• Nenhum resultado encontrado

Os dados obtidos sessenta minutos após a administração de BIS e BIS/β- CD (50 mg/kg; v.o) no teste do aparato Rota rod não apresentaram resultados significativos (p > 0,05) quando comparados ao grupo controle. Tais resultados complementam os achados encontrados nos testes de força muscular e hiperalgesia mecânica, pois a substância não interfere na coordenação motora dos animais como mostra a figura 26 com tempo em segundos (s) em função do tempo (hora).

B 1h 0 50 100 150 200 CONTROLE BIS BIS-CD Tempo T e m p o ( s )

Figura 26. Efeito da administração de BIS e BIS/β-CD (50mg/kg; v.o.), veículo (controle) sobre a coordenação motora. Valores expressos em média ± E.P.M.. (n = 8/grupo). (ANOVA, seguido pelo pós teste de Bonferroni).

6 CONCLUSÃO

De acordo com os resultados obtidos no presente estudo, pode-se concluir que:  BIS e BIS/β-CD foram capazes de reduzir a hiperalgesia mecânica induzida

por modelo de dor inflamatória crônica;

 BIS e BIS/β-CD apresentaram um tempo de efeito superior a 7h na administração aguda no modelo de dor neuropática. Evidenciando que a complexação melhorou o efeito da substância, já que a quantidade de BIS no complexo foi 10 vezes menor do que a quantidade real administrada do composto puro;

 BIS e BIS/β-CD mostraram ação antinociceptiva, reduzindo a hiperalgesia mecânica crônica, sem alteração da força muscular nem da coordenação motora dos animais testados no modelo de dor neuropática;

 BIS e BIS/β-CD foi capaz de reduzir a alodinia ao frio em modelo de dor neuropática;

 BIS e BIS/β-CD foram eficazes na redução as concentrações de TNF-α no nervo e medula espinhal, assim como atuaram no aumento dos níveis de IL- 10. Além disso, atenuaram a microgliose induzida pelo LPNC.

7 PERSPECTIVAS

 Determinar o possível mecanismo de ação do BIS em modelo de dor neuropática, avaliando o envolvimento dos sistemas glutamatérgico, opioide, canabinoide, serotoninérgico, adrenérgico e GABAérgico ;

 Avaliar a possível ação do BIS sobre as áreas encefálicas e medulares na modulação da dor por meio da expressão de c-FOS;

 Avaliar a possível ação do BIS sobre os receptores de TNF-α, TNFR1 e TNFR2;

 Determinar a possível atuação do BIS nos canais TRPV1;

 Avaliar o efeito do BIS sobre o estresse oxidativo (CAT, SOD, TBARs);  Avaliar o envolvimento da COX-2, NFκB, p38MAPK;

REFERÊNCIAS

ALMEIDA, R. N. DE; MOTTA, S. C.; BRITO FATURI, C. DE; CATALLANI, B.; LEITE, J. R. Anxiolytic-like effects of rose oil inhalation on the elevated plus-maze test in rats. Pharmacology Biochemistry and Behavior, v. 77, n. 2, p. 361–364, 2004. ALVES, A. D M. H.; GONÇALVES, J. C. R.; CRUZ, J. S.; ARAÚJO, D. A. M. Evaluation of the sesquiterpene (-)-α-bisabolol as a novel peripheral nervous blocker. Neuroscience Letters, v. 472, n. 1, p. 11–15, 2010.

ALVES DE BARROS, N.; RAPOSA ROCHA, R.; RANDOW DE ASSIS, A. VON; FERNANDES MENDES, M. Extraction of basil oil (Ocimum basilicum L.) using supercritical fluid. III Iberoamerican Conference on Supercritical Fluids, p. 8, 2013.

ANDRADE, A. L. M. DE. EFEITO DA TERAPIA LASER DE BAIXA INTENSIDADE (808nm) NO CONTROLE DA DOR NEUROPÁTICA EM CAMUNDONGOS. [s.l.] Universidade Federal de São Carlos - SP, 2016.

ATTAL, N. Chronic Neuropathic Pain: Mechanisms and TreatmentThe Clinical Journal of Pain, 2000.

ATTAL, N.; CRUCCU, G.; HAANPÄÄ, M.; HANSSON, P.; JENSEN, T. S.; NURMIKKO, T.; SAMPAIO, C.; SINDRUP, S.; WIFFEN, P. EFNS guidelines on pharmacological treatment of neuropathic pain. European Journal of Neurology, v. 13, n. 11, p. 1153–1169, 2006.

AUSTIN, P. J.; MOALEM-TAYLOR, G. The neuro-immune balance in neuropathic pain: Involvement of inflammatory immune cells, immune-like glial cells and cytokinesJournal of Neuroimmunology, 2010.

AYDEDE, M. Defending the IASP definition of pain. Monist, v. 100, n. 4, p. 439–464, 2017.

BACKONJA, M. M. Need for differential assessment tools of neuropathic pain and the deficits of LANSS pain scale [1] (multiple letter)Pain, 2002.

