• Nenhum resultado encontrado

B. Informa¸c˜oes Adicionais Sobre ´ Algebras de Lie

B.3 Estrutura do Grupo U(n)

Vamos considerar o caso em que G = U(1) = {a ∈ GL(n, C)|ata = 1}. Portanto,

a respectiva ´algebra de Lie ´e dada por g = u(n) = {X ∈ gl(n, C)|Xt+ X = 0}. Se tomarmos a representa¸c˜ao matricial X = [Xij] ∈ g, temos que Xii ∈ iR, ou seja, Xii =

B. Informa¸c˜oes Adicionais Sobre ´Algebras de Lie 106

−(Xt)ii = −Xii, e para i 6= j temos que Xij = −(Xt)ij = −Xji. Seja a sub-´algebra

abeliana maximal t de g representada por

t =      1 ° . .. ° iθn   ¯ ¯ ¯ ¯ ¯ ¯θj ∈ R   ⊂ g. (B.21)

Quando X ∈ g e se [X, H] = 0, para qualquer H ∈ t, ent˜ao devemos ter que X ∈ t. O centralizador gH de H em g est´a contido em t e, portanto, gH = t para H ∈ t

com elementos diagonais distintos. Em particular chamamos H de elemento regular se dimgH = dimt.

A forma de Killing (B.11) sobre g ´e dada por B(X, Y ) = Tr(XY ) = n X j=1 (XY )jj = n X j=1 n X k=1 XjkYkj (B.22) ⇒ B(X, Y ) = Tr(XY ) = n X j,k=1 XjkYkj = n X j,k=1 (−Xkj)(−Yjk) = Tr(XY ) (B.23) ∴ Tr(XY ) ∈ R. (B.24)

Semelhantemente, temos o seguinte resultado: B(X, X) = Tr(XX) = n X j,k=1 XjkXkj = − n X j,k=1 Xjk(Xt)kj = − n X j,k=1 |Xjk|2 (B.25) ∴ −Tr(XX) ≥ 0 e Tr(XX) = 0 ⇔ X = 0. (B.26) Logo hX, Y i ≡ −Tr(XY ), X, Y ∈ g, (B.27)

define um produto interno real e Ad(G)-invariante sobre g = u(n). Uma vez que h·, ·i ´e um produto interno U(n)-invariante (ou Ad(G)-invariante), sabemos que

h[X, Y ], Zi = −hY, [X, Z]i (B.28)

para X, Y, Z ∈ u(n). Escolhemos uma decomposi¸c˜ao g = z ⊕ g1, onde g1 = [g, g] ´e semi- simples. Tamb´em B(X, X) ≤ 0 ´e a forma de Killing sobre g, onde B(X, X) < 0 sobre g1− {0}. Para X, Y ∈ g, temos que Tr[X, Y ] = 0 nos leva a concluir que [X, Y ] ∈ su(n) e, portanto, g1 ⊂ su(n). Inversamente, dado X ∈ su(n) escrevemos X = Z + X1 ∈ z ⊕ g1. Ent˜ao Z = X − X1 ∈ su(n) tal que TrZ = 0. No entanto, Z = diag(iθ, ..., iθ), θ ∈ R, o que implica em TrZ = niθ, onde θ deve ser zero, ou seja, Z = 0. Logo X = X1 ∈ g1, ou seja, g1 = su(n).

Tamb´em podemos considerar a decomposi¸c˜ao t = z ⊕ t1, onde t1 = t ∩ g1 ´e abeliano maximal em g1. Neste caso temos

t1 =      iθ1 ° . .. ° iθn   ¯ ¯ ¯ ¯ ¯ ¯θj ∈ R, θ1+ ... + θn = 0   = {H ∈ t|TrH = 0}. (B.29) Mais explicitamente, dado H = diag(iθ1, ..., iθn) ∈ t, θ ≡

Pn

j=1θj/n e tj ≡ θj − θ, vemos

B. Informa¸c˜oes Adicionais Sobre ´Algebras de Lie 107

Agora vamos olhar as complexifica¸c˜oes:

t = z ⊕ t1 → tC= zC⊕ tC1. (B.30) Dado H = diag(H1, ..., Hn) = (X, Y ) ∈ tC = t ⊕ it, temos X = Z1 + T1 ∈ z ⊕ t1 e Y = Z2 + T2 ∈ z ⊕ t2, onde (Z1, Z2) ∈ zC e (T1, T2) ∈ tC1. Devemos considerar as representa¸c˜oes matriciais explicitas (Z1, Z2) = diag(λ, ..., λ) e (T1, T2) = diag(u1, ..., u1), onde λ, uj ∈ C e Tr(T1, T2) = 0. Portanto temos que Hj = λ + uj, tal que

n X j=1 Hj = nλ + n X j=1 uj = nλ (B.31) ⇒ λ = Pn j=1Hj n e uj = Hj + λ. (B.32)

