• Nenhum resultado encontrado

1 LetM be a complete Riemannian manifold of dimensionn. Prove that the following assertions are equivalent:

a. M has constant sectional curvature.

b. M is homogeneous, and its isotropy group at any point is isomorphic toO(n).

c. Given two triples (p, q, r), (p, q, r) of points in M such that d(p, q) = d(p, q), d(q, r) = d(q, r), d(r, p) = d(r, p), there exists an isometry of M that maps the first triple to the second one (Riemannian manifolds with this property are called 3-point homogeneous).

2 Prove that an odd-dimensional compact Riemannian manifold of positive sectional curvature is orientable.

3 LetM be a complete Riemannian manifold of nonpositive curvature. Prove that each homotopy class of curves with given endpoints in M contains a unique geodesic.

4 Consider the disk modelDn ofRHn and let ϕbe an isometry ofRHn.

a. Prove that ϕ uniquely extends to a homeomorphism of the closed ball Dn. (Hint: Use exercise 4 of chapter 3.)

b. Prove that ϕis hyperbolic if and only if its extension toDn admits exactly two fixed points and those lie in the boundarySn1.

c. Prove that ϕ is parabolic if and only if its extension to Dn admits exactly one fixed point and that lies in the boundarySn1.

5 LetGbe an Abelian subgroup of the fundamental group of a nonflat space formM. Prove that Gis cyclic.

6 An isometry ϕ of a Riemannian manifold M is called a Clifford translation if the associated displacement function x7→d(x, ϕ(x)) is constant. Prove that:

a. The Clifford translations forRn are just the ordinary translations.

b. The only Clifford translation of RHnis the identity transformation.

c. A linear transformationA∈O(n+ 1) is a Clifford trsnaformation ofSn+1 if and only if either A=±I or there is a unimodular complex number λsuch that half the eigenvalues of A are λand the other half are ¯λ.

7 Let M be a Hadamard manifold. Prove that an isometry ϕ of M is a Clifford translation (cf. exercise 6) if and only if the vector field X on M given by expp(Xp) =ϕ(p) is parallel.

8 Extend Preissmann’s theorem 6.5.11 to show that every solvable subgroup of the fundamental group of a compact Riemannian manifold of negative curvature must be infinite cyclic.

9 In this exercise, we prove that a compact homogeneous Riemannian manifold M whose Ricci tensor is negative semidefinite everywhere is isometric to a flat torus.

a. Use exercise 8 of chapter 5 to show that the identity component of the isometry group ofM is Abelian.

b. Check that M can be identified with an n-torus equipped with a left-invariant Riemannian metric.

c. Show that an n-torus equipped with a left-invariant Riemannian metric admits a global parallel orthonormal frame and hence is flat.

10 A Riemannian manifold M is called locally symmetric if every point p∈M admits a normal neighborhood V and an isometry ϕ:V →V such thatϕ(p) =p and dϕp =−id.

a. Show that space forms and Lie groups with bi-invariant metrics are locally symmetric. (Hint:

for the second example, use group inversion.)

b. Prove that the curvature tensor of a locally symmetric manifold is parallel. (Hint: Use the version of equation (4.2.6) for ∇R.)

11 Let M be a Riemannian manifold with curvature tensorR.

a. Prove thatRis parallel if and only if for every smooth curve γ inM and parallel vector fields X,Y,Z,W along γ we have thathR(X, Y)Z, Wiis constant.

b. Prove that ifR is parallel then the Jacobi equation along a geodesic has constant coefficients in a suitable basis.

12 In this exercise, we prove the converse of the result of exercise 10(a).

a. LetM and ˜M be a Riemannian manifolds with parallel curvature tensors. Suppose there are pointsp ∈M, ˜p∈M˜ and a linear isometry f :TpM →Tp˜M˜ such that takes any 2-plane in TpM to a 2-plane inTp˜M˜ with the same sectional curvature. Prove that there exists normal neighborhoods V, ˜V of p, ˜p, resp., and an isometry F : V → V˜ such that F(p) = ˜p and dFp =f. (Hint: combine the idea in the proof of Theorem 6.2.1 with exercise 11(b)).

b. Prove that a Riemannian manifold with parallel curvature tensor is locally symmetric. (Hint:

Apply part (a) to M = ˜M and f =−id.)

