• Nenhum resultado encontrado

As fitases podem ser utilizadas como estratégia nutricional para reduzir a inclusão de alguns ingredientes, diminuir o custo de formulação da ração, a excreção de nutrientes ao ambiente e melhorar a disponibilidade de fósforo fitico, forma complexada nos ingredientes vegetais e que não é utilizada pelas aves. Inicialmente comercializada como ferramenta para os nutricionistas visando melhora no aproveitamento do fósforo, os efeitos extra-fosfóricos são cada vez mais evidentes 52-56.

Nos últimos anos, a comunidade científica tem discutido as características das moléculas do ácido fítico, demostrando uma grande interação com outras substâncias como minerais, amido e proteínas que podem reduzir ou indisponibilizar esses nutrientes aos animais, além de aumentar as perdas endógenas devido à elevação no turnover dos enterócitos e na secreção de mucina, ocasionando por sua vez, aumento do catabolismo e do requerimento energético1,4,10,11,18,20,21.

Por todo efeito anti-nutricional do fitato e seus reflexos na utilização dos nutrientes pelos animais, estudos com dosagens de fitase acima de 500 FTU/kg de ração têm sido realizados e contribuído para uma variabilidade de respostas na literatura. Assim, com a hidrólise dos grupos fosfatos, as fitases podem liberar o fósforo, reduzir os efeitos anti-nutricionais do fitato e disponibilizar outros minerais, proteínas e a energia das dietas9,20,36,37,38,39,155,156,157,158.

Pesquisadores também apontam que estratégias devem ser adotadas para diminuir o conteúdo de fitato ingerido pelos animais, seja pela desfitinização das matérias-primas, pela diminuição do conteúdo de fitato nos grãos vegetais através da modificação genética, ou pela utilização de fitases mais eficientes na nutrição animal1.

digestibildade ileal aparente dos aminoácidos e da energia metabolizavél, teor de cinzas na tíbia com a suplementação de fitase em doses logarítmicas de 150 FTU/kg a 24.000 FTU/kg de ração. Melhoria no ganho de peso e na eficiência alimentar em frangos de corte aos 28 dias de idade alimentados com dietas contendo baixo fósforo disponível e níveis de até 2.500 FTU/kg de ração foram relatados por Pirgozliev et al94.

Walk et al.36 mostraram que a suplementação com fitase em até 2.500 FTU/kg de ração aumentou linearmente a porcentagem de cinzas nas tíbias. A suplementação de níveis de 5.000 FTU/kg na dieta melhoraram a digestibilidade ileal aparente dos aminoácidos em frangos. Além disso, doses de fitase acima das recomendações feitas pela indústria pode permitir a redução de cálcio, manter o desempenho e a porcentagem de cinzas ósseas de frangos37.

Níveis de 1.500 FTU/kg de ração melhoraram o desempenho, particularmente a conversão alimentar em frangos aos 49 dias de idade alimentados com dietas contendo reduzido cálcio e fósforo disponível38.

Altos níveis de fitase resultaram na hidrólise quase completa do IP6, aumento das concentrações de inositol na moela e na melhoria do ganho de peso e da conversão alimentar de frangos sem efeitos adversos na porcentagem de cinzas na tíbia. Os benefícios com os maiores níveis de fitase podem estar associados com a destruição do fitato e no fornecimento de inositol em vez do excesso de fósforo e cálcio39.

Shirley e Edwards155 relataram que 12.000 FTU/kg de ração foi capaz de hidrolisar 95% do fósforo proveniente do fitato em dietas a base de milho e farelo de soja. Sugere-se que alguns destes resultados no desempenho, cinzas ósseas, digestibilidade ileal aparente dos aminoácidos e da energia com a suplementação de fitase podem estar associado à hidrólise da molécula de ácido fítico.

Com base no exposto, objetivou-se avaliar os efeitos da inclusão de diferentes níveis de fitase em dietas com redução de níveis nutricionais para frangos durante o período de 1 a 42 dias de idade.