BACKONJA, M. M.; COE, C. L.; MULLER, D. A.; SCHELL, K. Altered cytokine levels in the blood and cerebrospinal fluid of chronic pain patients. Journal of Neuroimmunology, v. 195, n. 1–2, p. 157–163, 2008.

BAHMANI, M.; SHIRZAD, H.; MAJLESI, M.; SHAHINFARD, N.; RAFIEIAN-KOPAEI, M. A review study on analgesic applications of Iranian medicinal plants. Asian Pacific Journal of Tropical Medicine, v. 7, n. S1, p. S43–S53, 2014.

BAKKALI, F.; AVERBECK, S.; AVERBECK, D.; IDAOMAR, M. Biological effects of essential oils--a review. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, v. 46, n. 2, p. 446–75, 2008.

BARON, R. Neuropathic pain: A clinical perspectiveHandbook of Experimental Pharmacology, 2009.

BARRETO, R. S. S. et al. Evidence for the involvement of TNF-α and IL-1β in the antinociceptive and anti-inflammatory activity of Stachys lavandulifolia Vahl. (Lamiaceae) essential oil and (-)-α-bisabolol, its main compound, in mice. Journal of Ethnopharmacology, v. 191, p. 9–18, Sep. 2016.

BEEK, W. J. T. VAN DE; REMARQUE, E. J.; WESTENDORP, R. G. J.; HILTEN, J. J. VAN. Innate cytokine profile in patients with complex regional pain syndrome is normal. Pain, v. 91, n. 3, p. 259–261, 2001.

BENBOUZID, M.; PALLAGE, V.; RAJALU, M.; WALTISPERGER, E.; DORIDOT, S.; POISBEAU, P.; FREUND-MERCIER, M. J.; BARROT, M. Sciatic nerve cuffing in mice: A model of sustained neuropathic pain. European Journal of Pain, v. 12, n. 5, p. 591–599, 2008.

BENNETT, G. J. An animal model of neuropathic pain: A review. Muscle & Nerve, v. 16, n. 10, p. 1040–1048, 1993.

BEYDOUN, A.; BACKONJA, M. M. Mechanistic stratification of antineuralgic agents. Journal of Pain and Symptom Management, v. 25, n. 5 SUPPL., 2003.

BEZERRA, S. B.; LEAL, L. K. A. M.; NOGUEIRA, N. A. P.; CAMPOS, A. R. Bisabolol-Induced Gastroprotection Against Acute Gastric Lesions: Role of Prostaglandins, Nitric Oxide, and K + ATP Channels. Journal of Medicinal Food, v. 12, n. 6, p. 1403–1406, 2009.

BODDEKE, E. W. G. M. Involvement of chemokines in painEuropean Journal of Pharmacology, 2001.

BOUHASSIRA, D. [Definition and classification of neuropathic pain]. Presse médicale (Paris, France : 1983), v. 37, n. 2 Pt 2, p. 311–4, 2008.

BOUHASSIRA, D.; ATTAL, N. Translational neuropathic pain research: A clinical perspectiveNeuroscience, 2016.

BRAGA, P. C.; DAL SASSO, M.; FONTI, E.; CULICI, M. Antioxidant activity of bisabolol: Inhibitory effects on chemiluminescence of human neutrophil bursts and cell-free systems. Pharmacology, v. 83, n. 2, p. 110–115, 2009.

BREWSTER, M. E.; LOFTSSON, T. Cyclodextrins as pharmaceutical solubilizersAdvanced Drug Delivery Reviews, 2007.

BRIDGES, D.; THOMPSON, S. W.; RICE, A. S. Mechanisms of neuropathic pain. British journal of anaesthesia, v. 87, n. 1, p. 12–26, 5 Jul. 2001.

BURNES, L. A; KOLKER, S. J.; DANIELSON, J. F.; WALDER, R. Y.; SLUKA, K. A. Enhanced muscle fatigue occurs in male but not female ASIC3-/- mice. American journal of physiology. Regulatory, integrative and comparative physiology, v. 294, n. 4, p. R1347–R1355, 2008.

guidelines for herbal medicines (phytotherapeutic agents)Brazilian Journal of Medical and Biological Research, 2000.

CALIXTO, J. B.; BEIRITH, A.; FERREIRA, J.; SANTOS, A. R. S.; FILHO, V. C.; YUNES, R. A. Naturally occurring antinociceptive substances from plantsPhytotherapy Research, 2000.

CALIXTO, J. B.; SCHEIDT, C.; OTUKI, M.; SANTOS, A. R. S. Biological activity of plant extracts: Novel analgesic drugs. Expert Opinion on Emerging Drugs, v. 6, n. 2, p. 261–279, 2001.

CALVINO, B.; GRILO, R. M. Central pain controlJoint Bone Spine, 2006.

CAPRIOTTI, T., FRIZZELL, J. P. Pathophysiology: introductory concepts and clinical perceptions. In: Pain. Philadelphia: [s.n.]. p. 93–113.

