• Nenhum resultado encontrado

1. INTRODUÇÃO

6.6 Expressão de citocinas

As células de Paneth expressam de maneira constitutiva o gene para TNF-alfa, e embora o RNA fosse facilmente encontrado, a proteína não era expressa devido a um mecanismo regulatório pós-transcripcional ( KESHAV et al., 1990) (CHEN; SHYU, 1995)(Keshav, 2006) ). Se essa produção de TNF-alfa é em resposta a agressão ainda não está perfeitamente esclarecido.

Liboni e colaboradores (2005), em um trabalho utilizando células de linhagens H4 (que simulam enterócitos imaturos) e células Caco-2 (que simulam enterócitos maduros) mostram que a produção de IL-8 estava aumentada quando estas células eram deprivadas de glutamina por 24 horas e que estas reagiam de maneira exacerbada quando expostas ao LPS e quando comparadas com os controles com glutamina. Outra informação interessante era que os enterócitos imaturos eram mais sensíveis a esta estimulação que os mais diferenciados.

Coëffier e colaboradores (2001), em trabalho utilizando biópsia de jejuno de voluntários saudáveis, constataram que a concentração de IL-8 era menor naqueles que recebiam uma solução com glutamina e tinha seus fragmentos cultivados em meio com glutamina do que aqueles fragmentos provenientes de voluntários que recebiam salina e tinham seus fragmentos cultivados em meio sem glutamina. Essa diferença também foi observada em amostras de voluntários que receberam salina e tiveram seus fragmentos cultivados em meio com glutamina quando comparadas com aqueles cultivados em meio sem glutamina. O estudo não detectou IL-1ß e TNF-α em níveis suficientes para realizar análises estatísticas, mas não detectou alterações nos níveis de mRNA para IL-1ß, TNF-α e IL-8 nos fragmentos de biópsia de voluntários que receberam ou não glutamina, sugerindo um provável mecanismo regulatório pós-trancrição para pelo menos IL-8.

Coëffier e colaboradores (2003), em um outro trabalho utilizando biópsia de duodeno de voluntários saudáveis cultivados em cultura, observaram que IL-1ß (dose de 2ng/mL) estimulava a produção de IL-6 e IL-8, mas não afetava a produção de IL-4 e 10 e que em concentrações crescentes de glutamina (0,5-10mM) reduzia a produção de IL-6 e 8, enquanto aumentava a produção de IL-10 (doses mais altas de glutamina aumentavam a expressão de RNAm para IL-10, mas o aumento da proteína só foi detectado após estimulação com IL-1ß). Novamente não houve diferenças nos transcritos para IL-8 e TNF-α não foi detectado nas amostras

7 CONCLUSÃO

A importância da glutamina como combustível para os enterócitos já é conhecida, mas o seu papel sobre as outras linhagens do epitélio intestinal ainda não foi bem estudado. Parte disso se deve ao fato de que, isoladamente, o epitélio intestinal não havia sido bem reproduzido in vitro. O cultivo de células diferenciadas requeria a administração exógena de fatores de crescimento especifico para cada tipo de linhagem celular que se desejasse estudar. O modelo de organoide intestinal é capaz de gerar um epitélio intestinal contendo as principais linhagens celulares (células de Paneth, caliciformes, enteroendócrinas e enterócitos) de maneira em que estas mantém a produção de seus produtos específicos e posição relativa à estrutura vilo-cripta de maneira semelhante a observada in vivo, possuindo inclusive alguns elementos do sistema imune inato responsáveis pela responsividade ao LPS (TLR4 e MD-2), algo que outros modelos in vitro não possuem de maneira completa.

Quanto ao efeito da privação de glutamina sobre as células secretoras do epitélio, aquela parece possuir ação regulatória sobre as células de Paneth, visto que as maiores diferenças observadas são em produtos dessa linhagem celular em meio privado de glutamina, tais como:

• Redução da transcrição de lisozima.

• Redução da transcrição de MD-2, a proteína acessória do TLR4.

• Redução da transcrição de TNF-α, encontrada constitutivamente nessas células.

Mais estudos são necessários para o melhor entendimento do papel da glutamina nessas células e o modelo de enteroides parece ser o ideal para esses estudos, pois apresenta um epitélio diferenciado e consegue prover uma arquitetura vilo-cripta semelhante a observada in vivo.