Como j´a notado, tC

1 ⊂ {H ∈ tC|TrH = 0}. Inversamente, se H ∈ tC e TrH = 0, a decomposi¸c˜ao H = X + iY ∈ t ⊕ it, onde X = (H − Ht)/2 e Y = (−i)(H + Ht)/2, implica que TrX = TrY = 0, ou seja, X, Y ∈ t1. A ´algebra sl(n, C) realiza a complexifica¸c˜ao de su(n). Em outras palavras temos que gC

1 = su(n)C= sl(n, C) e o espa¸co das ra´ızes ´e dado por

∆(gC, tC) = ∆(gl(n, C), tC) = {α ∈ (tC)− {0}|(gC)α 6= 0}, (B.33)

onde

(gC)α = {X ∈ gl(n, C)|[H, X] = α(H)X, ∀H ∈ tC}. (B.34) Existe uma bije¸c˜ao α → eα de ∆(gC

1, tC1) = ∆(sl(n, C), tC1) em ∆(gC, tC) definida por e

α(Z + H1) ≡ α(H1), (B.35)

para H = Z + H1 ∈ z ⊕ t1. Portanto os espa¸cos das ra´ızes coincidem, (gC1)α = (gC)eα. Ent˜ao, para α = αrs, onde r 6= s, temos que

e

αrs(H) = αrs(H1) = (Hr− λ) − (Hs− λ) = Hr− Hs. (B.36) Para a escolha ∆+ = {α

rs|r < s} temos P = {eαrs|1 ≤ r < s ≤ n}. Vamos definir a

matriz Hrs = diag(0, ..., 1(r), ..., −1(s), ..., 0) ∈ it, portanto hH, Hrsi = TrHH

t

rs = Hr− Hs = eαrs(H). (B.37)

Seja a ∈ NG(t) = {a ∈ G|Ad(a)t = t}. Para 1 ≤ j ≤ n seja Hj ≡ diag(0, ..., i1(j), ..., 0) ∈ t. Logo Ad(a)Hj = aHja−1 ≡ diag(iθ1, ..., iθn) ∈ t, onde θk ∈ R. Contudo aHja−1 and

Hj tem os mesmos autovalores, o que nos leva concluir que aHja−1 ∼= Hl. Logo esta-

belecemos um isomorfismo σ : {n} → {n}, tal que aHja−1 = Hσ(j), o que implica em

σ(j) = l. Ent˜ao σ ∈ Sn, grupo sim´etrico, e depende de a, σ = σa. Portanto, existe um

mapa ² : NG(t) → Sn dado por ²(a) = σa. Se b ∈ T , ent˜ao AdH = H, para qualquer

H ∈ t. Sendo assim,

Hσab(j) = abHjb−1a−1 = aHja−1 = Hσa(j) (B.38)

⇒ σab = σa, (B.39)

ou seja, podemos definir mais um mapa e² : W ≡ NG(t)/T → Sn dado por e²(aT ) = σa. W

REFERˆENCIAS BIBLIOGR ´AFICAS

[1] Aldrovandi, R., Pereira, J. G. An Introduction to Geometrical Physics. World Scien- tific Publishing Company, 1995.

[2] Alvarez, O., Singer, I. M., Windey, P. Quantum mechanics and the geometry of the Weyl character formula. Nucl. Phys., B337:467–486, 1990.

[3] Alvarez, O. Lectures on quantum mechanics and the index theorem. IAS/Park City, Mathematics Series, 1, 1991.

[4] Alvarez-Gaum´e, L., Ginsparg, P. H. The topological meaning of nonabelian anoma- lies. Nucl. Phys., B243:449, 1984.

[5] Alvarez-Gaum´e, L. Supersymmetry and the Atiyah-Singer index theorem. Commun. Math. Phys., 90:161, 1983.

[6] Alvarez-Gaum´e, L., Ginsparg, P. H. The structure of gauge and gravitational anoma- lies. Ann. Phys., 161:423, 1985.

[7] Arnold, V. I. Mathematical Methods of Classical Mechanics. Springer, second edition, 2000.

[8] Atiyah, M. F., Bott, R. The moment map and equivariant cohomology. Topology, 23(1):1–28, 1984.

[9] Atiyah, M. F. Circular symmetry and stationary-phase approximation. Asterisque, 131:43–59, 1985.

[10] Bardeen, W. A., Zumino, B. Consistent and covariant anomalies in gauge and grav- itational theories. Nucl. Phys., B244:421, 1984.