CARVALHO, Y. M. B. G. et al. Inclusion complex between β-cyclodextrin and hecogenin acetate produces superior analgesic effect in animal models for orofacial pain. Biomedicine and Pharmacotherapy, v. 93, p. 754–762, 2017.

CHAUDAKSHETRIN, P. A survey of patients with neuropathic pain at Siriraj Pain Clinic. Journal of the Medical Association of Thailand, v. 89, p. 354–361, 2006. CHEN, S. L.; YU, H.; LUO, H. M.; WU, Q.; LI, C. F.; STEINMETZ, A. Conservation and sustainable use of medicinal plants : problems , progress , and prospects. Chinese Medicine, p. 1–10, 2016.

CLARK, A. K.; OLD, E. A.; MALCANGIO, M. Neuropathic pain and cytokines: Current perspectivesJournal of Pain Research, 2013.

COULL, J. A. M.; BOUDREAU, D.; BACHAND, K.; PRESCOTT, S. A.; NAULT, F.; SÍK, A.; KONINCK, P. DE; KONINCK, Y. DE. Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature, v. 424, n. 6951, p. 938–942, 2003.

COVIAN, M. R. Fisiopatog??nese da dor. Arquivos de Neuro-Psiquiatria, v. 23, n. 3, p. 143–164, 1965.

CRINI, G. Review : A History of Cyclodextrins Gre g. Chemical Reviews, v. 114, n. 21, p. 10940–10975, 2014.

CRUCIANI, R. A.; NIETO, M. J. Fisiopatología y tratamiento del dolor neuropático: Avances más recientesRevista de la Sociedad Espanola del Dolor, 2006.

CUNHA, F. Q.; LORENZETTI, B. B.; POOLE, S.; FERREIRA, S. H. Interleukin 8 as a mediator of sympathetic pain. British Journal of Pharmacology, v. 104, n. 3, p. 765–767, 1991.

CUNHA, T. M.; VERRI JR., W. A.; VIVANCOS, G. G.; MOREIRA, I. F.; REIS, S.; PARADA, C. A.; CUNHA, F. Q.; FERREIRA, S. H. An electronic pressure-meter nociception paw test for mice. Brazilian Journal of Medical and Biological Research, v. 37, n. 3, p. 401–407, Mar. 2004.

CURFS, J. H. A. J.; MEIS, J. F. G. M.; HOOGKAMP-KORSTANJE, J. A. A. A primer on cytokines: Sources, receptors, effects, and inducersClinical Microbiology Reviews, 1997.

D’MELLO, R.; DICKENSON, A. H. Spinal cord mechanisms of painBritish Journal of Anaesthesia, 2008.

DAHHAM, S. S.; TABANA, Y. M.; IQBAL, M. A.; AHAMED, M. B. K.; EZZAT, M. O.; MAJID, A. S. A.; MAJID, A. M. S. A. The Anticancer, Antioxidant and Antimicrobial Properties of the Sesquiterpene beta-Caryophyllene from the Essential Oil of Aquilaria crassna. Molecules (Basel, Switzerland), v. 20, n. 7, p. 11808–11829, 2015.

DICKENSON, A., SUZUKI, R. Targets in pain and analgesia. In: The Neurobiology of Pain: (molecular and Cellular Neurobiology). [s.l: s.n.]. p. 149–167.

DIONNE, R. A. Pharmacologic advances in orofacial pain: from molecules to medicine. Journal of dental education, v. 65, n. December, p. 1393–1403, 2001. DONG, Y.; BENVENISTE, E. N. Immune function of astrocytes. GLIA, v. 36, n. 2, p. 180–190, 2001.

DUTRA, R. C.; CAMPOS, M. M.; SANTOS, A. R. S.; CALIXTO, J. B. Medicinal plants in Brazil: Pharmacological studies, drug discovery, challenges and perspectives. Pharmacological Research, v. 112, p. 4–29, 2016.

DUTRA, R. C.; SIMÃO DA SILVA, K. A. B.; BENTO, A. F.; MARCON, R.; PASZCUK, A. F.; MEOTTI, F. C.; PIANOWSKI, L. F.; CALIXTO, J. B. Euphol, a tetracyclic triterpene produces antinociceptive effects in inflammatory and neuropathic pain: The involvement of cannabinoid system. Neuropharmacology, v. 63, n. 4, p. 593–605, 2012.

DZAU, V. J.; PIZZO, P. A. Relieving pain in America: Insights from an institute of medicine committeeJAMA - Journal of the American Medical Association, 2014. ECHEVERRY, S.; SHI, X. Q.; RIVEST, S.; ZHANG, J. Peripheral Nerve Injury Alters Blood-Spinal Cord Barrier Functional and Molecular Integrity through a Selective Inflammatory Pathway. Journal of Neuroscience, v. 31, n. 30, p. 10819–10828, 2011.

EDRIS, A. E. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: A reviewPhytotherapy Research, 2007. ELLISON, D. L. Physiology of PainCritical Care Nursing Clinics of North America, 2017.