2. REFERÊNCIAS

1. Selle PH, Ravindran G. Microbial phytase in poultry nutrition. Ani. Feed Scien. and Techn. 2007; 135 (1-2): 1-41.

2. Lelis GR, Albino LFT, Silva, CR, Rostagno HS, Gomes PC, Borsatto CG. Suplementação dietética de fitase sobre o metabolismo de nutrientes de frangos de corte. Rev. Bras. de Zootecnia. 2010; 39 (8): 1768-1773.

3. Lott JNA, Ockenden I, Raboy V, Batten GD. Phytic acid and phosphorus in crop seeds and fruits: a global estimate. Review Article. Seed Scien. Res. 2000; 10 (1): 11-33.

4. Angel R, Tamim NM, Applegate TJ, Dhandu AS, Ellestad LE. Phytic Acid Chemistry: Influence on phytin-phosphorus availability and phytase efficacy. Journal App. Poul. Res. 2002; 11 (4): 471-480.

5. Xu Y, Liu X, Prestwich GD. Synthesis of phosphatase-resistant analoques of phytic acid (InsP6). Tetrah. Letters. 2005; 46 (48): 8311-8314.

6. Liu Z, Cheng F, Zhang G. Grain phytic acid content in japonica rice as affected by cultivar end environment and its relation to protein content. Food Chemistry. 2005; 89 (1): 49-52. 7. Keshavarz, K. Por qué es necessário emplear la fitase em la dieta de las ponedoras? Ind. Avícola. 1999; 46 (1): 13-14.

8. Febles CI, Arias A, Hardison A, Rodríguez-Alvarez C, Sierra A. Phytic acid level in wheat flours. Journal of Cer. Scien. 2002; 36 (1): 19-23.

9. Wyatt CL, Miloud A, Bedford M. Current advances in feed enzymes for corn-soya based poultry and swine diets: emphasis on cell wall and phytate. 65th Minnesota Nutrit. Confer; 2004. 21-22p.

10. Konietzny U, Greiner, R. Molecular and catalytic properties of phytate-degrading enzymes (phytases). Internat. Jour. of Food Sci. and Tech. 2002; 37 (7): 791- 812.

11. Santos TT. Phytate: anti-nutrient for poultry and swine. Feedstuffs. 2012; 84: 1-3.

12. Greiner R, Carlsson NG, Alminger ML. Stereospecificity of myo-inositol hexaphosphate dephosphorylation by a phytase-degrading enzyme of Escheria coli. Journal. of Biotech. 2000; 84 (1): 53-62.

13. Silva YL, Rodrigues PB, Freitas RTF, Zangeronimo MG, Fialho ET. Níveis de proteína e fósforo em rações com fitase para frangos de corte na fase de 14 a 21 dias de idade. 2. Valores energéticos e digestibilidade de nutrientes. Rev. Bras. de Zootec. 2008; 37 (3): 469-477.

14. Applegate TL, Angel R, Classen HL. Effect of dietary calcium, 25-hydroxycholecalciferol, or bird strain on small intestinal phytase activity in broiler chickens. Poultry Science. 2003; 82 (7) 1140-1148.

15. Gomide EM, Rodrigues PB, Bertechini AG, Freitas RTF, Fassani EJ, Reis MP, Rodrigues NEB, Almeida EC. Rações com níveis reduzidos de proteína bruta, cálcio e fósforo com fitase e aminoácidos para frangos de corte. Rev. Bras. de Zootec. 2011; 40 (11): 2405-2414.

16. Lelis GR, Albino LFT, Tavernari FC, Rostagno HS. Suplementação dietética de fitase em dietas para frangos de corte. Revista Eletrônica Nutritime. 2009; 6 (2): 875-889.

17. Ribeiro AML, Mireles AJ, Klasing KC. Interactions between dietary phosphorus level, phytase supplementation and pelleting on performance and bone parameters of broilers fed high levels of rice bran. Anim. Feed Sci. Technol. 2003; 103: 155-161.

