• Nenhum resultado encontrado

Para tanto, foram definidos os seguintes objetivos específicos:

- Selecionar clones de C. violaceum que expressem genes relacionados à tolerância e/ou resistência a luz ultravioleta (UVC);

- Seqüenciar clones selecionados e analisar as seqüências in silico para identificação de genes e predição de possíveis funções;

- Analisar os clones de interesse por ensaios de complementação funcional e mutagenicidade;

- Identificar por RT-PCR (Transcriptase Reversa) as possíveis ORFs em operon, bem como, analisar sua expressão a partir de variações e análise relativa.

84

6 Conclusões

- Neste trabalho um operon em C. Violaceum indutível em resposta ao tratamento foi identificado envolvido com resposta ao estresse. Apesar deste operon ser encontrado em outros organismos, sua ativação sob estresse não havia sido relatada anteriormente;

- O sinergismo observado em relação ao aumento da sobrevivência de DH10B na presença das ORFs CV_3722 e CV_3724 após tratamento com UV sugere que as proteínas codificadas por estes genes atuam em resposta ao estresse em vias independentes;

- A ORF CV_3724 é homologa a uma proteína hipotética conservada e nossos dados abrem perspectivas para a caracterização de sua função em relação à resposta ao estresse;

- Podemos destacar uma possível contribuição das ORFs CV_3721 (PilZ) e CV_3723 (TMK), uma vez que estas podem estar envolvidas em processos que podem favorecer o crescimento sob estresse, como a produção de biofilme e síntese de desoxinucleotídeos, respectivamente;

- A ORF CV_3722 (HolB) devido a sua contribuição a mutagênese pode complementar a deficiência de RecA por sua atividade sobre a ativação do clamp

ter um efeito estimulante na atividade da Pol IV;

- Os clones PLE1G, PLE7B, PLE10B e PLE12H complementam a cepa DH10B por desempenharem funções à resposta celular frente ao estresse;

- A ORF CV_1667 (PLE1G) que apresenta domínio GGDEF com função relacionada a biossíntese do nucleotídeo c-di-GMP (2º mensageiro) deve favorecer a sobrevivência do organismo devido a função regulatória deste mensageiro, o que permite uma resposta inter-relacionada com outras proteínas, como a PilZ (ORF CV_3721) na formação de biofilme;

- A ORF CV_0391 que codifica uma proteína hipotética com domínios ICL/PEMP) (PLE7B) pode estar atuando no aumento de mutagenicidade no clone devido à atividade desta proteína no fornecimento de energia, evento primordial aos processos celulares de defesa e sobrevivência;

85

- A capacidade de complementação e mutagenicidade do clone PLE10B na da cepa DH10B não pode ser indicado devido a não identificação das ORFs hipotéticas (CV_1311 e 1312 sem domínios conservados), bem como, da não associação de função específica da Isonitrila Hidratase (ORF CV_1313) relacionada a estas atividades;

- Mesmo de forma redundante, a ORF CV_4160 (subunidade a da RNA Pol de C. violaceum) deve ter contribuído na complementação (viabilidade) da cepa DH10B, já que atua na transcrição, processo essencial na resposta celular a agentes estressores;

- Os dados obtidos neste trabalho são relevantes uma vez que a resposta ao estresse em bactérias de vida livre é mal compreendido.

86

Referências Bibliográficas

Abdallah J, Caldas T, Kthiri F, Kern R and Richarme G. YhbO Protects Cells against Multiple Stresses. Journal of Bacteriology, 189(24): 9140–9144. 2007.

Adnan M, Morton G, Singh J, Hadi S. Contribution of rpoS and bolA genes in biofilm formation in Escherichia coli K-12 MG1655. Mol. Cell. Biochem., 342(1-2): 207- 213. 2010.

Alm RA, Bodero AJ, Free PD and Mattick JS. Identi cation of a Novel Gene, pilZ, Essential for Type 4 Fimbrial Biogenesis in Pseudomonas aeruginosa, Journal of Bacteriology, 178(1): 46–53. 1996.