FANTONI, D. T.; MASTROCINQUE, S. Fisiopatologia e controle da dor. In: Anestesia em cães e gatos. São Paulo: [s.n.]. p. 323–334.

FERREIRA, S. H.; LORENZETTI, B. B.; CUNHA, F. Q.; POOLE, S. Bradykinin release of TNF-alpha plays a key role in the development of inflammatory hyperalgesia. Agents and actions, v. 38 Spec No, p. C7-9, 1993.

FIELDS, H. L. Pain modulation: expectation, opioid analgesia and virtual pain. In: [s.l: s.n.]. v. 122p. 245–253.

FINNERUP, N. B. et al. Neuropathic pain: An updated grading system for research and clinical practice. Pain, v. 157, n. 8, p. 1599–1606, 2016.

FORRER, M.; KULIK, E. M.; FILIPPI, A.; WALTIMO, T. The antimicrobial activity of alpha-bisabolol and tea tree oil against Solobacterium moorei, a Gram-positive bacterium associated with halitosis. Archives of Oral Biology, v. 58, n. 1, p. 10–16, 2013.

FRANÇA ALMEIDA MOREIRA, C. D. L. DE et al. Amorphous solid dispersions of hecogenin acetate using different polymers for enhancement of solubility and improvement of anti-hyperalgesic effect in neuropathic pain model in mice. Biomedicine and Pharmacotherapy, v. 97, n. October 2017, p. 870–879, 2018. FÜRST, S. Transmitters involved in antinociception in the spinal cordBrain Research Bulletin, 1999.

GARRISON, C. J.; DOUGHERTY, P. M.; KAJANDER, K. C.; CARLTON, S. M. Staining of glial fibrillary acidic protein (GFAP) in lumbar spinal cord increases following a sciatic nerve constriction injury. Brain Research, v. 565, n. 1, p. 1–7, 1991.

GASKIN, D. J.; RICHARD, P. The economic costs of pain in the United States. Journal of Pain, v. 13, n. 8, p. 715–724, 2012.

GEORGE, A.; BUEHL, A.; SOMMER, C. Wallerian degeneration after crush injury of rat sciatic nerve increases endo- and epineurial tumor necrosis factor-alpha protein. Neuroscience Letters, v. 372, n. 3, p. 215–219, 2004.

GOLMAKANI, M. T.; REZAEI, K. Comparison of microwave-assisted hydrodistillation withthe traditional hydrodistillation method in the extractionof essential oils from Thymus vulgaris L. Food Chemistry, v. 109, n. 4, p. 925–930, 2008.

GOMES-CARNEIRO, M. R.; DIAS, D. M. M.; DE-OLIVEIRA, A. C. A. X.; PAUMGARTTEN, F. J. R. Evaluation of mutagenic and antimutagenic activities of α- bisabolol in the Salmonella/microsome assay. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, v. 585, n. 1–2, p. 105–112, Aug. 2005.

GOMEZ, N. E.; WITTE, L. A simple method to extract essential oils from tissue samples by using microwave radiation. J.Chem.Ecol., v. 27, n. 11, p. 2351–2360, 2001.

GONÇALVES, O.; PEREIRA, R.; GONÇALVES, F.; MENDO, S.; COIMBRA, M. A.; ROCHA, S. M. Evaluating of genotoxicity of sesquiterpenic compounds and their antibiotic susceptibility on two clinical relevant bacteria. Mutation research, 2011. GOPALSAMY, B.; FAROUK, A. A. O.; TENGKU MOHAMAD, T. A. S.; SULAIMAN, M. R.; PERIMAL, E. K. Antiallodynic and antihyperalgesic activities of zerumbone via the suppression of IL-1β, IL-6, and TNF-α in a mouse model of neuropathic pain.

Journal of Pain Research, v. 10, p. 2605–2619, 2017.

GOULD, S.; SCOTT, R. C. 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD): A toxicology review. Food and Chemical Toxicology, v. 43, n. 10, p. 1451–1459, Oct. 2005. GRACE, P. M.; HUTCHINSON, M. R.; MAIER, S. F.; WATKINS, L. R. Pathological pain and the neuroimmune interfaceNature Reviews Immunology, 2014.

GUAN, Z. et al. Injured sensory neuron-derived CSF1 induces microglial proliferation and DAP12-dependent pain. Nature Neuroscience, v. 19, n. 1, p. 94–101, 2015. GUIMARÃES, A. G.; OLIVEIRA, M. A.; ALVES, R. D. S.; MENEZES, P. D. P.; SERAFINI, M. R.; SOUZA ARAÚJO, A. A. DE; BEZERRA, D. P.; QUINTANS, L. J. Encapsulation of carvacrol, a monoterpene present in the essential oil of oregano, with β-cyclodextrin, improves the pharmacological response on cancer pain experimental protocols. Chemico-Biological Interactions, v. 227, p. 69–76, 2015. GUIMARÃES, A. G.; SILVA, F. V.; XAVIER, M. A.; SANTOS, M. R. V; OLIVEIRA, R. C. M.; OLIVEIRA, M. G. B.; OLIVEIRA, A. P.; SOUZA, C. C. DE; QUINTANS- JÚNIOR, L. J. Orofacial analgesic-like activity of carvacrol in rodents. Zeitschrift fur Naturforschung - Section C Journal of Biosciences, v. 67 C, n. 9–10, p. 481–485, 2012.