18. Lelis GR, Albino LFT, Silva CR, Rostagno HS, Gomes PC, Borsatto CG. Suplementação dietética de fitase sobre o metabolismo de nutrientes de frangos de corte. Rev. Bras. de Zoot. 2010; 39 (8): 1768-1773.

19. Simon O, Igbasan F. In vitro properties of phytases from various microbial origins. Internat. Journ. of Food Sci. and Techno. 2002; 37 (7): 813-822.

20. Cowieson AJ, Acamovic T, Bedford MR. The effects of phytase and phytic acid on the loss of endogenous amino acids and minerals from broiler chickens. Brist. Poult. Scie. 2004; 45 (1): 101-108.

21. Cowieson AJ, Acamovic T, Bedford MR. Using the precision-feeding bioassay to determine the efficacy of exogenous enzymes: A new perspective. Anim. Feed Sci. and Techno. 2006; 129 (1-2): 149-158.

22. Onyango EM, Asem EK, Adeola O. Phytic acid increase mucin and endogenous amino acids losses from the gastrointestinal tract of chickens. Brist. Poult. Scie. 2009; 101 (6): 836-842.

23. Liu N, Ru YJ, Li FD, Wang, J, Lei X. Effect of dietary phytate and phytase on proteolytic digestion and growth regulation of broilers. Arch. of Anim. Nutrit. 2009; 63 (4): 292–303. 24. Cowieson AJ, Acamovic T, Bedford MR. Phytic acid and phytase: Implications for protein utilization by poultry. Poult. Scien. 2006; 85 (5): 878–885.

25. Cowieson AJ, Cowieson NP. Phytate and the thermodynamics of water. Austral. Poult. Symp. 2011. 11p.

26. Costa FGP, Jácome IMTD, Silva JHV. Níveis de fósforo disponível e de fitase na dieta de poedeiras de ovos de casca marrom. Ciênc. Anim. Bras. 2004; 5 (2): 73-81.

27. Keshavarz K, Austic RE. The use of low-protein, low phosphorous, amino acid and phytase supplemented diets on laying hen performance and nitrogen and phosphorous excretion. Poult. Scie. 2004; 83 (1): 75-83.

28. Fukayama EH, Sakomura NK, Dourado LRB, Neme R, Fernandes JBK, Marcato SM. Efeito da suplementação de fitase e a digestibilidade dos nutrientes em frangos de corte. Rev. Bras. de Zoot. 2008; 37 (4): 629-635.

29. Ravindran V, Morel PCH, Partridge, GG, Hruby M, Sands JS. Influence of an Escherichia coli-derived phytase on nutrient utilization in broiler starters fed diets containing varying concentrations of phytic acid. Poult. Scie. 2006; 85 (1): 82-89.

30. Choct M. Enzymes for the feed industry: past, present and future. World. Poult. Scie. Journ. 2006; 62 (1): 5-15.

31. Haefner S, Kniestch A, Scholten E, Braun J, Lohscheidt M, Zelder O. Biotechnological production and applications of phytases. Appli. Microb. Biotech. 2005; 68 (5): 588-597.

32. Selle PH. The potential of microbial phytase the sustainable production of pigs and poultry. Korean Soci. of Anim. Nutrit. and Feedst., 1997. 1-39p

33. Conte AJ. Valor nutritivo do farelo de arroz integral em rações para frangos de corte, suplementadas com fitase e xilanase. [Tese]. Lavras: Universidade Federal de Lavras; 2000. 34. Nelson TS, Shieh TR, Wodzinski RJ, Ware JH. The availability of phytate phosphorus in soybean meal before and after treatment with a mold phytase. Poult. Scie. 1968; 47 (6): 1842-1848.