Bibliography

[Aub76] T. Aubin, Equations diff´erentielles non lin´eaires et probl`eme de Yamabe concernant la courbure´ scalaire, J. Math. Pures Appl. (9)55(1976), no. 3, 269–296.

[Aub98] ,Some nonlinear problems in Riemannian geometry, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998.

[BB76] L. Berard-Bergery,Les vari´et´es riemanniennes homog´enes simplement connexes de dimension im-paire `a courbure strictement positive, J. Math. Pures Appl. (9)55(1976), no. 1, 47–67.

[BBI01] D. Burago, Y. Burago, and S. Ivanov, A course in metric geometry, Graduate Studies in Mathe-matics, vol. 33, American Mathematical Society, Providence, RI, 2001.

[Bel68] E. Beltrami,Saggio di interpretazione della geometria non-euclidea, Opere Mat.1(1868), 374–405.

[Bes78] A. Besse,Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik und ihrer Gren-zgebiete, vol. 93, Springer-Verlag, Berlin-New York, 1978, With appendices by D. B. A. Epstein, J.-P. Bourguignon, L. B´erard-Bergery, M. Berger and J. L. Kazdan.

[BI94] Y. Burago and S. Ivanov, Riemannain tori without conjugate points are flat, Geom. Anal. Funct.

Anal.5(1994), 801–808.

[BK80] M. Berger and J. L. Kazdan, A Sturm-Liouville inequality with applications to an isoperimetric inequality for volume, injectivity radius and wiedersehens manifolds, General inequalities (E. F.

Beckenbach, ed.), vol. II, Birkh¨auser, Basel, 1980, pp. 367–377.

[Bla30] W. Blaschke,Vorlesungen ¨uber Differentialgeometrie, 3rd ed., Springer, Berlin, 1930.

[BR96] A. Bella¨ıche and J.-J. Risler (eds.),Sub-Riemannian geometry, Progress in Mathematics, vol. 144, Birkh¨auser Verlag, Basel, 1996.

[Car76] M. P. do Carmo,Differential geometry of curves and surfaces, Prentice-Hall, Englewood Cliffs, NJ, 1976.

[Cha86] C. S. Charlap,Bieberbach Groups and Flat Manifolds, Springer-Verlag, New York, 1986.

[dR73] G. de Rham,Vari´et´es Diff´erentiables, third ed., Hermann, Paris, 1973.

[EE69] C. J. Earle and J. Eells,A fibre bundle description of Teichm¨uller theory, J. Differential Geom.3 (1969), 19–43.

[Ehr51] C. Ehresmann, Les connexions infinit´esimales dans un espace fibr´e diff´erentiable, Colloque de topologie (espaces fibr´es), Bruxelles, 1950, Georges Thone, Li´ege; Masson et Cie., Paris, 1951, pp. 29–55.

[Eps75] D. B. A. Epstein, Natural tensors on Riemannian manifolds, J. Differential Geometry 10(1975), no. 4, 631–645.

[Gre63] L. W. Green,Aufwiedersehensfl¨achen, Ann. Math. (2)78(1963), 289–299.

[Ham82] R. Hamilton,Three-manifolds with positive Ricci curvature, J. Differential Geom.17(1982), 255–

306.

[Hil01] D. Hilbert,Uber Fl¨¨ achen von constanter Gaussscher Kr¨ummung, Trans. Amer. Math. Soc.2(1901), no. 1, 87–99.

[Hop48] E. Hopf,Closed surfaces without conjugate points, Proc. Nat. Acad. Sci., USA34(1948), 47–51.

[Hop89] H. Hopf, Differential geometry in the large, second ed., Lecture Notes in Mathematics, vol. 1000, Springer-Verlag, Berlin, 1989, notes taken by Peter Lax and John W. Gray, with a preface by S. S.

Chern.

[HR31] H. Hopf and W. Rinow,Uber den Begriff der vollst¨¨ andigen differentialgeometrischen fl¨ache, Com-ment. Math. Helv. 3(1931), no. 1, 209–225.

[Jos06] J. Jost,Compact Riemann surfaces. an introduction to contemporary mathematics, 3rd ed., Univer-sitext, Springer-Verlag, Berlin, 2006.

[Kli95] W. Klingenberg,Riemannian geometry, 2nd ed., de Gruyter, Berlin, 1995.

[KN96] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Wiley Classics Library, vol. I, John Wiley & Sons, Inc., New York, 1996, Reprint of the 1963 original.

