• Nenhum resultado encontrado

Estudo das Propriedades do Algoritmo Fuzzy c-Means com Distâncias Adaptativas

No documento Clusterização baseada em algoritmos fuzzy (páginas 104-116)

A partir de uma solução inicial o algoritmo FCM com distâncias adaptativas (ou seja tanto FCMA I quanto FCMA II) busca por soluções que vão decrescendo iteração a iteração do algoritmo. Para tanto a cada iteração é executado um passo de representação e em seguida um de alocação. O passo de representação é dividido agora em duas etapas, na primeira, atualiza-se os protótipos e na segunda, atualiza-se os pesos utilizados no cálculo das distâncias.

Proposição C.0.3. A funçãoJ(U, G, d)é decrescente.

Demonstração:

A descendência é demonstrada se é possível verificar a seguinte desigualdade: J(Ut, Gt, dt)≥ J(Ut, Gt+1, dt)≥ J(Ut, Gt+1, dt+1)≥ J(Ut+1, Gt+1, dt+1)

Seja Gt+1 = r(Ut, dt), onde r(Ut, dt) é uma função de representação, dt+1 = e(Ut, Gt+1), onde e(Ut, Gt+1) é uma função de atualização dos pesos utilizados para o cálculo da distância entre um indivíduo e um protótipo e Ut+1 = a(Gt+1, dt+1), onde a(Gt+1, dt+1) é uma função de alocação.

A primeira desigualdade é verificada, pois, fixados Ut e dt, a função de representação r(Ut, dt) (fórmula 3.3 ou 3.8) é tal que minimiza J(Ut, Gt+1, dt) conforme demonstrado pela proposição 3.2.1 e pela proposição 3.3.1.

A segunda desigualdade J(Ut, Gt+1, dt)≥ J(Ut, Gt+1, dt+1) é verificada, pois, fixados Ut e Gt+1, a função de atualização dos pesos e(Ut, Gt+1) (fórmula 3.4 ou 3.9) é tal que minimiza J(Ut, Gt+1, dt+1) conforme demonstrado tanto na proposição 3.2.2 quanto na proposição 3.3.2. A terceira desigualdade J(Ut, Gt+1, dt+1)≥ J(Ut+1, Gt+1, dt+1) é verificada, pois fixados Gt+1 e dt+1 foi demonstrado pela proposição 3.2.3 e pela proposição 3.3.3 que Ut+1 atu- alizado pela função de alocação a(Gt+1, dt+1) (fórmula 3.5 ou 3.10) minimiza a função J(Ut+1, Gt+1, dt+1).

[Agrawal et al., 1998] R. Agrawal, J. Gehrke, D. Gunopulos & P. Raghavan. (1998). Automatic subspace clustering of high dimensional data for data mining applications. In Proc. ACM SIGMOD Int. Conf. Mana- gement of Data, pp. 94–105.

[Ankerst et al., 1999] M. Ankerst, M. Breunig, H.-P. Kriegel & J. Sander. (1999). OP- TICS: Ordering points to identify clustering structure. In Pro- ceedings of the ACM SIGMOD Conference, pp. 49–60, Phila- delphia, PA, USA.

[Ball et al., 1967] G. Ball & D. Hall. (1967). A clustering technique for summari- zing multivariate data. Behav. Sci., vol. 12, pp. 153–155. [Baraldi et al., 1999a] A. Baraldi & P. Blonda. (1999a, Dec). A survey of fuzzy clus-

tering algorithms for pattern recognition. I. IEEE Transactions on Systems, Man and Cybernetics, Part B, vol. 29, no. 6, pp. 778–785.

[Baraldi et al., 1999b] A. Baraldi & P. Blonda. (1999b, Dec). A survey of fuzzy clus- tering algorithms for pattern recognition. II. IEEE Transactions on Systems, Man and Cybernetics, Part B, vol. 29, no. 6, pp. 786–801.

[Ben-Hur et al., 2001] A. Ben-Hur, D. Horn, H. Siegelmann & V. Vapnik. (2001). Sup- port vector clustering. J. Mach. Learn. Res., vol. 2, pp. 125–137. [Berkhin, 2002] P. Berkhin. (2002). Survey Of Clustering Data Mining Tech- niques. Tech. rept., Accrue Software, San Jose, CA. Dis- ponível em http://www.accrue.com/products/rp_ cluster_review.pdf, último acesso 28-07-2006.