[11] Berline, N.,Getzler, E., Vergne, M. Heat Kernels and Dirac Operators. Springer, 1996.

[12] Birmingham, D., Blau, M., Rakowski, M., Thompson, G. Topological field theory. Phys. Rep., 209(4,5):129–340, 1991.

[13] Bismut, J.-M. Index theorem and equivariant cohomology on the loop space. Com- mun. Math. Phys., 98:213–237, 1985.

[14] Bismut, J.-M. Localization formulas, superconnections, and the index theorem for families. Commun. Math. Phys., 103:127–166, 1986.

[15] Blau, M., Keski-Vakkuri, E., Niemi, A. J. Path integrals and geometry of trajectories. Phys. Lett. B, 246(1,2):92–98, 1990.

[16] Bytsenko, A. A., Williams, F. L. Localization of equivariant cohomology - introduc- tion and expository remarks. arXiv:hep-th/0009238, 2000.

Referˆencias Bibliogr´aficas 109

[17] Bytsenko, A. A., Libine, M., Williams, F. L. Localization of equivariant cohomology for compact and non-compact group actions. arXiv:math.SG/0502190, 2005.

[18] Cordes, S., Moore, G., Ramgoolam, S. Lectures on 2D Yang-Mills theory, equivariant cohomology and topological field theories. arXiv:hep-th/9411210, 1996.

[19] Dubrovin, B. A., Fomenko, A. T., Novikov, S. P. Modern Geometry - Methods and Applications, volume I, II, III. Springer, 1993.

[20] Duistermaat, J. J., Heckman, G. J. On the variation in the cohomology of the symplectic form of the reduced phase space. Invent. Math., 69:259–268, 1982.

[21] Duistermaat, J. J., Heckman, G. J. Addendum to “On the variation in the cohomol- ogy of the symplectic form of the reduced phase space”. Invent. Math., 72:153–158, 1983.

[22] Felsager, B. Geometry, Particles, and Fields. Springer, 1997.

[23] Friedan, D., Windey, P. Supersymmetric derivation of the Atiyah-Singer index and the chiral anomaly. Nucl. Phys., B235:395, 1984.

[24] Friedan, D., Windey, P. Supersymmetry and index theorems. Physica, 15D:71–74, 1985.

[25] Gilmore, R. Lie Groups, Lie Algebras, and Some of Their Applications. Dover, 2005.

[26] Guillemin, V., Sternberg, S. Symplectic Techniques in Physics. Cambridge University Press, 1986.

[27] Guillemin, V., Sternberg, S. Geometric Asymptotics, volume 14. AMS Math. Surveys, 1977.

[28] Hietamaki, A., Morozov, A. Yu., Niemi, A. J., Palo, K. Geometry of N=1/2 super- symmetry and the Atiyah-Singer index theorem. Phys. Lett., B263:417–424, 1991.

[29] Itzykson, C, Zuber, J.-B. The planar approximation II. J. Math. Phys., 21(3):411– 421, 1980.

[30] Marsden, J., Weinstein, A. Reduction of symplectic manifolds with symmetry. Rep. on Math. Phys., 5(1):121–129, 1974.

[31] Milnor, J. Morse Theory. Princeton University Press, 1963.

[32] Nakahara, M. Geometry, Topology and Physics. Institute of Physics Publishing, second edition, 2003.

[33] Niemi, A. J., Tirkkonen, O. Cohomological partition functions for a class of bosonic theories. Phys. Lett. B, 293(3,4):339–343, 1992.

[34] Ryder, L. H. Quantum Field Theory. Cambridge University Press, second edition, 1996.

[35] Szabo, R. J. Equivariant localization of path integrals. arXiv:hep-th/9608068, 1996.

[36] Williams, F. L. Localization of equivariant cohomology. Group Representations Seminar, 2002.

Referˆencias Bibliogr´aficas 110

[37] Williams, F. L. Some Lie group basics. Private Notes, 2006.

[38] Williams, F. L. U(1)-structure. Private Notes, 2006.

[39] Williams, F. L. Compact Lie group structure and background information for the Duistermaat-Heckman formula. Private Notes, 2006.

[40] Witten, E. Dynamical breaking of supersymmetry. Nucl. Phys., B188:513, 1981.

[41] Witten, E. Constraints on supersymmetry breaking. Nucl. Phys., B202:253, 1982.

[42] Witten, E. Supersymmetry and Morse theory. J. Diff. Geom., 17:661–692, 1982.

[43] Zinn-Justin, P., Zuber, J.-B. On some integrals over the U(N) unitary group and their large N limit. J. Phys. A, 36:3173–3193, 2003.

Documentos relacionados