Alseth I, Rognes T, Lindback T, Solberg I, Robertsen K, Kristiansen KI, Mainieri D, Lillehagen L, Kolsto AB and Bjoras M. A new protein superfamily includes two novel 3-methyladenine DNA glycosylases from Bacillus cereus, AlkC and AlkD. Mol Microbiol, 59(5): 1602. 2006.

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W and Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25: 3389–3402. 1997.

Amikam D and Galperin MY. PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics, 22(1): 3–6. 2006.

Andrighetti-Frohner CR, Antonio RV, Creczynski-Pasa TB, Barardi CR and Simões CM. Cytotoxicity and potential antiviral evaluation of violacein produced by

Chromobacterium violaceum. Mem Inst Oswaldo Cruz, 98(6): 843-848. 2003.

Arad G, Hendel A, Urbanke C, Curth U and Livneh Z. Single-stranded DNA-binding Protein Recruits DNA Polymerase V to Primer Termini on RecA-coated DNA*. Journal of Biological Chemistry, 283(13): 8274–8282. 2008.

Asad NR, Asad LMBO, Almeida CED, Felzenszwalb I, Cabral-Neto JB and Leitão, AC. Several pathways of hydrogen peroxide action that damage the E. coli genome. Genetics and Molecular Biology, 27(2): 291-303. 2004.

Bandyopadhyay S and Cookson MR. Evolutionary and functional relationships within the DJ1 superfamily. BMC Evolutionary Biology, 4: 6(1-9). 2004.

Batty DP and Wood RD. Damage recognition in nucleotide excision repair of DNA. Gene, 241: 193-204. 2000.

87

Beuning PJ, Chan S, Waters LS, Addepalli H, Ollivierre JN and Walker GC. Characterization of Novel Alleles of the Escherichia coli umuDC Genes Identi es Additional Interaction Sites of UmuC with the Beta Clamp. Journal of Bacteriology, 191(19): 5910–5920. 2009.

Bichara M, Pinet I, Origas M and Fuchs RP. Inactivation of recG stimulates the RecF pathway during lesion-induced recombination in E. coli, DNA Repair (Amst), 5(1): 129-137. 2006.

Black CG, Fyfe JAM and Davies JK. Absence of an SOS-like system in Neisseria

gonorrhoeae. Gene, 208: 61-66.1998.

Bloom LB, Chen X, Fygenson DK, Turner J, O’Donnell M, Goodman MF. Fidelity of

Escherichia coli DNA Polymerase III Holoenzyme. The effects of ß, complex processivity proteins and e proofreading exonuclease on nucleotide misincorporation efficiencies. Journal Biological Chemistry, 272(44): 27919– 27930. 1997.

Bonifati V, Rizzu P, Squitieri F, Krieger E, Vanacore N, Swieten JC, Brice A, Duijn CM, Oostra B, Meco G and Heutink P. DJ-1 (PARK7), a novel gene for autosomal recessive, early onset parkinsonism. Neurol Sci 24(3): 159–160. 2003. Boone DR and Castenholz RW. In: Garrity, GM, ed.-in-chief. Bergey´s manual of

systematic bacteriology. vol. 1. 2nd ed. New York: Springer. 721p, 2001.

Boor KJ. Bacterial Stress Responses: What Doesn’t Kill Them Can Make Them Stronger. PLOS Biology, 4(1): 18-20. 2006.

Bullard JM, Pritchard AE, Song M, Glover BP, Wieczorek A, Chen J, Janjic N and McHenry CS. A Three-domain Structure for the Subunit of the DNA Polymerase III Holoenzyme Domain III Binds ' and Assembles into the DnaX Complex. Journal of Biological Chemistry, 277(15): 13246–13256. 2002.

Bunting KA, Roe SM, Pearl LH. Structural basis for recruitment of translesion DNA polymerase Pol IV/DinB to the b-clamp. EMBO Journal, 22(21): 5883-5892. 2003. Burnouf DY, Olieric V, Wagner J, Fujii S, Reinbolt J, Fuchs RPP and Dumas P.

Structural and Biochemical Analysis of Sliding Clamp/Ligand Interactions Suggest a Competition BetweenReplicative and Translesion DNA Polymerases. J. Mol. Biol., 335: 1187–1197. 2004.