[Kul70] R. S. Kulkarni,Curvature and metric, Ann. of Math. (1970), 311–331.

[Lev05] T. Levi-Civit`a, The absolute differential calculus: Calculus of tensors, Dover Phoenix Editions, Dover publications, 2005, Translated from the Italian original (Lezioni di calcolo differenziale asso-luto, 1925) by Marjorie Long.

[LF51] L. A. Lyusternik and A. I. Fet, Variational problems on closed manifolds, Doklady Akad. Nauk SSSR (N.S.) 81(1951), 17–18.

[LˇS47] L. Lyusternik and L. ˇSnirel’man,Topological methods in variational problems and their application to the differential geometry of surfaces, Uspehi Matem. Nauk (N.S.) 2(1947), no. 1(17), 166–217.

[Mon02] R. Montgomery,A tour of sub-riemannian geometries, their geodesics and applications, Mathemat-ical Surveys and Monographs, vol. 91, American MathematMathemat-ical Society, Providence, RI, 2002.

[MS39] S. B. Myers and N. E. Steenrod,The group of isometries of a Riemannian manifold, Ann. of Math.

(2)40(1939), no. 2, 400–416.

[MT06] J. W. Morgan and G. Tian, Ricci Flow and the Poincar´e Conjecture, arXiv:math/0607607v2 [math.DG], 2006.

[Mun84] J. R. Munkres,Elements of algebraic topology, Addison-Wesley Publishing Company, Menlo Park, CA, 1984.

[Nas56] J. F. Nash,The imbedding problem for Riemannian manifold, Ann. of Math. (2)63(1956), 20–63.

[Nom54] K. Nomizu,Invariant affine connections on homogeneous spaces, Amer. J. Math.76(1954), 33–65.

[Rad24] T. Rad´o,Uber den Begriff der Riemannsche Fl¨¨ ache, Acta Univ. Szeged2(1924), 101–121.

[Rez94] A. G. Reznikov,The weak Blaschke conjecture forCPn, Invent. Math.117(1994), no. 3, 447–454.

[Rie53] B. Riemann, Uber die Hypothesen, welche der Geometrie zur Grunde liegen (Habilitationschrift¨ 1854), pp. 272–287, Dover Publ. Inc., New York, 1953, Reprint of 1892 edition and 1902 supplement.

[RL00] M. M. G. Ricci and T. Levi-Civit`a,M´ethodes de calcul diff´erentiel absolu et leurs applications, Math.

Ann.54(1900), no. 1-2, 125–201.

[Sak96] T. Sakai, Riemannian Geometry, Translations of Mathematical Monographs, no. 149, American Mathematical Society, Providence, RI, 1996, Translated from the 1992 Japanese original by the author.

[Sch84] R. Schoen,Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differ-ential Geom.20(1984), 479–495.

[Spi70] M. Spivak, A Comprehensive Introduction to Differential Geometry, Publish or Perish, Boston, 1970.

[Str34] D. J. Struik,Theory of linear connections, Ergebnisse d. Math., vol. 3, Springer, 1934.

[Thu97] W. P. Thurston,Three-dimensional Geometry and Topology, vol. 1, Princeton Mathematical Series, no. 35, Princeton University Press, Princeton, NJ, 1997.

[Wal72] N. R. Wallach,Compact homogeneous Riemannian manifolds with strictly positive curvature, Ann.

of Math. (2)96(1972), 277–295.

[Wal97] G. Walschap, Cut and conjugate loci in two-step nilpotent Lie groups, J. Geom. Anal. 7 (1997), no. 2, 343–355.

[War67] F. W. Warner,Conjugate loci of constant order, Ann. Math. (2)86(1967), no. 1, 192–212.

[War83] ,Foundations of Differentiable Manifolds and Lie Groups, Graduate Texts in Mathematics, vol. 94, Springer-Verlag, New York, 1983.

[Wei74] A. Weinstein,On the volume of manifolds all of whose geodesics are closed, J. Differential Geom.9 (1974), 513–517.

[Wel08] R. O. Wells, Jr., Differential analysis on complex manifolds, third edition ed., Graduate Texts in Mathematics, vol. 65, Springer, New York, 2008, With a new appendix by Oscar Garcia-Prada.