GUO, L. H.; SCHLUESENER, H. J. Acute but not chronic stimulation of glial cells in rat spinal cord by systemic injection of lipopolysaccharide is associated with hyperalgesia. Acta Neuropathologica, v. 112, n. 6, p. 703–713, 2006.

HAANPÄÄ, M. L. et al. Assessment of Neuropathic Pain in Primary Care. The American Journal of Medicine, v. 122, n. 10, p. S13–S21, 2009.

HALL, G. C.; CARROLL, D.; PARRY, D.; MCQUAY, H. J. Epidemiology and treatment of neuropathic pain: The UK primary care perspective. Pain, v. 122, n. 1–2, p. 156–162, 2006.

HARKER, J.; REID, K. J.; BEKKERING, G. E.; KELLEN, E.; BALA, M. M.; RIEMSMA, R.; WORTHY, G.; MISSO, K.; KLEIJNEN, J. Epidemiology of chronic pain in Denmark and SwedenPain Research and Treatment, 2012.

HECKE, O. VAN; AUSTIN, S. K.; KHAN, R. A.; SMITH, B. H.; TORRANCE, N. Neuropathic pain in the general population: A systematic review of epidemiological studiesPain, 2014.

HELLEBREKER, L. J. Dor em animais. 1o ed. [s.l: s.n.].

HERBER, D. L.; MALONEY, J. L.; ROTH, L. M.; FREEMAN, M. J.; MORGAN, D.; GORDON, M. N. Diverse microglial responses after intrahippocampal administration of lipopolysaccharide. GLIA, v. 53, n. 4, p. 382–391, 2006.

HONEY, C. M.; TRONNIER, V. M.; HONEY, C. R. Deep brain stimulation versus motor cortex stimulation for neuropathic pain: A minireview of the literature and proposal for future research. Computational and Structural Biotechnology Journal, v. 14, p. 234–237, 2016.

HUETHER, S., MCCANCE, K. Understanding pathophysiology. 6th. ed. Mosby: [s.n.].

IGNATAVICIUS, D.; WORKMAN, M. L. Medical-surgical nursing: patient-centered collaborative care. In: Medical-surgical nursing: patient-centered collaborative care. 8th. ed. Louis (MO): [s.n.]. p. 24–49.

INOUE, K.; TSUDA, M. Microglia in neuropathic pain: Cellular and molecular mechanisms and therapeutic potentialNature Reviews Neuroscience, 2018. IRIE T., U. K. Pharmaceutical applications of cyclodextrins. III. Toxical issues and safety evaluation. Journal of pharmaceutical sciences, v. 86, n. 2, p. 147–162, 1997.

ISHIKAWA, T. et al. Differences between tumor necrosis factor-α receptors types 1 and 2 in the modulation of spinal glial cell activation and mechanical allodynia in a rat sciatic nerve injury model. Spine, v. 38, n. 1, p. 11–16, 2013.

JAGGI, A. S.; JAIN, V.; SINGH, N. Animal models of neuropathic pain. Fundamental & clinical pharmacology, v. 25, n. 1, p. 1–28, 2011.

JANES, K. A.; FRESNEAU, M. P.; MARAZUELA, A.; FABRA, A.; ALONSO, M. J. Chitosan nanoparticles as delivery systems for doxorubicin. Journal of Controlled Release, v. 73, n. 2–3, p. 255–267, 2001.

JENSEN, T. S.; BARON, R.; HAANPÄÄ, M.; KALSO, E.; LOESER, J. D.; RICE, A. S. C.; TREEDE, R. D. A new definition of neuropathic painPain, 2011.

JENSEN, T. S.; MADSEN, C. S.; FINNERUP, N. B. Pharmacology and treatment of neuropathic painsCurrent Opinion in Neurology, 2009.

JI, R. R.; XU, Z. Z.; GAO, Y. J. Emerging targets in neuroinflammation-driven chronic painNature Reviews Drug Discovery, 2014.

JØRUM, E.; WARNCKE, T.; STUBHAUG, A. Cold allodynia and hyperalgesia in neuropathic pain: The effect of N-methyl-D-aspartate (NMDA) receptor antagonist ketamine - A double-blind, cross-over comparison with alfentanil and placebo. Pain, v. 101, n. 3, p. 229–235, 2003.

JULIUS, D.; BASBAUM, A. I. Molecular mechanisms of nociception [Review]. Nature, v. 413, n. 6852, p. 203–210, 2001.

KHAN, J.; RAMADAN, K.; KORCZENIEWSKA, O.; ANWER, M. M.; BENOLIEL, R.; ELIAV, E. Interleukin-10 levels in rat models of nerve damage and neuropathic pain. Neuroscience Letters, v. 592, p. 99–106, 2015.