Butala M, Zgur-Bertok D, Busby SJ. The bacterial LexA transcriptional repressor. Cell. Mol. Life Science, 66(1), 82-93. 2009.

88

Byamukama D, Farnleitner AH, Kansiime F, Mana M, Burtscher M and. Mach RL. Contrasting occurrence of Chromobacterium violaceum in tropical drinking water springs of Uganda. Journal of Water and Health, 03.3: 229-238. 2005.

Campbell SC, Olson GJ, Clark TR and McFeters G. Biogenic production of cyanide and its application to gold recovery. J. Ind. Microbiol. Biotechnol. 26: 134-139. 2001.

Carepo MSP, Azevedo JSN, Porto JIR, Bentes-Souza AR, Batista JS, Silva ALC and Schneider MPC. Identification of Chromobacterium violaceum genes with potential biotechnological application in environmental detoxification. Genetics and Molecular Research, 3(1): 181-194. 2004.

Caris ME, Porto LM, Hauk P, Antonio RV. Produção de Desoxiviolaceína por

Chromobacterium violaceum. In: Resumos SINAFERM, Florianópolis – SC, 2003.

Casanueva AL, Paul L, Patrick S and Abratt VR. An AraC/XylS family transcriptional regulator homologue from Bacteroides fragilis is associated with cell survival following DNA damage. Federation of European Microbiological Societies Microbiol Lett., 278: 249-256. 2008.

Chaperon DN. Construction and Complementation of In-Frame Deletions of the Essential Escherichia coli Thymidylate Kinase Gene. Applied and Environmental Microbiology, 72(2): 1288–1294. 2006.

Chen WP and Kuo TT. A simple and rapid method for the preparation of gram negative bacterial genomic DNA. Nucleic Acids Res., 21: 2260. 1993.

Cheng Y, Yang M and Matter AM. Characterization of a Gene Cluster Responsible for the Biosynthesis of Anticancer Agent FK228 in Chromobacterium violaceum No. 968. Applied and Environmental Microbiology. 11(73): 3460–3469. 2007. Chowdhury R, Sahu GK and Das J. Stress response in pathogenic bacteria. J.

Biosci., 21(2): 149–160. 1996.

Clauß M and Grotjohann N. Comparative mutagenesis of Escherichia coli strains with different repair deficiencies irradiated with 222-nm and 254-nm ultraviolet light. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 673(2): 83-86. 2009.

Coenye T, Van Acker H, Peeters E, Sass A, Buroni S, Riccardi G, Mahenthiralingam E. Molecular mechanisms of chlorhexidine tolerance in Burkholderia cenocepacia biofilms. Antimicrob. Agents Chemother., 55(5): 1912-1919. 2011.

89

Costa RM, Chigancas V, Galhardo RS, Carvalho H, Menck CF. The eukaryotic nucleotide excision repair pathway. Biochimie, 85(11):1083-1099. 2003.

Cox MM, Goodman MF, Kreuzer KN, Sherratt DJ, Sandler SJ, Marians KJ.The importance of repairing stalled replication forks. Nature, 404(6773): 37-41. 2000. Cox MM. Historical overview: searching for replication help in all of the rec places.

P.N.A.S. (USA), 98(15): 8173-8180. 2001.

Crowley DJ and Hanawalt PC. Induction of the SOS Response Increases the Efficiency of Global Nucleotide Excision Repair. Journal of Bacteriology, 180(13): 3345–3352. 1998.

Curti E, McDonald JP, Mead S, Woodgate R. DNA polymerase switching: effects on spontaneous mutagenesis in Escherichia coli. Mol. Microbiol., 71(2): 315-331. 2009.

Dabrowska G, Prusiniska Jand Goc A. The stringent response--bacterial mechanism of an adaptive stress response. Postepy Biochem., 52(1): 87-93. 2006.

Davidsen T, Tuven HK, Bjørås M, Rødland EA and Tønjum T. Genetic Interactions of DNA Repair Pathways in the Pathogen Neisseria meningitidis. Journal of Bacteriology, 189(15): 5728–5737. 2007.