REFERÊNCIAS BIBLIOGRÁFICAS

ADEREM, A.; ULEVITCH, R. Toll-like receptors in the induction of the innate immune response. Nature, v. 406, n. August, p. 782–787, 2000.

ADIB-CONQUY, M.; MOINE, P.; ASEHNOUNE, K.; et al. Toll-like receptor-mediated tumor necrosis factor and interleukin-10 production differ during systemic inflammation.

American journal of respiratory and critical care medicine, v. 168, n. 2, p. 158–64, 15 jul

2003.

AKASHI, S.; NAGAI, Y.; OGATA, H.; et al. Human MD-2 confers on mouse Toll-like receptor 4 species-specific lipopolysaccharide recognition. International immunology, v. 13, n. 12, p. 1595–9, dez 2001.

ANDREU, P.; COLNOT, S.; GODARD, C.; et al. Crypt-restricted proliferation and commitment to the Paneth cell lineage following Apc loss in the mouse intestine.

Development (Cambridge, England), v. 132, n. 6, p. 1443–51, mar 2005.

ATUMA, C.; STRUGALA, V.; ALLEN, A.; HOLM, L. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am J Physiol Gastrointest Liver Physiol, v. 280, p. 922–929, 2001.

AYABE, T.; SATCHELL, D. P.; WILSON, C. L.; et al. Secretion of microbicidal alpha- defensins by intestinal Paneth cells in response to bacteria. Nature immunology, v. 1, n. 2, p. 113–8, ago 2000.

BARKER, N.; CLEVERS, H. Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells. Gastroenterology, v. 138, n. 5, p. 1681–96, maio 2010.

BEUTLER, B. Tlr4: central component of the sole mammalian LPS sensor. Current opinion

in immunology, v. 12, n. 1, p. 20–6, fev 2000.

BEVINS, C. L.; SALZMAN, N. H. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nature reviews. Microbiology, v. 9, n. 5, p. 356–68, maio 2011. BRANDL, K.; PLITAS, G.; MIHU, C. N.; et al. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature, v. 455, n. 7214, p. 804–7, 9 out 2008. BRANDL, K.; PLITAS, G.; SCHNABL, B.; DEMATTEO, R. P.; PAMER, E. G. MyD88- mediated signals induce the bactericidal lectin RegIII gamma and protect mice against intestinal Listeria monocytogenes infection. The Journal of experimental medicine, v. 204,

n. 8, p. 1891–900, 6 ago 2007.

BURGER-VAN PAASSEN, N.; LOONEN, L. M. P.; WITTE-BOUMA, J.; et al. Mucin Muc2 deficiency and weaning influences the expression of the innate defense genes Reg3β, Reg3γ and angiogenin-4. PloS one, v. 7, n. 6, p. e38798, jan 2012.

CASH, H. L.; WHITHAM, C. V; BEHRENDT, C. L.; HOOPER, L. V. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science (New York, N.Y.), v. 313, n. 5790, p. 1126–30, 25 ago 2006.

CHEN, C.; SHYU, A. AU-rich elements: characterization and importance in mRNA degradation. Trends in biochemical sciences, v. 20, p. 465–470, 1995.

CHOW, J. C. Toll-like Receptor-4 Mediates Lipopolysaccharide-induced Signal Transduction.

Journal of Biological Chemistry, v. 274, n. 16, p. 10689–10692, 16 abr 1999.

CHUANG, T. H.; ULEVITCH, R. J. Cloning and characterization of a sub-family of human toll-like receptors: hTLR7, hTLR8 and hTLR9. European cytokine network, v. 11, n. 3, p. 372–8, set 2000.

CLEVERS, H. Wnt/beta-catenin signaling in development and disease. Cell, v. 127, n. 3, p. 469–80, 3 nov 2006.

COËFFIER, M. Modulating effect of glutamine on IL-1β-induced cytokine production by human gut. Clinical Nutrition, v. 22, n. 4, p. 407–413, ago 2003.

COËFFIER, M.; MIRALLES-BARRACHINA, O.; PESSOT, F. LE; et al. Influence of glutamine on cytokine production by human gut in vitro. Cytokine, v. 13, n. 3, p. 148–54, 7 fev 2001.

CROSNIER, C.; STAMATAKI, D.; LEWIS, J. Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nature reviews. Genetics, v. 7, n. 5, p. 349–59, maio 2006.