35. Rutherfurd SM, Chung TK, Thomas DV, Zou ML, Moughan PJ. Effect of a novel phytase on growth performance, apparent metabolizable energy, and the availability of minerals and amino acids in a low-phosphorous corn-soybean meal diet for broilers. Poult. Scie. 2012; 91(5): 1118-1127.

36. Walk CL, Addo-Chidie EK, Bedford MR, Adeola O. Evaluation of highly soluble calcium source and phytase in the diets of broilers chickens. Poult. Scie. 2012; 91 (9): 2255-2263. 37. Walk CL, Bedford MR, McElroy AP. Influence of limestone and phytase on broiler performance, gastrointestinal pH, and apparent ileal nutrient digestibility. Poult. Scie. 2012; 91 (6): 1371-1378.

38. Walk CL, Bedford MR, Santos TS, Paiva D, Bradley JR, Wladecki H, Honaker C, McElroy AP. Extra-phosphoric effects of superdoses of a microbial phytase. Poult. Scie. 2013; 92 (3): 719-725.

39. Walk CL, Santos TS, Bedford, MR. Influence of superdoses of a microbial phytase on growth performance, tibia ash, and gizzard phytate and inositol in young broilers. Poult. Scie. 2014; 93 (5): 1172-1177.

40. Amerah AM, Plumstead PW, Barnard LP, Kumar A. Effect of calcium level and phytase addition on ileal phytate degradation and amino acids digestibility of broilers fed corn-based diets. Poult. Scie. 2014; 93 (4): 906-915.

41. Pirgozliev V, Oduguwa O, Acamovic T, Bedford MR. Diets containing Escheria coli-derived pytase on young chickens and turkeys: Effects on performance, metabolizable energy, endogenous secretions and intestinal morphology. Poult. Scie. 2007; 86 (4): 705-713.

42. Farahat MH. Abdel-Razik WM. Hassanein EL, Noll SL. Effect of phytase supplementation to diets varying in chloride level on performance, litter moisture, foot pad score, and gait score of growing turkeys. Poult. Scie. 2013; 92 (7) 1837-1842.

43. Kashani S, Mohebbifar A, Habibian M, Torki M. Effects of phytase supplementation of low protein diets on performance, egg quality traits and blood biochemical parameters of laying hens. Annual Res. Rev. in Biol. 2014; 4 (4): 684-698.

44. Augspurger NR, Webel DM, Lei, XG, Baker DH. Efficacy of an E. coli phytase expressed in yeast for releasing phytate-bound phosphorus in young chick and pigs. Jour. Ani. Scie. 2003; 81 (2): 474-483.

45. Adeola O, Sands JS, Simmins PH, Schulze H. The efficacy of Escherichia coli-derived phytase preparation. Jour. Ani. Scie. 2004; 82 (9): 2657-2666.

46. Adeola O, Olukosi OA, Jendza JA, Dilger RN, Bedford MR. Response of growing pigs to Peniophora lycii and Escherichia-coli derived phytases or varying ratios of calcium to total phosphorus. Animal Science. 2006; 82 (5): 637–644.

47. Langbein KB, Goodband RD, Tokach MD, Dritz SS, DeRouchey JM, Bergstrom JR. Effect of high levels of phytase (Ronozyme Hiphos) in low lysine diets on the growth performance of nursey pigs. In: Swine industry day, Kansas State University; 2013. p.121-127. 48. Rutherford SM, Chung TK, Moughan PJ. Effect of microbial phytase on phytate degradation and apparent digestibility of total P and Ca throughout the gastrointestinal tract of the growing pig. Journ. Anim. Sci. 2014. 92 (1) 189-197.

49. Wellock IJ, Wilcock P, Toplis P, Chewning JJ, Walk CL. Influence of increasing pharmacological ZnO dose to 2500 ppm and superdoses of phytase on piglet growth performance from 0 to 21 post-weaning. American Dairy Science Association Midwest. Amer. Soci. of Ani. Sci. 2014. p.318.