Dewitt SK and Adelberg EA. The Occurrence of a Genetic Transposition in a Strain of

Escherichia coli. Genetics, 47(5):577-585. 1962.

Dias JP, Silvany S, Saraiva MM, Ruf HR, Guzmán JD and Carmo EH. Chromobacteriosis in Ilhéus, Bahia: epidemiologic, clinical and laboratorial investigation. Revista da Sociedade Brasileira de Medicina Tropical, 38(6): 503- 506. 2005.

Dias Jr LC, Motta JDN, Rettori D and Duran N. Semiempirical INDOS/S study on the absorption spectrum of violacein. Journal of Molecular Structure, 580: 85-90. 2002.

Doudney CO and Rinaldi CN. Modification of survival after ultraviolet light exposure in a wild-type and a polA strain of Escherichia coli B/r by preirradiation treatment with chloramphenicol or rifampin. Mutat Res., 144(3): 151-158. 1985.

Du X, Choi IG, Kim R, Wang W, Jancarik J, Yokota H and Kim SH. Crystal structure of an intracellular protease from Pyrococcus horikoshii at 2-Å resolution. PNAS, 97(26): 14079–14084. 2000.

90

Duarte FT, Carvalho FM, Bezerra e Silva U, Scortecci KC, Blaha CAG, Agnez-Lima LF, Medeiros SRB. DNA repair in Chromobacterium violaceum. Gen Mol Res. 3(1): 167-180. 2004.

Durán N and Menck CF. Chromobacterium violaceum: a review of pharmacological and industrial perspectives. Crit Rev Microbiol, 27(3): 201-222. 2001.

Durán N, Antonio RV, Haun M and Pilli RA. Biosynthesis of a trypanocide by

Chromobacterium violaceum. World Journal of Microbiology and Biotechnology,

10(6): 686-690. 1994.

Eisen JA and Hanawalt PC. A phylogenomic study of repair genes, proteins and processes. Mutation Research, 435: 171-213. 1999.

Eschenlauer SCP, Coombs GH and Mottram JC. PFPI–like genes are expressed in

Leishmania major but are pseudogenes in other Leishmania species. FEMS

Microbiol Lett, 260: 47–54. 2006.

Fantinatti-Garboggini F, Almeida R, Portillo VA, Barbosa TAP, Trevilato PB, Ramalho Neto CE, Coêlho RD, Silva DW, Bartoleti LA, Hanna ES, Brocchi M and Manfio GP. Drug resistance in Chromobacterium violaceum. Genetics and Molecular Research, 3(1): 134-147. 2004.

Farnell DA. Nucleotide Excision Repair in the Three Domains of Life. WURJ: Health and Natural Sciences 2(1): 1-6. 2011.

Forsberg L, Faire U and Morgenstern R. Oxidative Stress, Human Genetic Variation, and Disease. Archives of Biochemistry and Biophysics, 389(1): 84-93. 2001. Fousteri M and Mullenders LHF. Transcription-coupled nucleotide excision repair in

mammalian cells: molecular mechanisms and biological effects. Cell Res, 18(1): 73-84. 2008.

Friedberg EC and Fischhaber PL. DNA Replication Fidelity. Encyclopedia of the Human Genome, 2: 167-171. 2003.

Friedberg EC, McDaniel LD and Schultz RA. The role of endogenous and exogenous DNA damage and mutagenesis. Curr Opin Genet Dev, 14(1): 5-10. 2004.

Friedberg EC, Walker GC, Siede W. SOS responses and DNA damage tolerance in prokaryotes. In: DNA Repair and Mutagenesis. Washington DC: American Society for Microbiology Press; 1995. p. 407-464.

91

Fuchs RP, Koffel-Schwartz N, Pelet S, Janel-Bintz R, Napolitano R, Becherel OJ, Broschard TH, Burnouf DY and Wagner J. DNA polymerases II and V mediate respectively mutagenic (-2 frameshift) and error-free bypass of a single N-2- acetylaminofluorene adduct. Biochem Soc Trans, 29(Pt 2): 191-195. 2001.