CROSNIER, C.; VARGESSON, N.; GSCHMEISSNER, S.; et al. Delta-Notch signalling controls commitment to a secretory fate in the zebrafish intestine. Development (Cambridge,

England), v. 132, n. 5, p. 1093–104, mar 2005.

DAVIS, C. W.; DICKEY, B. F. Regulated airway goblet cell mucin secretion. Annual review

of physiology, v. 70, p. 487–512, jan 2008.

gastroenterology & hepatology, v. 13, n. 7, p. 763–70, jul 2001.

DRICKAMER, K. C-type lectin-like domains. Current Opinion in Structural Biology, v. 9, n. 5, p. 585–590, out 1999.

ES, J. H. VAN; GIJN, M. E. VAN; RICCIO, O.; et al. Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature, v. 435, n. 7044, p. 959–63, 16 jun 2005.

ES, J. H. VAN; JAY, P.; GREGORIEFF, A.; et al. Wnt signalling induces maturation of Paneth cells in intestinal crypts. Nature cell biology, v. 7, n. 4, p. 381–6, abr 2005.

ES, J. VAN; CLEVERS, H. Notch and Wnt inhibitors as potential new drugs for intestinal neoplastic disease. Trends in molecular medicine, v. 11, n. 11, p. 496–502, 2005.

EVANS, G. S.; FLINT, N.; SOMERS, A S.; EYDEN, B.; POTTEN, C. S. The development of a method for the preparation of rat intestinal epithelial cell primary cultures. Journal of cell

science, v. 101 ( Pt 1, p. 219–31, jan 1992.

FEVR, T.; ROBINE, S.; LOUVARD, D.; HUELSKEN, J. Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Molecular and cellular

biology, v. 27, n. 21, p. 7551–9, nov 2007.

FINLAY, B. B.; HANCOCK, R. E. W. Can innate immunity be enhanced to treat microbial infections? Nature reviews. Microbiology, v. 2, n. 6, p. 497–504, jun 2004.

FODDE, R.; BRABLETZ, T. Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Current opinion in cell biology, v. 19, n. 2, p. 150–8, abr 2007.

FRE, S.; HUYGHE, M.; MOURIKIS, P.; et al. Notch signals control the fate of immature progenitor cells in the intestine. Nature, v. 435, n. 7044, p. 964–8, 16 jun 2005.

FUKATA, M.; HERNANDEZ, Y. Innate immune signaling by Toll-like receptor-4 (TLR4) shapes the inflammatory microenviroment in colitis-associated tumors. Inflammatory bowel

diseases, v. 15, n. 7, p. 997–1006, 2009.

GENE, D. P.; ABREU, M. T.; VORA, P.; et al. Decreased Expression of Toll-Like Receptor-4 and MD-2 Correlates with Intestinal Epithelial Cell Protection Against Dysregulated Proinflammatory Gene Expression in Response to Bacterial Lipopolysaccharide. 2013.

GONG, J.; XU, J.; ZHU, W.; et al. Epithelial-specific blockade of MyD88-dependent pathway causes spontaneous small intestinal inflammation. Clinical immunology (Orlando, Fla.), v.

136, n. 2, p. 245–56, ago 2010.

HARAMIS, A.-P. G.; BEGTHEL, H.; BORN, M. VAN DEN; et al. De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science (New York, N.Y.), v. 303, n. 5664, p. 1684–6, 12 mar 2004a.

HARAMIS, A.-P. G.; BEGTHEL, H.; BORN, M. VAN DEN; et al. De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science (New York, N.Y.), v. 303, n. 5664, p. 1684–6, 12 mar 2004b.

HAYASHI, M.; SAKAI, T.; HASEGAWA, Y.; et al. Physiological mechanism for enhancement of paracellular drug transport. Journal of controlled release : official journal

of the Controlled Release Society, v. 62, n. 1-2, p. 141–8, 1 nov 1999.

HE, X. C.; ZHANG, J.; TONG, W.-G.; et al. BMP signaling inhibits intestinal stem cell self- renewal through suppression of Wnt-beta-catenin signaling. Nature genetics, v. 36, n. 10, p. 1117–21, out 2004.

HEATH, J. P. Epithelial cell migration in the intestine. Cell biology international, v. 20, n. 2, p. 139–46, fev 1996.