KIDD, B. L.; URBAN, L. A. Mechanisms of inflammatory pain. British Journal of Anaesthesia, v. 87, n. 1, p. 3–11, 2001.

KISS, T.; FENYVESI, F.; PASZTOR, N.; FEHER, P.; VARADI, J.; KOCSAN, R.; SZENTE, L.; FENYVESI, E.; SZABO, G.; VECSERNYES, M.; BACSKAY, I. Cytotoxicity of different types of methylated β-cyclodextrins and ionic derivatives. Pharmazie, v. 62, n. 7, p. 557–558, 2007.

KLAUMANN, P. R.; WOUK, A. F. P. F.; SILLAS, T. Patofisiologia da dor. Archives of Veterinary Science, v. 13, n. 1, p. 1–12, 2008.

KOBAYASHI, M.; KONISHI, H.; SAYO, A.; TAKAI, T.; KIYAMA, H. TREM2/DAP12 Signal Elicits Proinflammatory Response in Microglia and Exacerbates Neuropathic Pain. Journal of Neuroscience, v. 36, n. 43, p. 11138–11150, 2016.

KURKOV, S. V.; LOFTSSON, T. CyclodextrinsInternational Journal of Pharmaceutics, 2013.

LAZA-KNOERR, A. L.; GREF, R.; COUVREUR, P. Cyclodextrins for drug delivery. Journal of Drug Targeting, v. 18, n. 9, p. 645–656, 25 Nov. 2010.

LEE, J.; JUN, H.; JUNG, E.; HA, J.; PARK, D. Whitening effect of alpha-bisabolol in Asian women subjects. International journal of cosmetic science, v. 32, n. 4, p. 299–303, 2010.

LEITE, G. DE; FERNANDES, C.; MENEZES, I. R. DE; COSTA, J. G. DA; CAMPOS, A. Attenuation of visceral nociception by α-bisabolol in mice: investigation of mechanisms. Organic and Medicinal Chemistry Letters, v. 2, n. 1, p. 18, 2012. LIM, C. S.; JIN, D. Q.; MOK, H.; OH, S. J.; LEE, J. U.; HWANG, J. K.; HA, I.; HAN, J. S. Antioxidant and antiinflammatory activities of xanthorrhizol in hippocampal neurons and primary cultured microglia. Journal of Neuroscience Research, v. 82, n. 6, p. 831–838, 2005.

LIMA, P. S. S.; LUCCHESE, A. M.; ARAÚJO-FILHO, H. G.; MENEZES, P. P.; ARAÚJO, A. A. S.; QUINTANS-JÚNIOR, L. J.; QUINTANS, J. S. S. Inclusion of terpenes in cyclodextrins: Preparation, characterization and pharmacological approachesCarbohydrate Polymers, 2016.

LINTON, S. J. A review of psychological risk factors in back and neck pain. Spine, v. 25, n. 9, p. 1148–1156, 2000.

LIPMAN, A. G. Understanding Opioid Tolerance: A Seriously Overestimated Phenomenon. Journal of Pain & Palliative Care Pharmacotherapy, v. 27, n. 4, p. 318–319, 4 Dec. 2013.

LIPPOLDT, E. K.; ONGUN, S.; KUSAKA, G. K.; MCKEMY, D. D. Inflammatory and neuropathic cold allodynia are selectively mediated by the neurotrophic factor receptor GFRα3. Proceedings of the National Academy of Sciences, v. 113, n. 16, p. 4506–4511, 2016.

LOFTSSON, T.; BREWSTER, M. E. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. Journal of Pharmaceutical Sciences, v. 85, n. 10, p. 1017–1025, 1996.

___. Pharmaceutical applications of cyclodextrins: Basic science and product developmentJournal of Pharmacy and Pharmacology, 2010.

___. Cyclodextrins as functional excipients: Methods to enhance complexation efficiencyJournal of Pharmaceutical Sciences, 2012.

LOFTSSON, T.; DUCHÊNE, D. Cyclodextrins and their pharmaceutical applicationsInternational Journal of Pharmaceutics, 2007.

LOFTSSON, T.; HREINSDÓTTIR, D.; MÁSSON, M. Evaluation of cyclodextrin solubilization of drugs. International Journal of Pharmaceutics, v. 302, n. 1–2, p. 18–28, 2005.

LYER, S. S.; CHENG, G. Role of Interleukin 10 Transcriptional Regulation in Inflammation and autoimmune disease. National Institute of Health, v. 10, n. 1, p. 54–56, 2013.

M., M. D. Z.; P., K. P.; SH., R.; H., A.; Z., S.; Q., L. Research Note: Application of Multistage Steam Distillation Column for Extraction of Essential Oil of Rosemarinuse Officinialis L. v. 9, n. 4, p. 54–64, 2012.

MACHELSKA, H. Dual peripheral actions of immune cells in neuropathic painArchivum Immunologiae et Therapiae Experimentalis, 2011.