[Bezdek et al., 1992] J. C. Bezdek & S. K. Pal (eds). (1992). Fuzzy models for pat- tern recognition - methods that search for structure in data. New York, USA, IEEE Press.

[Bezdek et al., 1998] J. Bezdek & N. Pal. (1998, Jun). Some new indexes of cluster validity. IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics, vol. 28, no. 3, pp. 301–315.

[Bezdek et al., 1999] J. C. Bezdek, M. R. Pal, J. Keller & R. Krisnapuram. (1999). Fuzzy models and algorithms for pattern recognition and image processing. Norwell, MA, USA, Kluwer Academic Publishers. [Bezdek, 1981] J. C. Bezdek. (1981). Pattern recognition with fuzzy objective

function algorithms. New York, Plenum Press.

[Bottou et al., 1995] L. Bottou & Y. Bengio. (1995). Convergence Properties of the K- Means Algorithms. In G. Tesauro, D. Touretzky & T. Leen (eds), Advances in Neural Information Processing Systems, volume 7, pp. 585–592. The MIT Press.

[Bradley et al., 1997] P. S. Bradley, O. L. Mangasarian & W. N. Street. (1997). Clus- tering via Concave Minimization. In M. Mozer, M. I. Jordan & T. Petsche (eds), Advances in Neural Information Processing Systems 9, NIPS, Denver, CO, USA, December 2-5, 1996, pp. 368–374. MIT Press.

[Bradley et al., 1998] P. S. Bradley & U. M. Fayyad. (1998). Refining initial points for K-Means clustering. In Proc. 15th International Conf. on Ma- chine Learning, pp. 91–99, San Francisco, CA. Morgan Kauf- mann.

[Bussab et al., 2002] W. O. Bussab & P. A. Morettin. (2002). Estatística básica. Sa- raiva.

[Bustos et al., 1992] O. Bustos & A. C. Frery. (1992). Simulação estocástica: Teoria e algoritmos (versão completa). Instituto de Matemática Pura e Aplicada.

[Carpenter et al., 1988] G. Carpenter & S. Grossberg. (1988, Mar). The ART of adaptive pattern recognition by a self-organizing neural network. IEEE Computer, vol. 21, no. 3, pp. 77–88.

[Cavalcanti Jr et al., 2005] N. Cavalcanti Jr & F. de A. T. de Carvalho. (2005). A Fuzzy c- means Algorithm Based on an Adaptive L2 Minkowsky Distance. In Fifth International Conference on Hybrid Intelligent Systems (HIS’05), pp. 104–109, Los Alamitos, CA, USA. IEEE Compu- ter Society.

[Cheeseman et al., 1996] P. Cheeseman & J. Stutz. (1996). Bayesian classification (Auto- Class): Theory and results. In U. Fayyad, G. Piatetsky-Shapiro, P. Smyth & R. Uthurusamy (eds), Advances in Knowledge Dis- covery and Data Mining, pp. 153–180, Menlo Park, CA, USA. AAAI Press.

[da Silva, 2005] A. C. G. da Silva. (2005, Fevereiro). Dissimilarity functions analysis based on dynamic clustering for symbolic data. Disser- tação de Mestrado, Centro de Informática-Universidade Federal de Pernambuco.

[de Carvalho et al., 2003] F. A. T. de Carvalho & R. M. C. R. de Souza. (2003). Unsuper- vised pattern recognition methods for interval data using non- quadratic distances. IEE Electronics Letters, vol. 39, no. 5, pp. 433–434.

[de Carvalho et al., 2004] F. A. T. de Carvalho, Y. Lechevallier & R. M. C. R. de Souza. (2004, July). A Dynamic Cluster Algorithm Based on Lr Distan-

ces for Quantitative Data. In 9th Conference of the International Federation of Classification Societies, pp. 33–42, Chicago, USA. IFCS2004.

[de Souza et al., 2004] R. M. C. R. de Souza & F. de A. T. de Carvalho. (2004). Clus- tering of interval data based on city-block distances. Pattern Recogn. Lett., vol. 25, no. 3, pp. 353–365.

[de Souza, 2003] R. M. C. R. de Souza. (2003, Dezembro). Métodos de cluster para intervalos usando algoritmos do tipo nuvens dinâmicas. Tese de Doutorado, Centro de Informática-Universidade Fede- ral de Pernambuco.

