, Y.-C. (2000). Residuals analysis of the generalized linear mo- dels for longitudinal data. Statistics in Medicine, 19, 1277-93.

[21] Collett, D. e Lewis, T. (1981). Discriminating between the von Mises and Wrapped Normal distributions. Australian Journal of Statis-

tics 23, 73-79.

[22] Cologne, J.B., Cartes, R.L., Fujita, S. e Ban, S. (1993). Ap- plications of generalized estimating equations to a study of in vitro ra- diation sensitivity. Biometrics 49, 927-34.

[23] Companhia Metropolitana (1997). Pesquisa Origem-Destino. S˜ao Paulo: Companhia Metropolitana do Transporte Urbano de S˜ao Paulo. [24] Crowder, M. (1986). On consistency and inconsistency of estimating

equations. Econometric Theory 2, 205-30.

[25] Crowder, M. (1987). On linear and quadratic estimating function.

Biometrika 74, 591-7.

[26] Diggle, P.J., Liang, K.-Y. e Zeger, S.L. (1994). Analysis of

Longitudinal Data. Oxford, Clarendon Press. (Oxford statistical science

series, 13).

[27] Engle, R.F. (1982). Autoregressive conditional heterocedasticity with estimates of United Kingdom inflation. Econometrica, 50, 987-1007. [28] Firth, D. (1992). Discuss˜ao sobre o artigo Multivariate regression

analysis for categorical data de Liang, K.-Y., Zeger, S.L. e Qaquish, B..Journal of Royal Statistical Society B, 54. 24-26.

[29] Fisher, N.I. (1993). Statistical Analysis of Circular Data. Cambridge, University Press.

[30] Fisher, N.I. e Lee, A.J. (1983). A correlation coefficient for circular data. Biometrika 70, 327-32.

[31] Fisher, N.I. e Lee, A.J. (1992). Regression models for an angular response. Biometrics, 48, 665-77.

[32] Fisher, N.I. e Lee, A.J. (1994). Time series analysis of circular data.

[33] Fitzmaurice, G.M., Laird, N.M. e Rotnitzky, A.G. (1993). Re- gression models for discrete longitudinal responses. Statistical Science, 8, 284-309. (with discussion).

[34] Godambe, V.P. (1960). An optimum property of regular maximum likelihood estimation. Annals of Mathematical Statistics, 31, 1208-11. [35] Godambe, V.P. (1985). The foundation of finite sample estimation in

stochastic processes. Biometrika, 72. 419-28.

[36] Godambe, V.P. (1991). Estimating Functions. Oxford, Oxford Univer- sity Press. (Oxford Statistical Science series - 7).

[37] Godambe, V.P. (1997). Estimating functions: a synthesis of least squa- res. In Basawa, I.V., Godambe, V.P. e Taylor, R.L. ed. Selected Proce-

edings of the Symposium on Estimating Functions. Hayward: Institute

of Mathematical Statistics. (Lecture Notes - Monograph Series, 32). [38] Godambe, V.P. e Kale, B.K. (1991). Estimating function: an over-

view. Em Godambe, V.P., ed., Estimating Functions. Oxford, Oxford University Press, 3-20.

[39] Godambe, V.P. e Thompson, M.E. (1989). An extension of quasi- likelihood estimation. Journal of Statistical Planning and Inference, 22, 137-52.

[40] Gould, A.L. (1969). A regression technique for angular variates and related regression models . Biometrics, 25, 683-700.

[41] Graybill, F.A. (1969). Introduction to Matrices with Applications in

Statistics. Belmont, Wadsworth Pub. Comp.

[42] Hardin, J.W. e Hilbe, J.M. (2003). Generalized Estimating Equati-

ons. Boca Raton: Chapman & Hall/CRC.

[43] Hinde, J. e Dem´etrio, C.G.B. (1998). Overdispersion: Models and

Estimation. Caxamb´u: Associa¸c˜ao Brasileira de Estat´ıstica.