50. Roy T, Banerjee G, Dan SK, Ghosh P, Ray AK. Improvement of nutritive value of sesame oilseed meal in formulated diets for rohu, Label horita (Halmilton), fingerlings after fermentation with two-phytase producing bacterial strains isolated from fish gut. Aquac. Intern. 2013; 22 (2): 633-652.

51. Nwanna LC, Olusola SE. Effect of supplemental phytase on phosphorous digestibility and mineral composition in Nile Tilapia (Oreochromis niloticus). Intern. Jour. of Aquac. 2014; 4 (15): 89-95.

52. Selle PH, Cowieson AJ, Ravindran V. Consequences of calcium interactions with phytate and phytase for poultry and pigs. Lives. Scie. 2009; 124 (1-3): 126–141.

53. Dilger RN, Onyango EM, Sands JS, Adeola O. Evaluation of microbial phytase in broiler diets. Poult. Scie. 2004; 83 (6): 962-970.

54. Selle PH, Ravindran V, Ravindran G, Bryden WL. Effects of dietary lysine and microbial phytase on growth performance and nutrient utilization of broiler chickens. Asian-Austr. Jour. Anim. Scie. 2007; 20 (7): 1100–1107.

55. Rutherfurd SM, Chung TK, Morel PCH, Moughan PJ. Effect of microbial phytase on ileal digestibility of phosphorus, total phosphorus, and amino acids in a low-phosphorus diet for broilers. Poult. Scie. 2004; 83 (1): 61-68.

56. Viveros A, Brenes A, Arija I, Centeno C. Effects of microbial phytase supplementation on mineral utilization and serum activities in broiler chicks fed different levels of phosphorus. Poult. Scie. 2002; 81 (8): 1172-1183.

57. Gomide EM, Rodrigues PB, Freitas RTF, Fialho ET. Planos nutricionais com a utilização de aminoácidos e fitase para frangos de corte mantendo o conceito de proteína ideal nas dietas. Rev. Bras. de Zoot. 2007; 36 (6): 1769-1774.

58. Nagata AK, Rodrigues PB, Rodrigues KF, Freitas RTF, Albino LFT, Fialho ET. Uso do conceito de proteína ideal em rações com diferenes níveis energéticos, suplementadas com fitase para frangos de corte de 1 a 21 dias de idade. Ciênc. e Agrotec. 2009; 33 (2): 599-605. 59. Zanella I, Sakomura NK, Silversides FG, Figueiredo A, Pack M. Effect of enzyme supplementation of broiler diets based on corn and soybeans. Poult. Scie. 1999; 78 (4): 561-568.

60. Cowieson AJ, Ravindran V, Selle PH. Influence of dietary phytic acid and source of microbial phytase on ileal endogenous amino acids flows in broilers chickens. Poult. Scie. 2008; 87 (11): 2287–2299.

61. Silversides FG, Scott TA, Bedford MR. The effect of phytase enzyme and level on nutriente extraction by broilers. Poult. Scie. 2004; 83 (6): 985–989.

62. Dersjant-li Y, Awati A, Schulze H, Partridge G. Phytase in non-ruminant animal nutrition: a critical review on phytase activities in the gastrointestinal tract and influencing factors. Jour. of the Sci. Food Agric. 2015; 95 (5): 1-19.

63. Greiner R, Bedford MR. Recent advances in phytase development. Int. Phytase Summit. Washington DC. 2010, p.14–26.

64. Onyango EM, Bedford MR, Adeola O. Phytase activity along the digestive tract ofthe broiler chick: A comparative study ofan Escherichia coli-derived and Peniophora lycii phytase. Canad. Jour. of Anim. Scie. 2005; 85 (1): 61-68.

65. Igbasan FA, Manner K, Miksch G, Borris R, Farouk A, Simone O. Comparative studies on the in vitro properties of phytases from various microbial origins. Arch. für Tierern. 2000; 53 (4): 353-373.