[Diday et al., 1976] E. Diday & J. J. Simon. (1976). Clustering Analysis. In K. S. Fu (ed), Digital Pattern Recognition, pp. 47–94.

[Diday et al., 1977] E. Diday & G. Govaert. (1977). Classification Automatique avec Distances Adaptatives. R.A.I.R.O. Informatique Computer Sci- ence, vol. 11, no. 4, pp. 329–349.

[Diday, 1975] E. Diday. (1975). La méthode des nuées dynamiques. Rev. Stat. Appliquée, vol. XIX, no. 2, pp. 19–34.

[Doctor et al., 2005] F. Doctor, H. Hagras & V. Callaghan. (2005). A fuzzy embedded agent-based approach for realizing ambient intelligence in intel- ligent inhabited environments. IEEE Transactions on Systems, Man, and Cybernetics, Part A, vol. 35, no. 1, pp. 55–65.

[Dubes, 1987] R. C. Dubes. (1987). How many clusters are best? - an experi- ment. Pattern Recognition, vol. 20, no. 6, pp. 645–663.

[Duda et al., 2000] R. O. Duda, P. E. Hart & D. G. Stork. (2000). Pattern classifica- tion, second edition. New York, Wiley Interscience.

[Dunn, 1976] J. C. Dunn. (1976). Indices of partition fuzziness and the detec- tion of clusters in large data sets. In M. Gupta & G. Saridis (eds), Fuzzy Automata and Decision Process. New York, Elsevier. [El-Sonbaty et al., 1998a] Y. El-Sonbaty & M. A. Ismail. (1998a). Fuzzy Clustering for

Symbolic Data. IEEE Transactions on Fuzzy Systems, vol. 6, pp. 195–204.

[El-Sonbaty et al., 1998b] Y. El-Sonbaty & M. A. Ismail. (1998b). On-line hierarchical clustering. Pattern Recognition Letters, vol. 19, pp. 1285–1291. [Elmasri et al., 2000] R. Elmasri & S. B. Navathe. (2000). Fundamentals of database

systems, third edition. Addison-Wesley.

[Ester et al., 1996] M. Ester, H. Kriegel, J. Sander & X. Xu. (1996). A density- based algorithm for discovering clusters in large spatial databa- ses with noise. In Proc. 2nd Int. Conf. Knowledge Discovery and Data Mining (KDD’96), pp. 226–231.

[Everitt et al., 2001] B. Everitt, S. Landau & M. Leese. (2001). Cluster analysis. Lon- don, Arnold.

[Everitt, 1993] B. S. Everitt. (1993). Cluster analysis, 3nd edition. Edward Arnold and Halsted Press.

[Fasulo, 1999] D. Fasulo. (1999). An analysis of recent work on clustering al- gorithms. Tech. rept., Department of Computer Science and En- gineering, University of Washington, Seattle, WA. Technical Re- port 01-03-02.

[Fayyad et al., 1996] U. M. Fayyad, G. Piatetsky-Shapiro & P. Smyth. (1996). From Data Mining to Knowledge Discovery. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth & R. Uthurusamy (eds), Advan- ces in Knowledge Discovery and Data Mining, pp. 1–34. Cam- bridge, Mass., MIT Press.

[Fayyad et al., 1998] U. M. Fayyad, C. Reina & P. S. Bradley. (1998). Initialization of Iterative Refinement Clustering Algorithms. In Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining (KDD-98), pp. 194–198.

[Fisher, 1987] D. H. Fisher. (1987). Knowledge acquisition via incremental conceptual clustering. Machine Learning, no. 2, pp. 139–172. [Frey et al., 2003] B. J. Frey & N. Jojic. (2003). Transformation-Invariant Cluste-

ring Using the EM Algorithm. IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 1, pp. 1–17.

[Fung, 2001] G. Fung. (2001, June). A comprehensive overview of ba- sic clustering algorithms. Disponível em http://www.cs. wisc.edu/~gfung/clustering.pdf, último acesso 14- 05-2006.

[Garcia et al., 2004] F. A. A. Garcia & A. Costea. (2004, July). On Assessing Com- panies’ Financial Performances by the Means of Weighting FCM Clustering. In L. T. H. An & P. D. Tao (eds), Proceedings of the Fifth Int. Conf. on Modelling, Computation and Optimization in Information Systems and Management Sciences (MCO 2004), Metz, France, pp. 265–272, London, UK. Hermes Science Pu- blishing.