[44] Huber, P.J. (1967). The behaviour of maximum likelihood estimates under nonstandard conditions. Em Proceedings of the Fifth Berkeley

[45] Huber, P.J. (1981). Robust Statistics. New York, John Wiley & Sons. (Wiley Series in Probability and Mathematical Statistics).

[46] Inagaki, N. (1973). Asymptotic relations between the likelihood esti- mating function and the maximum likelihood estimator. Annals of the

Institute of Statistical Mathematics, 25, 1-26.

[47] Jammalamadaka, S.R. e SenGupta, A. (2001). Topics in Circular

Statistics. Singapura: World Scientific. (Series on Multivariate Analysis,

V.5).

[48] Joe, H. (1993). Parametric family of multivariate distributions with given margins. Journal of Multivariate Analysis. 46, 262-82.

[49] Joe, H. (1997). Multivariate Models and Dependence Concepts. CRC Press. (Monographs on Statistics and Applied Probability)

[50] Joe, H. e Xu, J.J. (1996). The estimation method of inference functi- ons for margins for multivariate models. Technical Report # 166, Van- couver, UBC.

[51] Johnson, R.A. e Wehrly, T.E. (1978). Some angular-linear distri- butions and related regression models. JASA, 73, 602-6.

[52] Jørgensen, B. (1987). Exponential dispersion models (with discus- sion). Journal of the Royal Statistical Society, 49, 127-169.

[53] Jørgensen, B. (1997a). Proper dispersion models. Brazilian Journal

of Probability and Statistics (a aparecer).

[54] Jørgensen, B. (1997b). The Theory of Dispersion Models. London: Chapman & Hall (a aparecer).

[55] Jørgensen, B. e Labouriau, R.S. (1994). Exponential Families and

Theoretical Inference. Lecture Notes, Department of Statistics, Univer-

sity of British Columbia.

[56] Jørgensen, B., Lundbye-Christensen, S., Song, X-K., Sun, L. (1996). State space models for multivariate longitudinal data of mixed types. Canadian Journal of Statistics, 24, 385-402.

[57] Kenward, M.G., Lesaffre, E. e Molenberghs, G. (1994). An application of maximum likelihood and generalized estimating equations to the analysis of ordinal data from a longitudinal study with cases missing at random. Biometrics, 50, 945-53.

[58] Koyama, M.A. (1997). O Modelo de Zeger para An´alise de S´eries de

Contagens. (Disserta¸c˜ao de Mestrado). S˜ao Paulo: IME-USP.

[59] Laird, N.M. e Ware, J.H. (1982). Random-effects models for longi- tudinal data. Biometrika 38, 963-74.

[60] LeCam, L. (1956). On the asymptotic theory of estimation and tes- ting hypothesis. Em Proceedings of the Third Berkeley Symposium on

Mathematical Statistics and Probability, vol.1. Berkeley, University of

California Press. 129-56.

[61] Lee, A.J., Scott, A.J. e Soo, S.L. (1993). Comparing Liang-Zeger estimates with maximum likelihood in bivariate logistic regression. Jour-

nal of Statistical Computing Simulation, 44, 133-48.

[62] Li, D.X. e Turtle, H.J. (2000). Semiparametric ARCH models: an estimating function approach. Journal of Business & Economic Statis-

tics, 18, 174-86.

[63] Li, W.K. (1994). Time series models based on generalized linear mo- dels: some further results. Biometrics 50, 506-11.

[64] Liang, K.-Y. e Hanfelt, J. (1994). On the use of quasi-likelihood method in teratological experiments. Biometrics, 50, 872-80.

[65] Liang, K.-Y. e Zeger, S.L. (1995). Inference based on estimating functions in the presence of nuisance parameters. Statistical Science 10, 158-99 (with discussion).

[66] Liang, K.-Y. e Zeger, S.L. (1986). Longitudinal analysis using ge- neralized linear models. Biometrika 73, 13-22.

[67] Liang, K.-Y., Zeger, S.L. e Qaqish, B. (1992). Multivariate re- gression analysis for categorical data. Journal of the Royal Statistical

[68] Lima, A.C.P. e Sa˜nudo, A. (1997). Transferˆencia entre Tarefas Sin-

cronizat´orias com Diferentes N´ıveis de Complexidade. S˜ao Paulo: IME- USP. RAE-CEA-9702.