MALMBERG, A B.; BASBAUM, A I. Partial sciatic nerve injury in the mouse as a model of neuropathic pain: behavioral and neuroanatomical correlates. Pain, v. 76, n. 1–2, p. 215–222, 1998.

MANAKKER, F. VAN DE; VERMONDEN, T.; NOSTRUM, C. F. VAN; HENNINK, W. E. Cyclodextrin-Based Polymeric Materials : Synthesis , Properties ,. v. 10, n. 12, 2009.

MANCHIKANTI, L. et al. A systematic review of randomized trials of long-term opioid management for chronic non-cancer pain. Pain physician, v. 14, p. 91–121, 2011. MANTYH, P. W.; CLOHISY, D. R.; KOLTZENBURG, M. Molecular mechanisms of cancer pain. Nature Reviews Cancer, v. 2, n. 3, p. 201–209, 2002.

MARCHAND, F.; PERRETTI, M.; MCMAHON, S. B. Role of the immune system in chronic painNature Reviews Neuroscience, 2005.

MARCHAND, S. The Physiology of Pain Mechanisms: From the Periphery to the BrainRheumatic Disease Clinics of North America, 2008.

MARQUES, H. M. C. A review on cyclodextrin encapsulation of essential oils and volatilesFlavour and Fragrance Journal, 2010.

MASEDA, D., JOHNSON, E., CROFFORD, L. Production of inflammatory cytokines is regulated by mPGES-1-Dependent PGE2 in T cells. Inflammatory Bowel Dis., v. 22, 2016.

MAURYA, A.; SINGH, M.; DUBEY, V.; SRIVASTAVA, S.; LUQMAN, S.; BAWANKULE, D. α-(-)-bisabolol Reduces Pro-inflammatory Cytokine Production and Ameliorates Skin Inflammation. Current Pharmaceutical Biotechnology, v. 15, n. 2, p. 173–181, 28 May 2014.

MCCLESKEY, E. W.; GOLD, M. S. Ion channels of nociception. Annual review of physiology, v. 61, n. 2, p. 835–856, 1999.

MCDERMOTT, M. F. TNF and TNFR biology in health and disease.Cellular and Molecular Biology, 2001.

MCKAY, D. L.; BLUMBERG, J. B. A review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.)Phytotherapy Research, 2006. MELO, L. T.; DUAILIBE, M. A. B.; PESSOA, L. M.; COSTA, F. N. DA; VIEIRA-NETO, A. E.; VASCONCELLOS ABDON, A. P. DE; CAMPOS, A. R. (−)-α-Bisabolol reduces orofacial nociceptive behavior in rodents. Naunyn-Schmiedeberg’s Archives of Pharmacology, v. 390, n. 2, p. 187–195, Feb. 2017.

MENEZES, I. A. C.; BARRETO, C. M. N.; ANTONIOLLI, Â. R.; SANTOS, M. R. V.; SOUSA, D. P. DE. Hypotensive activity of terpenes found in essential oils. Zeitschrift fur Naturforschung - Section C Journal of Biosciences, v. 65 C, n. 9– 10, p. 562–566, 2010.

MENEZES, P. DOS P. et al. Physicochemical characterization and analgesic effect of inclusion complexes of essential oil from Hyptis pectinata L. Poit leaves with β- cyclodextrin. Current pharmaceutical biotechnology, v. 16, n. 5, p. 440–50, 2015. MENEZES, P. P.; SERAFINI, M. R.; SANTANA, B. V.; NUNES, R. S.; QUINTANS, L. J.; SILVA, G. F.; MEDEIROS, I. A.; MARCHIORO, M.; FRAGA, B. P.; SANTOS, M. R. V.; ARAÚJO, A. A. S. Solid-state β-cyclodextrin complexes containing geraniol. Thermochimica Acta, v. 548, p. 45–50, 2012.

MERSKEY, H.; BOGDUK, N. Classification of Chronic Pain. [s.l: s.n.].

MILLAN, M. J. The induction of pain: An integrative reviewProgress in Neurobiology, 1999.

___. Descending control of painProgress in Neurobiology, 2002.

MILLER, R. J.; JUNG, H.; BHANGOO, S. K.; WHITE, F. A. Cytokine and chemokine regulation of sensory neuron functionHandbook of Experimental Pharmacology, 2009.

MISHRA, B. B.; TIWARI, V. K. Natural products: An evolving role in future drug discoveryEuropean Journal of Medicinal Chemistry, 2011.

MOSSER, D. M.; ZHANG, X. Interleukin-10: New perspectives on an old cytokineImmunological Reviews, 2008.

MUIR, W. W. Physiology and Pathophysiology of Pain. In: Handbook of Veterinary Pain Management. [s.l: s.n.]. p. 13–41.

MURPHY, P. Acute pain mechanisms. In: GEBHART, G. F. AND SCHMIDT, R. F. (Ed.). . In Encyclopedia of pain. 2. ed. [s.l.] Elsevier, 2016. p. 57–60.