[Garden, 1998] S. R. Garden. (1998). Bulding the Data Warehouse. Communi- cations of the ACM, vol. 41, no. 9, pp. 52–60.

[Glover, 1989] F. Glover. (1989). Tabu search, part I. ORSA J. Comput., vol. 1, no. 3, pp. 190–206.

[Goodrich et al., 2004] M. T. Goodrich & R. Tamassia. (2004). Projeto de algoritmos - fudamentos, análises e exemplos da internet. Editora Bookman. [Gordon, 1998] A. D. Gordon. (1998). Cluster Validation. In C. H. et al (ed),

Data Science, Classification, and Related Methods, pp. 22–39, New York. Springer - Verlag.

[Gordon, 1999] A. D. Gordon. (1999). Classification, 2nd edition. London, U.K., Chapman & Hall.

[Govaert, 1975] G. Govaert. (1975). Classification automatique et distances adaptatives. Thèse de 3ème cycle, Mathématique appliquée, Université Paris VI.

[Gower, 1971] J. Gower. (1971). A general coefficient of similarity and some of its properties. Biometrics, vol. 27, pp. 857–872.

[Grira et al., 2004] N. Grira, M. Crucianu & N. Boujemaa. (2004, July). Unsu- pervised and semi-supervised clustering: a brief survey. In A Review of Machine Learning Techniques for Processing Multi- media Content, Report of the MUSCLE European Network of Excellence.

[Guha et al., 1998] S. Guha, R. Rastogi & K. Shim. (1998). CURE: An efficient clus- tering algorithm for large databases. In Proc. ACM SIGMOD Int. Conf. Management of Data, pp. 73–84.

[Guha et al., 2000] S. Guha, R. Rastogi & K. Shim. (2000). ROCK: A robust clus- tering algorithm for categorical attributes. Inf. Syst., vol. 25, no. 5, pp. 345–366.

[Halkidi et al., 2002] M. Halkidi, Y. Batistakis & M. Vazirgiannis. (2002). Cluster Validity Methods: Part I. SIGMOD Record, vol. 31, no. 2, pp. 40–45.

[Hall et al., 1999] L. Hall, I. Özyurt & J. Bezdek. (1999). Clustering with a gene- tically optimized approach. IEEE Trans. Evol. Comput., vol. 3, no. 2, pp. 103–112.

[Han et al., 2001] J. Han & M. Kamber. (2001). Data mining: Concept and techi- niques. Academic Press.

[Hartuv et al., 2000] E. Hartuv & R. Shamir. (2000). A clustering algorithm based on graph connectivity. Inf. Process. Lett., vol. 76, pp. 175–181. [He et al., 2004] J. He, M. Lan, C.-L. Tan, S.-Y. Sung & H.-B. Low. (2004, July).

Initialization of Cluster Refinement Algorithms: A Review and Comparative Study. In Proceedings of IEEE International Joint Conference on Neural Networks (IJCNN), volume 1, pp. 297– 302.

[Hothorn et al., 2005] T. Hothorn, F. Leisch, A. Zeileis & K. Hornik. (2005, Septem- ber). The Design and Analysis of Benchmark Experiments. Jour- nal of Computational & Graphical Statistics, vol. 14, no. 3, pp. 675–699.

[Hubert et al., 1985] L. Hubert & P. Arabie. (1985). Comparing Partitions. Journal of Classification, vol. 2, pp. 193–218.

[Ichino et al., 1994] M. Ichino & H. Yaguchi. (1994). Generalized Minkowsky me- trics for mixed feature type data analysis. IEEE Transactions on System, Man and Cybernectics, vol. 24, no. 4, pp. 698–708. [Ichino, 1981] M. Ichino. (1981). Nonparametric Feature Selection Method Ba-

sed on Local Interclass Structure. IEEE Transactions on System, Man and Cybernectics, vol. 11, no. 4, pp. 289–296.

[Jain et al., 1998] A. K. Jain & R. C. Dubes. (1998). Algorithms for clustering data. Englewood Cliffs, New Jersey, Prentice Hall.

[Jain et al., 1999] A. K. Jain, M. N. Murty & P. J. Flynn. (1999). Data Clustering: A Review. ACM Computing Surveys, vol. 31, no. 3, pp. 264–323.

[Jardine et al., 1968] N. Jardine & R. Sibson. (1968). The construction of hierarchic and non-hierarchic classifications. Computer Journal, no. 11, pp. 177–184.