[69] Lindsey, J.K. (1993). Models for Repeated Measures. New York: Ox- ford University Press.

[70] Lipsitz, S.R., Fitzmaurice, G.M., Orav, R.J. e Laird, N.M. (1994). Performance of generalized estimating equations in prac- tical situations. Biometrics 50, 270-8.

[71] Mardia, K.V. (1972). Statistics of Directional Data. London, Acade- mic Press.

[72] Mardia, K.V. e Jupp, P.F. (2000). Directional Statistics. Chechester, Wiley.

[73] McCullagh, P. (1983). Quasi-likelihood functions. Annals of Statis-

tics 11, 59-67.

[74] McCullagh, P. e Nelder, J.A. (1989). Generalized Linear Models.

2ed. London, Chapman & Hall.

[75] McLeish, D.L. e Small, C.G. (1988). The Theory and Applications

of Statistical Inference Functions. New York, Springer-Verlag. (Lecture

Notes in Statistics, 44).

[76] Miller, M.E., Davis, C.S. e Landis, J.R. (1993). The analysis of longitudinal polytomous data: generalized estimating equations and connections with weighted least squares. Biometrics 49, 1033-44. [77] Morettin, P.A. e Toloi, C.M.C. (2004). An´alise de S´eries Tem-

porais. S˜ao Paulo: Edgard Bl¨ucher. (Projeto Fisher).

[78] Nash, J.C. (1990). Compact Numerical Methods for Computers: Linear

Algebra and Function Minimization, 2ed. New York, Hilger.

[79] Nelder, J.A. e Pregibon, D. (1987). An extended quasi-likelihood function. Biometrika 74, 221-32.

[80] Neter, J., Kutner, M.H., Naschstheim, C.J. e wasserman, W. (1996). Applied linear Statistical Models. 4edn. Chicago: IE McGraw Hill.

[81] Pan, W. (2001). Akaike’s information criterion in generalized estima- ting equations. Biometrics, 57, 120-5.

[82] Park, C.G., Park, T. e Shin, D.W. (1996). A simple method for generating correlated binary variates. The American Statistician, 50, 306-10.

[83] Park, C.G. e Shin, D.W. (1998). An algorithm for generating cor- related random variables in a class of infinitely divisible distributions.

Journal of Statistical Computation and Simulation, 61, 127-139.

[84] Paula, G.A. (2004). Modelos de Regress˜ao com Apoio Computacional. S˜ao Paulo: IME-USP. (http://www.ime.usp.br/ giapaula/livro.pdf) [85] Pepe, M.S. e Anderson, G.L. (1994). A cautionary note on infe-

rence for marginal regression models with longitudinal data and general correlated response data. Communications in Statistics B, 23. 939-51. [86] Preisser, J.S. e Qaqish, B.F. (1996). Deletion diagnostics for gene-

ralised estimating equations. Biometrika, 83, 551-62.

[87] Prentice, R.L. (1988). Correlated binary regression with covariates specific to each binary observation. Biometrics, 44, 1033-48.

[88] Prentice, R.L. e Zhao, L.P. (1991). Estimating equation for para- meters in means and covariances of multivariate discrete and continuous responses. Biometrics, 47, 825-39.

[89] Ranvaud, R., Schmidt-Koenig, K., Kiepenheuer, J. e Gaspa- rotto, O.C. (1983). Initial orientation of homing pigeons at the mag- netic equator with and without sun compass. Behavioral Ecology and

Sociobiology, 14, 77-79.

[90] Rivest, L-P. (1989). Spherical regression for concentrated Fisher-von Mises distributions. The Annals of Statistics, 17, 307-17.

[91] Rotnitzky, A. e Jewell, N.P. (1990). Hypothesis testing of regres- sion parameters in semiparametric generalizer linear models for cluster correlated data. Biometrika, 77, 485-97.