Fujii S and Fuchs RP. Biochemical basis for the essential genetic requirements of RecA and the beta-clamp in Pol V activation. Proc. Natl. Acad. Sci. U. S. A. 106(35): 14825-14830. 2009.

Fujii S, Isogawa A and Fuchs RP. RecFOR proteins are essential for Pol V-mediated translesion synthesis and mutagenesis. The EMBO Journal, 25: 5754–5763. 2006.

Galhardo RS, Rocha RP, Marques MV and Menck CFM. An SOS-regulated operon involved in damage-inducible mutagenesis in Caulobacter crescentus. Nucleic Acids Research, 33(8): 2603–2614. 2005.

Garibyan L, Huang T, Kim M, Wolff E, Nguyen A, Nguyen T, Diep A, Hu K, Iverson A, Yang H and Miller JH. Use of the rpoB gene to determine the specificity of base substitution mutations on the Escherichia coli chromosome. DNA Repair (Amst), 2(5): 593-608. 2003.

Gillet LCJ and Schärer OD. Molecular mechanisms of mammalian global genome nucleotide excision repair. Chemical Reviews, 106(2): 253–276. 2006.

Goda M, Hashimoto Y, Takase M, Herai S, Iwahara Y, Higashibata H, Kobayashi M. Isonitrile Hydratase from Pseudomonas putida N19–2. Cloning, sequencing, gene expression, and identification of its active amino acid residue. Journal of Biological Chemistry, 277(48): 45860-45865. 2002.

Goerlich O, Quillardet P and Hofnung M. Induction of the SOS response by hydrogen peroxide in various Escherichia coli mutants with altered protection against oxidative DNA damage. Journal of Bacteriology, 171(11): 6141-6147. 1989. Grant SGN, Jessee J, Bloom FR and Hanahan D. Differential plasmid rescue from

transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc. Natl. Acad. Sci. USA, 87(12): 4645-4649. 1990.

Grimm C, Evers A, Brock M, Maerker C, Klebe G, Buckel W and Reuter K. Crystal structure of 2-methylisocitrate lyase (PrpB) from Escherichia coli and modelling of its ligand bound active centre. Journal of Molecular Biology, 328(3): 609-621. 2003.

92

Grogan DW. The question of DNA repair in hyperthermophilic archaea. Trends Microbiol, 8(4):180-185. 2000.

Grossman L, Caron PR and Oh EY. The involvement of an E. coli multiprotein complex in the complete repair of UV-damaged DNA. Basic Life Sci., 38: 287-94. 1986.

Guenther B, Onrust R, Sali A, O’Donnell M and Kuriyan J. Crystal Structure of the ' Subunit of the Clamp-Loader Complex of E. coli DNA Polymerase III. Cell, 91: 335–345. 1997.

Halio SB, Blumentals II, Short SA, Merrill BM and Kelly RM. Sequence, Expression in

Escherichia coli, and Analysis of the Gene Encoding a Novel Intracellular

Protease (PfpI) from the Hyperthermophilic Archaeon Pyrococcus furiosus. Journal of Bacteriology, 178(9): 2605–2612. 1996.

Hastings PJ, Hersh MN, Thornton PC, Fonville NC, Slack A, FrischRL, Ray MP, Harris RS, Leal SM, Rosenberg SM. Competition of Escherichia coli DNA Polymerases I, II and III with DNA Pol IV in Stressed Cells. PLoS ONE, 5(5): 1-10 (e10862). 2010.

Hengge R. Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol, 7(4): 263- 273. 2009.

Indiani C and O'Donnell M. Mechanism of the delta wrench in opening the beta sliding clamp. J. Biol. Chem., 278(41): 40272-40281. 2003.

Indiani C, McInerney P, Georgescu R, Goodman MF, O’Donnell M. A sliding-clamp toolbelt binds high- and low-fidelity DNA polymerases simultaneously. Molecular Cell, 19: 805–815. 2005.

Jaciuk M, Nowak E, Skowronek K, Tanska A and Nowotny M. Structure of UvrA nucleotide excision repair protein in complex with modified DNA. Nature Structural and Molecular Biology, 18(2): 191-197. 2011.