[Karypis et al., 1999] G. Karypis, E. Han & V. Kumar. (1999, Aug). Chameleon: Hi- erarchical clustering using dynamic modeling. IEEE Computer, vol. 32, no. 8, pp. 68–75.

[Kauffman et al., 1989] L. Kauffman & P. J. Rousseeuw. (1989). Finding groups in data - an introduction to cluster analysis. New York, Wiley Intersci- ence.

[Kaymak et al., 2000] U. Kaymak & M. Setnes. (2000, Nov.). Extended Fuzzy Cluste- ring Algorithms. Research Paper ERS; ERS-2000-51-LIS, Eras- mus Research Institute of Management (ERIM), RSM Erasmus University. Disponível em http://ideas.repec.org/p/ dgr/eureri/200050.html, último acesso 28-07-2006. [Kirkpatrick et al., 1983] S. Kirkpatrick, C. Gelatt & M. Vecchi. (1983). Optimization by

simulated annealing. Science, vol. 220, no. 4598, pp. 671–680. [Kleinberg, 2002] J. Kleinberg. (2002). An impossibility theorem for clustering. In

Proc. of the 16th conference on Neural Information Processing Systems, pp. 463–470.

[Kohavi, 1995] R. Kohavi. (1995). A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. In Proceedings of the Fourteenth International Joint Conference on Artificial In- telligence, IJCAI 95, Montréal, Québec, Canada, August 20-25, 1995, volume 2, pp. 1137–1145. Morgan Kaufmann.

[Kohonen, 1989] T. Kohonen. (1989). Self-organization and associative memory, 3rd edition. Springer-Verlag.

[Kolen et al., 2002] J. F. Kolen & T. Hutcheson. (2002, Apr.). Reducing the time complexity of the fuzzy c-means algorithm. IEEE Transactions on Fuzzy Systems, vol. 10, pp. 263–267.

[Krishna et al., 1999] K. Krishna & M. Murtyg. (1999). Genetic K-means algorithm. IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 29, no. 3, pp. 433–439.

[Leouski et al., 1996] A. V. Leouski & W. B. Croft. (1996). An evaluation of techniques for clustering search results. Tech. rept., Department of Compu- ter Science at University of Massachusetts, Amherst, MA, USA.

[MacQueen, 1967] J. MacQueen. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkley Symposium on Mathematical Statistics and Probability, pp. 281–297, Berkley, CA. University of California Press. [Mason et al., 2003] R. L. Mason, R. F. Gunst & J. L. Hess. (2003). Statistical design

and analysis of experiments - with applications to engineering and science, 2nd edition. Wiley Series in Probability and Statis- tics. Hoboken, New Jersey, U.S.A., John Wiley & Sons.

[Masulli et al., 1997] F. Masulli, M. Artuso, P. Bogus & A. Schenone. (1997, June). Fuzzy Clustering Methods for the Segmentation of Multivariate Medical Images. In M. Mares, R. Mesiar, V. Novak, J. Ramik & A. Stupnanova (eds), Proceedings of Seventh International Fuzzy Systems Association World Congress IFSA’97, volume III, pp. 123–128, Prague, Czech Republic. Academia Prague. [McLachlan et al., 1997] G. McLachlan & T. Krishnan. (1997). The em algorithm and

extensions. New York, U.S.A., Wiley.

[Milligan, 1996] G. W. Milligan. (1996). Clustering Validation: results and im- plications for applied analysis. In Clustering and Classification, pp. 341–375, Singapore. Word Scientific.

[Newman et al., 1998] D. J. Newman, S. Hettich, C. L. Blake & C. J. Merz. (1998). UCI Repository of machine learning databases. University of California, Irvine, Dept. of Information and Computer Sciences, Disponível em http://www.ics.uci. edu/~mlearn/MLRepository.html, último acesso 28- 07-2006.

[Osareh et al., 2001] A. Osareh, M. Mirmehdi, B. Thomas & R. Markham. (2001). Automatic Recognition of Exudative Maculopathy using Fuzzy C-Means Clustering and Neural Networks. In E. Claridge & J. Bamber (eds), Medical Image Understanding and Analysis, pp. 49–52. BMVA Press.

[Pal et al., 1995] N. Pal & J. Bezdek. (1995, Aug). On Cluster Validity for the fuzzy c-means model. IEEE Transactions on Fuzzy Systems, vol. 3, no. 3, pp. 370–379.