66. Silversides FG, Bedford MR. Enzymes may improve energy, protein digestibility. Feedstuffs. 1999; 71 (9):15-17.

67. Ushasree MV, Sumayya HBVS, Pandey A. Adopting structural elements from intrinsically stable phytase – a promising strategy towards thermostable phytases. Ind. Jour. of Biotech. 2011; 10: 458-467.

68. Chen YP, Duan WG, Wang LL, Zhang SL, Zhou YM. Effects of thermostable phytase supplementation on the growth performance and nutrient digestibility of broilers. Internat. Jour. of Poult. Scie. 2013; 12 (8):441-443.

69. Prata R, Batie C, Betts S, Basu SS. XX Congreso Latinoamericano de Avicultura, Porto Alegre, Brazil. 2007, p.13-15.

70. Powell S, Bidner TD, Southern LL. Phytase supplementation improved growth performance and bone characteristics in broilers fed varying levels of dietary calcium. Poult. Sci. 2011; 90 (3): 604–608.

71. Adeola O, Walk CL. Linking ileal digestible phosphorus and bone mineralization in broilers chickens fed diets supplemented with phytase and highly soluble calcium. Poul. Sci. 2013; 92 (8): 2109-2117.

72. McKnight WF. The impacto of phytase and high available phosphorus corn on broiler performance and phosphorus excretion. In: Basf Technical Symposium. Atlanta. 1999. p. 57-66.

73. Leske KL, Coon CN. A bioassay to determine the effect of phytase on phytate phosphorus hydrolysis and total phosphorus retention of feed ingredients as determined with broilers and laying hens. Poul. Sci. 1999; 78 (8): 1151-1157.

74. Shafey TM, McDonald MW, PIM RA. The effect of dietary calcium upon growth rate, food utilization and plasma constituents in lines of chickens selected for aspects of growth or body composition. Brist. Poult. Scie. 1990; 31 (3): 577-586.

75. Shafey TM, McDonald MW, Dingle JG. Effects of dietary calcium and available phosphorus concentration on digesta pH and on availability of calcium, iron, magnesium and zinc from intestinal contents of meat chickens. Brist. Poult. Scie. 1991; 32 (1): 185-194.

76. Scott TA, Paul JW, Newberry RC, Barton PK. Beneficios de las dieta com amino ácidos balanceados. Avicultura Profesional. 1997; 15 (2): 31-34.

77. Qian H, Veit HP, Kornegay ET, Ravindran V, Denbow DM. Effects of suplemmental phytase and phosphorus on histological and others tibia bone characteristics and performance of broilers fed semi-purified diets. Poult. Scie. 1996; 75 (5): 618-626.

78. Lesson S. Enzimas para aves. In: Simpoósio Internacional sobre nutrição de aves. Campinas. 1999 p. 173-185.

79. Olukosi OA, Fru-nji F. The interplay of dietary nutrient specification and varying calcium to total phosphorus ratio on efficacy of a bacterial phytase: 1. Growth performance and tibia mineralization. Poult. Scie. 2014; 93 (12): 3037-3043.

80. Barros R. Efeito da vitamina D ativada no desempenho zootécnico e qualidade óssea de suínos. Dissertação de Mestrado em Zootecnia, Universidade Federal do Paraná, Curitiba, PR.2010. p 57.

81. Lesson S, Summers JD. Nutrition of the chicken. 4th Edition (University Books, P. O Box 1326, Guelph, Ontario, Canada:, NIH 6N8); 2001. p.331-428.

82. Angel R, Dhabdu AS, Applegate TJ, Christman M. Phosphorus sparing effect of phytase, 25-hydroxycholecalciferol, and citric acid when fed to broiler chicks. Poult. Scie. 2001; 80 (1): 133–134.

83. Biehl RR, Baker DH. Utilization of phytate and nonphytate phosphorus in chicks as affected by source and amount of vitamin D3. Jour. Anim. Sci. 1997; 75 (11): 2986–2993. 84. Mitchell RD, Edwards Jr HM. Effects of phytase and 1,25-dihydroxycholecalciferol on phytate utilization and the quantitative requirement for calcium and phosphorus in young broiler chickens. Poult. Scie. 1996; 75 (1): 95–110.