Jafri S, Urbanowski ML and Stauffer GV. The Glutamic Acid Residue at Amino Acid 261 of the a Subunit Is a Determinant of the Intrinsic Ef ciency of RNA Polymerase at the metE Core Promoter in Escherichia coli. Journal of Bacteriology, 188(23): 6810–6816. 1996.

Jenal U. Cyclic di-guanosine-monophosphate comes of age: a novel secondary messenger involved in modulating cell surface structures in bacteria? Current Opinion in Microbiology, 7(2): 185-191. 2004.

93

Jeruzalmi D, O'Donnell M and Kuriyan J. Clamp loaders and sliding clamps. Curr Opin Struct Biol, 12: 217-224. 2002.

Kedzierska B, Szambowska A, Herman-Antosiewicz A, Lee DJ, Busby SJW, Wegrzyn G and Thomas MS. The C-terminal domain of the Escherichia coli RNA polymerase a subunit plays a role in the CI-dependent activation of the bacteriophage pM promoter.Nucleic Acids Res., 35(7): 2311–2320. 2007. Kelley LA and Sternberg MJE. Protein structure prediction on the Web: a case study

using the Phyre server. Nature Protocols, 4(3): 363-371. 2009

Kim MH, Lee JL, Suh JT, Chang BS and Cho KS. A Case of Chromobacterium infection after car accident in Korea. Yonsei Medical Journal. 46 (5): 700-702. 2005.

Kim SR, Matsui K, Yamada M, Gruz P, Nohmi T. Roles of chromosomal and episomal dinB genes encoding DNA pol IV in targeted and untargeted mutagenesis in Escherichia coli. Mol. Genet. Genomics, 266(2): 207-215. 2001. Kleibl K. Molecular mechanisms of adaptive response to alkylating agents in

Escherichia coli and some remarks on O6-methylguanine DNA-methyltransferase

in other organisms. Mutation Research, 512(1): 67-84. 2002.

Kobayashi S, Valentine MR, Pham P, O'Donnell M, Goodman MF. Fidelity of

Escherichia coli DNA polymerase IV. Preferential generation of small deletion

mutations by dNTP-stabilized misalignment. J. Biol. Chem., 277(37): 34198- 34207. 2002.

Konola JT, Sargent KE and Gow JB. Efficient repair of hydrogen peroxide-induced DNA damage by Escherichia coli requires SOS induction of RecA and RuvA proteins. Mutat Res, 459(3): 187-194. 2000.

Landini P. Cross-talk mechanisms in bio lm formation and responses to environmental and physiological stress in Escherichia coli. Research in Microbiology, 160:259-266. 2009.

Lawson EN, Barkhuisen M, Dew DW. Gold solubilisation by cyanide producing bacteria Chromobacterium violaceum. In: Amils, R., Ballester, A. (Eds.), Biohydrometallurgy and the Environment Toward the Mining of the 21st Century. Process Metallurgy (Elsevier, Amsterdam), 9A: 239-246. 1999.

Leon LL, Miranda CC, Souza AO and Durán N. Antileishmanial activity of the violacein extracted from Chromobacterium violaceum. Journal of Antimicrobial Chemotherapy, 48(3): 449-450. 2001.

94

Liu CH, Chu RM, Weng CN, Lin YL and Chi CS. An acute pleuropneumonia in a pig caused by Chromobacterium violaceum. J. Comp. Pathol. 100: 459-463, 1989. Lothigius Å; Sjöling Å; Svennerholm A-M and Bölin I. Survival and gene expression of

enterotoxigenic Escherichia coli during long-term incubation in sea water and freshwater. Journal of Applied Microbiology, 108(4): 1441-1449. 2010.

Ma SE, Chuang S, Cheung TD, Kam K and Tsang HT. A fatal case of

Chromobacterium violaceum septicemia in Hong Kong. Southeast Asian J Trop

Med Public Health, 37(6). 2006.

Maddukuri L, Dudzinska D and Tudek B. Bacterial DNA repair genes and their eukaryotic homologues: 4. The role of nucleotide excision DNA repair (NER) system in mammalian cells. Acta Biochimica Polonica, 54(3): 469-482. 2007. Mah TFC and O'Toole GA. Mechanisms of biofilm resistance to antimicrobial agents.