NASCIMENTO, S. S.; CAMARGO, E. A.; DESANTANA, J. M.; ARAÚJO, A. A. S.; MENEZES, P. P.; LUCCA-JÚNIOR, W.; ALBUQUERQUE-JÚNIOR, R. L. C.; BONJARDIM, L. R.; QUINTANS-JÚNIOR, L. J. Linalool and linalool complexed in β- cyclodextrin produce anti-hyperalgesic activity and increase Fos protein expression in animal model for fibromyalgia. Naunyn-Schmiedeberg’s Archives of

Pharmacology, v. 387, n. 10, p. 935–942, 2014.

NASRI, H.; SHIRZAD, H. Toxicity and safety of medicinal plants. Journal of HerbMed Pharmacology, v. 2, n. 2, p. 21–22, 2013.

NICHOLSON, B. Gabapentin use in neuropathic pain syndromesActa Neurologica Scandinavica, 2000.

NISHIO, N.; TANIGUCHI, W.; SUGIMURA, Y. K.; TAKIGUCHI, N.; YAMANAKA, M.; KIYOYUKI, Y.; YAMADA, H.; MIYAZAKI, N.; YOSHIDA, M.; NAKATSUKA, T. Reactive oxygen species enhance excitatory synaptic transmission in rat spinal dorsal horn neurons by activating TRPA1 and TRPV1 channels. Neuroscience, v. 247, p. 201–212, 2013.

O. LEITE, G. DE; LEITE, L. H. I.; S. SAMPAIO, R. DE; ARARUNA, M. K. A.; MENEZES, I. R. A. DE; COSTA, J. G. M. DA; CAMPOS, A. R. (-)-α-Bisabolol attenuates visceral nociception and inflammation in mice. Fitoterapia, v. 82, n. 2, p. 208–211, 2011.

OLAUSSON, H.; COLE, J.; RYLANDER, K.; MCGLONE, F.; LAMARRE, Y.; WALLIN, B. G.; KRÄMER, H.; WESSBERG, J.; ELAM, M.; BUSHNELL, M. C.; VALLBO, Å. Functional role of unmyelinated tactile afferents in human hairy skin: Sympathetic response and perceptual localization. Experimental Brain Research, v. 184, n. 1, p. 135–140, 2008.

OLIVEIRA, F. DE S. et al. Evaluation of the antibacterial and modulatory potential of α-bisabolol, β-cyclodextrin and α-bisabolol/β-cyclodextrin complex. Biomedicine and Pharmacotherapy, v. 92, p. 1111–1118, 2017.

OLIVEIRA JÚNIOR, J. O. DE; PORTELLA JUNIOR, C. S. A.; COHEN, C. P. Inflammatory mediators of neuropathic pain. Revista Dor, v. 17, n. Suppl 1, p. 35– 42, 2016.

OLIVEIRA MAKSON, G. DE; GUIMARÃES, A. G.; ARAÚJO ADRIANO, A.; QUINTANS JULLYANA, S.; SANTOS, M. R.; QUINTANS-JÚNIOR, L. J. Cyclodextrins: improving the therapeutic response of analgesic drugs: a patent review. Expert Opinion on Therapeutic Patents, v. 25, n. 8, p. 897–907, 2015. ORR, P. M.; SHANK, B. C.; BLACK, A. C. The Role of Pain Classification Systems in Pain ManagementCritical Care Nursing Clinics of North America, 2017.

PARENT, A. Carpenter’s human neuroanatomy. In: Baltimore: Williams & Wilkins. [s.l: s.n.]. .

PASERO, C. Pathophysiology of neuropathic pain. Pain Management Nursing, v. 5, n. SUPPL., p. 3–8, Dec. 2004.

PATEL, N. B. Physiology of pain from guide to pain management in low. In: International Association for the study of pain. [s.l: s.n.]. p. 14–7.

PERCIE DU SERT, N.; RICE, A. S. C. Improving the translation of analgesic drugs to the clinic: Animal models of neuropathic painBritish Journal of

Pharmacology, 2014.

PETRONILHO, S.; MARASCHIN, M.; COIMBRA, M. A.; ROCHA, S. M. In vitro and in vivo studies of natural products: A challenge for their valuation. The case study of chamomile (Matricaria recutita L.)Industrial Crops and Products, 2012. PINHO-RIBEIRO, F. A.; VERRI, W. A.; CHIU, I. M. Nociceptor Sensory Neuron– Immune Interactions in Pain and InflammationTrends in Immunology, 2017. PINHO, E.; GROOTVELD, M.; SOARES, G.; HENRIQUES, M. Cyclodextrins as encapsulation agents for plant bioactive compoundsCarbohydrate Polymers, 2014.

POLYAKOV, N. E.; LESHINA, T. V.; KONOVALOVA, T. A.; HAND, E. O.; KISPERT, L. D. Inclusion complexes of carotenoids with cyclodextrins: 1H NMR, EPR, and

Documentos relacionados