[Pedrycz, 1990] W. Pedrycz. (1990). Fuzzy sets in pattern recognition: metho- dology and methods. Pattern Recogn., vol. 23, no. 1-2, pp. 121– 146.

[Pedrycz, 2005] W. Pedrycz. (2005). Knowledge-based clustering: From data to information granules. John Wiley & Sons Inc.

[Rezaee et al., 1998] M. R. Rezaee, B. B. Lelieveldt & J. H. Reiber. (1998). A new cluster validity index for the fuzzy c-mean. Pattern Recogn. Lett., vol. 19, no. 3-4, pp. 237–246.

[Schölkopf et al., 1998] B. Schölkopf, A. Smola & K.Müller. (1998). Nonlinear compo- nent analysis as a kernel eigenvalue problem. Neural Computat., vol. 10, no. 5, pp. 1299–1319.

[Sheikholeslami et al., 1998] G. Sheikholeslami, S. Chatterjee & A. Zhang. (1998). WaveClus- ter: A multiresolution clustering approach for very large spatial databases. In Proc. 24th VLDB Conf., pp. 428–439.

[Silva et al., 2004] A. Silva, F. de A. T. de Carvalho, T. B. Ludermir & N. Caval- canti Jr. (2004). Comparing Metrics in Fuzzy Clustering for Sym- bolic Data on SODAS Format. In C. Lemaître, C. A. Reyes & J. A. González (eds), Advances in Artificial Intelligence - IBE- RAMIA 2004, 9th Ibero-American Conference on AI, Puebla, México, November 22-26, 2004, Proceedings, volume 3315 of Lecture Notes in Computer Science, pp. 727–736. Springer. [Smyth, 1996] P. Smyth. (1996). Clustering Using Monte Carlo Cross-

Validation. In E. Simoudis, J. Han & U. M. Fayyad (eds), Proceedings of the Second International Conference on Kno- wledge Discovery and Data Mining (KDD-96), pp. 126–133. AAAI Press.

[Sneath, 1957] P. Sneath. (1957). The application of computers to taxonomy. J. Gen. Microbiol., vol. 17, pp. 201–226.

[Sorensen, 1948] T. Sorensen. (1948). A method of establishing groups of equal amplitude in plant sociology based on similarity of species con- tent and its application to analyzes of the vegetation on Danish commons. Biologiske Skrifter, vol. 5, pp. 1–34.

[Tung et al., 2001] A. Tung, J. Hou & J. Han. (2001). Spatial clustering in the pre- sence of obstacles. In Proceedings of the 17th ICDE, pp. 359– 367, Heidelberg, Germany.

[Wang et al., 1997] W. Wang, J. Yang & R. Muntz. (1997). STING: a statistical information grid approach to spatialdata mining. In Proceedings of the 23rd Conference on VLDB, pp. 186–195, Athens, Greece. [Xu et al., 2005] R. Xu & D. Wunsch. (2005, May). Survey of clustering algo- rithms. IEEE Transactions on Neural Networks, vol. 16, no. 3, pp. 645–678.

[Yang, 1993] M. S. Yang. (1993). A Survey of Fuzzy Clustering. Math. Comp. Modelling, vol. 18, no. 11, pp. 1–16.

[Zadeh, 1965] L. Zadeh. (1965). Fuzzy Sets. Information and Control, vol. 3, no. 8, pp. 338–353.

[Zadeh, 1984] L. A. Zadeh. (1984). Making computers think like people. IEEE Spectrum 21, pp. 26–32.

[Zhang et al., 1996] T. Zhang, R. Ramakrishnan & M. Livny. (1996). BIRCH: An ef- ficient data clustering method for very large databases. In Proc. ACM SIGMOD Conf. Management of Data, pp. 103–114. [Zhang et al., 2004] D.-Q. Zhang & S.-C. Chen. (2004). A novel kernelized fuzzy

C-means algorithm with application in medical image segmen- tation. Artificial Intelligence in Medicine, vol. 32, no. 1, pp. 37–50.

[Zhuang et al., 1996] X. Zhuang, Y. Huang, K. Palaniappan & Y. Zhao. (1996, Sep). Gaussian mixture density modeling, decomposition, and applica- tions. IEEE Trans. Image Process., vol. 5, no. 9, pp. 1293–1302.

No documento Clusterização baseada em algoritmos fuzzy (páginas 104-116)

Documentos relacionados