[Wol84] J. A. Wolf,Spaces of Constant Curvature, fifth ed., Publish or Perish, 1984.

[Yam60] H. Yamabe,On a deformation of riemannian structures on compact manifolds, Osaka Math. J.12 (1960), 21–37.

[Yan80] C. T. Yang,Odd dimensional wiedersehens manifolds are spheres, J. Differential Geom.15(1980), 91–96.

[Zil07] W. Ziller, Examples of Riemannian manifolds with non-negative sectional curvature, arXiv:math/0701389 [math.DG], 2007.

Index

ǫ-totally normal neighborhood, 51 action, 20

isotropy group, 20 orbit, 20

orbit space, 20 proper, 20 smooth, 20 transitive, 22 adjoint representation

of Lie algebra, 19 of Lie group, 19

Allamigeon-Warner manifold, 109 almost complex structure, 89 almost K¨ahler manifold, 89 Bianchi identity

first, 80 second, 84 biquotient, 126 Blaschke

conjecture, 110 manifold, 110 Cartan-Killing form, 90 center of mass, 122 Clifford translation, 127 complex projective space, 34 complex structure, 88 conjugate locus, 102 conjugate point, 102

first, 105 conjugate value, 102 connection, 43

Christoffel symbols, 45

covariant derivative along a curve, 47 Levi-Civit`a, 45

Koszul formula, 45 convex function, 120

strictly, 120 coordinate vector, 3 covering

smooth, 8

topological, 7

covering transformation, 8 curvature

Ricci, 83 scalar, 83 sectional, 81 tensor, 79 cut locus, 72

deck transformation, 8 diameter, 69

diffeomorphism, 2 local, 2

differential of a map, 5 displacement function, 123 divergence, 93

embedding, 6 energy, 95

Euclidean space, 28 exponential map, 50 flat torus, 30

Fubini-Study metric, 34 fundamental group, 7 Gauss

lemma, 63, 103 geodesic, 49

equation, 49

is locally minimizing, 66

local existence and uniqueness, 50 gradient, 93

Green identities, 94 Hadamard manifold, 121 harmonic

function, 94 Heisenberg algebra, 15 Hermitian metric, 89 Hessian, 94

homogeneous space, 22 hyperbolic manifold, 116

immersion, 5 index form, 99 injectivity radius, 71 isometric immersion, 28 isometry group, 27 isotropy group, 20

isotropy representation, 37 Jacobi

equation, 100 field, 100 ahler manifold, 89 Killing form, 90 Killing vector field, 53 Klein bottle, 32 Laplacian, 94 lens space, 116 Lie algebra, 15 Lie bracket, 12 Lie group, 14

exponential map, 16 homomorphism, 17 local section, 22

manifold smooth, 1 map

differential, 5 proper, 6 smooth, 2

normal neighborhood, 51 orbit, 20

orbit space, 20

Poincar´e conjecture, 126 real hyperbolic space, 29 real projective space, 32 Ricci

flow, 126

Riemannian covering, 31 Riemannian manifold, 25

as metric space, 65 complete, 69 conformally flat, 29 geodesically complete, 67 homogeneous, 36

isotropic, 60

normal homogeneous, 37 submanifold, 28

Riemannian measure, 93

Riemannian metric, 25 bi-invariant, 35 conformal, 29 existence, 27 flat, 28

homothetic, 29 induced, 28 left-invariant, 35 product, 29, 55 pulled-back, 28 right-invariant, 35 Riemannian submersion, 33 Schur lemma, 82

smooth manifold, 1 homogeneous, 22 space form, 113 sphere, 29 submanifold

embedded, 2 immersed, 5 submersion, 6 tangent bundle, 5 tangent space, 3 Teichm¨uller space, 117 tensor

curvature, 79 Ricci, 82 theorem of

Bieberbach, 115 Bonnet-Myers, 119 Cartan, 122 divergence, 94

Hadamard-Cartan, 120 Hopf-Rinow, 67 inverse function, 5 Jacobi-Darboux, 104 Killing-Hopf, 115 Myers-Steenrod, 27 Preissmann, 123 Synge, 118

totally normal neighborhood,seeǫ-totally normal neigh-borhood

variation of curve, 96

first variation of energy, 97 second variation of energy, 99 variational vector field, 97 vector field

f-related, 13 flow, 11

incompressible, 94 integral curve, 10 Lie bracket, 12

Documentos relacionados