85. Han J, Liu Y, Yao J, Wang J, Qu H, Yan Y, Yue J, Ding J, Shi Z, Dong X. Dietary calcium levels reduce the efficacy of one alpha-hydroxycholecalciferol in phosphorus-deficient diets of broilers. Jap. Poult. Sci. Assoc. 2012; 49 (1): 34-38.

86. Angel R, Saylor WW, Mitchell AD, Powers W, Applegate TJ. Effect of dietary phosphorus, phytase, and 25-hydroxycholecalciferol on broiler chicken bone mineralization, litters phosphorus and processing yields. Poult. Sci. 2006; 85 (7): 1200–1211.

87. Payne RL, Lavergne TK, Southern LL. A comparison of two sources of phytase in liquids and dry forms in broilers. Poult. Sci. 2005; 84 (2): 265-272.

88. Augspurger NR, Baker DH. High dietary phytase levels maximize phytate-phosphorus utilization but do not effect protein utilization in chicks fed phosphorus– or amino acid– deficient diets. Jour. Anim. Sci. 2004; 82 (4): 1100-1107.

89. Augspurger N, Ugalde E. Comparative phytase utilization in pigs and broiler chickens. In: Congreso sobre manejo e nutrição de aves. Campinas. 2009. p.17-128.

90. Dersjant-Li Y, Awati A, Shulze H, Partridge G. Phytase in non-ruminant animal nutrition: a critical review on phytase activies in the gastrointestinal tract and influencing factors. Jour. of the Scie. of Food and Agricult. 2014; 1:1-16.

91. Pirgozliev VR, Acamovic T, Bedford MR. The effect of phytase in broiler diets on secretions in the gastrointestinal tract and TME. In: International Poultry Scientific Forum. Atlanta, Georgia, USA. 2005. p.30.

92. Watson BC, Mattews JO, Southern LL, Shelton JL. The effects of phytase on growth performance and intestinal transit time of broilers fed nutritionally adequate diets and diets deficient in calcium and phosphorus. Poult. Sci. 2006; 85 (3): 493-497.

93. Liu N, Ru YJ, Cowieson AJ, Li FD, Cheng XCh. Effects of phytate and phytase on the performance and immune function of broilers fed nutritionally marginal diets. Poult. Sci. 2008; 87 (6): 1105-1111.

94. Pirgozliev V, Oduguwa O, Acamovic T, Bedford MT. Effects of dietary phytase on performance and nutrient metabolism in chickens. Brist. Poult. Sci. 2009; 49 (2): 144-154. 95. Karimi A, Bedford MR, Sadeghi GH, Ghobadi Z. Influence of dietary non-phytate phosphorus levels and phytase supplementation on the performance and bone characteristics of broilers. Braz. Jour. of Poul. Sci. 2011; 13 (1): 43-51.

96. Olukosi OA, Kong C, Fru-nji F, Ajuwon KM, Adeola O. Assessment of a bacterial 6-phytase in the diets of broilers chickens. Poult. Sci. 2013; 92 (8): 2101-2108.

97. Baradaran N, Shahir MH, Asadi Kermani Z, Waldroup PW, Sirjani MA. Effects of high non-phytate phosphorus starter diet on subsequent growth performance and carcass characteristics of broiler chickens. Jour. of Ani. Phys. and Ani. Nut. 2013; 98 (4): 643-650. 98. Cowieson AJ, Ptak A, Mackowiak P, Sassek M, Oszmalek-Pruszynska E, Zyla K, Swiatkiewicz S, Kaczmarek S, Jozefiak D. The effect of microbial phytase and myo-inositol on performance and blood biochemistry of broiler chickens fed wheat/corn-based diets. Poult. Sci.

Documentos relacionados