[92] Saez, M., Tobias, A., Mu˜noz, P. e Campbell, M.J. (1999). A GEE moving average analysis of the relationship between air polution and mortality for asthma in Barcelona, Spain. Statistics in Medicine, 18, 2077-86.

[93] Schor, S.M. e Artes, R. (2001). Primeiro censo de moradores de rua da cidade de S˜ao Paulo: procedimentos metodol´ogicos e resultados.

Economia Aplicada, 5, 861-83.

[94] Schor, S.M., Artes, R. e Bomfim, V.C. (2003). Determinants of spatial distribution of street people in the city of S˜ao Paulo. Urban

Affairs Review, 38, 592-602.

[95] SEMPLA, (1998). TPCL. S˜ao Paulo: Secretaria Municipal de Plane- jamento.

[96] Sen, P.K. e Singer, J.M. (1993). Large Sample Methods in Statistics: an Introduction with Applications. New York, Chapman & Hall.

[97] Sobol, I.M. (1975). The Monte Carlo Method. Moscow, Mir Pub. (Lit- tle mathematics library).

[98] Stephens, M.A. (1963). Random walk on a circle. Biometrika, 50, 385-90.

[99] Tan, M., Qu, Y. e Kutner, M.H. (1997). Model diagnostics for marginal regression analysis of correlated binary data. Communications

in Statistics - Simulation and Computation, 26, 539-58.

[100] Upton, G.J.G. e Fingleton, B. (1989). Spatial Data Analysis by

Example. v.2. Chichester, John Wiley & Sons. (Wiley Series in Proba-

bility and Mathematical Statistics).

[101] Venezuela, M.K. (2003). Modelos Lineares Generalizados para

An´alise de Dados com Medidas Repetidas. (Disserta¸c˜ao de Mestrado). S˜ao Paulo: IME-USP.

[102] Vijapurkar, U. P. e Gotway, C. A (2000). Assessment of forecasts and forecast uncertainty using generalized linear regression models for time series count data. Journal of Statistical Computing and Simulation, 68, 321-49.

[103] Xu, J.J. (1996). Statistical Modelling and Inference for Multivariate

and Longitudinal Discrete Response Data. Ph.D. thesis , Department of

Statistics , University of British Columbia.

[104] Watson, G.S. (1982). Distributions on the circle and sphere. Em Gani, J. e Hannan, E.J., eds., Essays in Statistical Science. Sheffield, Applied Probability Trust. 265- 80. (Journal of Applied Probability, spe- cial volume 19A).

[105] Wedderburn, R.W.M. (1974). Quasi-likelihood function, generali- zed linear models, and the Gauss-Newton method. Biometrika,61, 439- 47.

[106] Whittemore, A.S. e Gong, G. (1994). Segregation analysis of case-control data using generalized estimating equations. Biometrics 50(4), 1073-87.

[107] Zeger, S. (1988). Regression model for time series of counts. Biome-

trika, 75, 621-9.

[108] Zeger, S.L. e Liang, K-Y (1986). Longitudinal data analysis for discrete and continuous outcomes. Biometrics, 42, 121-30.

[109] Zeger, S.L., Liang, K-Y e Albert, P.S. (1988). Models for lon- gitudinal data: a generalized estimating equation approach. Biometrics, 44, 1049-60.

[110] Zeger, S.L., Liang, K-Y e Self, S.G. (1985). The analysis of binary longitudinal data with time-independent covariates. Biometrika, 72(1), 31-8.

[111] Zeger, S.L. e Qaqish, B. (1988). Markov regression models for time series: a quasi-likelihood approach.Biometrics, 44, 1019-31.

[112] Ziegler, A. e Gr¨omping, U. (1998). The generalised estimating equations: A comparison of procedures available in commercial software packages. Biometrical Journal, 40, 245-260.

[113] Ziegler, A., Kastner, C. e Blettner, M. (1998). The generalised estimating equations: An annotated bibliography. Biometrical Journal, 40, 115-39.

No documento Rinaldo Artes. Denise Aparecida Botter (páginas 130-147)

Documentos relacionados