Trends Microbiol., 9(1): 34-39. 2001.

Maor-Shoshani A and Livneh Z. Analysis of the Stimulation of DNA Polymerase V of

Escherichia coli by Processivity Proteins. Biochemistry, 41: 14438-14446. 2002.

Maor-Shoshani A, Hayashi K, Ohmori H, Livneh Z. Analysis of translesion replication across an abasic site by DNA polymerase IV of Escherichia coli. DNA Repair, 2: 1227-1238. 2003.

Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, Deweese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res, 1-5. 2010.

Martins D, Frungillo L, Anazetti MC, Melo PS, Durán N. Antitumoral activity of L- ascorbic-acid-poly-D,L-(lactide-co-glycolide) nanoparticles containing violacein. International Journal of Nanomedicine, 5: 77-85. 2010.

Martins-Pinheiro M, Marques RC and Menck CF. Genome analysis of DNA repair genes in the alpha proteobacterium Caulobacter crescentus. BMC Microbiol, 7(17): 14p. 2007.

Matsuoka M and Mcfadden BA. Isolation, Hyperexpression, and Sequencing of the

aceA Gene Encoding Isocitrate Lyase in Escherichia coli. Journal of Bacteriology,

95

Mattick JS. Type IV pili and twitching motility. Annual Review of Microbiology, 56: 289-314. 2002.

McGrew DA and Knight KL. Molecular Design and Functional Organization of the RecA Protein. Critical Reviews in Biochemistry and Molecular Biology, 38: 385– 432. 2003.

McKenzie GJ, Lee PL, Lombardo MJ, Hastings PJ and Rosenberg SM. SOS mutator DNA polymerase IV functions in adaptive mutation and not adaptive amplification. Mol. Cell., 7(3): 571-579. 2001.

Mellon I and Hanawalt PC. Induction of the Escherichia coli lactose operon selectively increases repair of its transcribed DNA strand. Nature, 342: 95-98. 1989.

Melo PS, Justo GZ, Azevedo MB, Duran N and Haun M. Violacein and its beta- cyclodextrin complexes induce apoptosis and differentiation in HL60 cells. Toxicology, 186(3): 217-225. 2003.

Melo PS, Maria SS, Vidal BC, Haun M, Duran N. Violacein cytotoxicity and induction of apoptosis in V79 cells. In Vitro Cell Dev Biol Anim., 36(8): 539-43, 2000.

Méndez-Ortiz MM, Hyodo M, Hayakawa Y and Membrillo-Hernández J. Genome- wide Transcriptional Profile of Escherichia coli inResponse to High Levels of the Second Messenger 3’,5’-Cyclic Diguanylic Acid. Journal of Biological Chemistry, 281(12): 8090-8099. 2006.

Miller JH. A short course in bacterial genetics (A laboratory manual and handbook for Escherichia coli and related bacteria). Cold Spring Harbor Laboratory Press, 1992.

Morita R, Nakagawa N, Kuramitsu S and Masui R. An O6-methylguanine-DNA methyltransferase-like protein from Thermus thermophilus interacts with a nucleotide excision repair protein. J Biochem, 144(2): 267-277. 2008.

Morita R, Nakane S, Shimada A, Inoue M, Lino H, Wakamatsu T, Fukui K, Nakagawa N, Masui R, and Kuramitsu S. Molecular Mechanisms of the Whole DNA Repair System: A Comparison of Bacterial and Eukaryotic Systems. J Nucleic Acids, 10: 32p. 2010.

Mukhamed KS and Glushenkova AI. Natural phosphonolipids. Chemistry of Natural Compounds, 36(4): 329-341. 2000.

96

Nakano T, Salem AMH, Terato H, Pack SP, Makino K and Ide H. Comparison of the activities of bacterial and mammalian nucleotide excision repair systems for DNA- protein crosslinks. Nucleic Acids Symp Ser (Oxf), 53: 225-226. 2009.

Napolitano R, Janel-Bintz R, Wagner J and Fuchs RP. All three SOS-inducible DNA

Documentos relacionados