HOWELL, J. C.; WELLS, J. M. Generating intestinal tissue from stem cells: potential for research and therapy. Regenerative medicine, v. 6, n. 6, p. 743–55, nov 2011.

ISHIZUYA-OKA, A.; HASEBE, T. Sonic hedgehog and bone morphogenetic protein-4 signaling pathway involved in epithelial cell renewal along the radial axis of the intestine.

Digestion, v. 77 Suppl 1, n. suppl 1, p. 42–7, jan 2008.

ISHIZUYA-OKA, A.; HASEBE, T.; SHIMIZU, K.; SUZUKI, K.; UEDA, S. Shh/BMP-4 signaling pathway is essential for intestinal epithelial development during Xenopus larval-to- adult remodeling. Developmental dynamics  : an official publication of the American

Association of Anatomists, v. 235, n. 12, p. 3240–9, dez 2006.

JENSEN, J.; PEDERSEN, E. E.; GALANTE, P.; et al. Control of endodermal endocrine development by Hes-1. Nature genetics, v. 24, n. 1, p. 36–44, jan 2000.

JOHANSSON, M. E. V.; PHILLIPSON, M.; PETERSSON, J.; et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proceedings of the

National Academy of Sciences, v. 105, n. 39, p. 15064–15069, 19 set 2008.

necrosis factor mrna localized to paneth cells of normal murine intestinal epithelium by in situ hybridization. v. 171, n. January, p. 0–5, 1990.

KESHAV, S. Paneth cells : leukocyte-like mediators of innate immunity in the intestine. 2006. KINNEBREW, M.; UBEDA, C. Bacterial flagellin stimulates TLR5-dependent defense against vancomycin-resistant Enterococcus infection. Journal of Infectious Diseases, v. 201, n. 4, p. 534–543, 2010.

KODACH, L. L.; WIERCINSKA, E.; MIRANDA, N. F. C. C. DE; et al. The bone morphogenetic protein pathway is inactivated in the majority of sporadic colorectal cancers.

Gastroenterology, v. 134, n. 5, p. 1332–41, maio 2008.

KORINEK, V.; BARKER, N.; MOERER, P.; et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature genetics, v. 19, n. august, p. 379–383, 1998.

KÜHL, S. J.; KÜHL, M. On the role of Wnt/β-catenin signaling in stem cells. Biochimica et

biophysica acta, v. 1830, n. 2, p. 2297–306, fev 2013.

KUHNERT, F.; DAVIS, C. R.; WANG, H.-T.; et al. Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1. Proceedings of the National Academy of Sciences of the United States of

America, v. 101, n. 1, p. 266–71, 6 jan 2004.

LAUDANSKI, K.; DE, A.; BROUXHON, S.; KYRKANIDES, S.; MILLER-GRAZIANO, C. Abnormal Pge2 Regulation of Monocyte Tnf-?? Levels in Trauma Patients Parallels Development of a More Macrophage-Like Phenotype. Shock, v. 22, n. 3, p. 204–212, set 2004.

LENDEMANS, S.; KREUZFELDER, E.; RANI, M.; et al. Toll-like receptor 2 and 4 expression after severe injury is not involved in the dysregulation of the innate immune system. The Journal of trauma, v. 63, n. 4, p. 740–6, out 2007.

LI, L.; CLEVERS, H. Coexistence of quiescent and active adult stem cells in mammals.

Science (New York, N.Y.), v. 327, n. 5965, p. 542–5, 29 jan 2010.

LI, L.; XIE, T. Stem cell niche: structure and function. Annual review of cell and

developmental biology, v. 21, p. 605–31, jan 2005.

tight junction proteins. American journal of physiology. Gastrointestinal and liver

physiology, v. 287, n. 3, p. G726–33, set 2004.

LIBONI, K. C.; LI, N.; SCUMPIA, P. O.; NEU, J. Glutamine modulates LPS-induced IL-8 production through IkappaB/NF-kappaB in human fetal and adult intestinal epithelium. The

Journal of nutrition, v. 135, n. 2, p. 245–51, fev 2005.

MARC RHOADS, J.; WU, G. Glutamine, arginine, and leucine signaling in the intestine.

Amino acids, v. 37, n. 1, p. 111–22, maio 2009.

MARSHMAN, E.; BOOTH, C.; POTTEN, C. S. The intestinal epithelial stem cell.

BioEssays : news and reviews in molecular, cellular and developmental biology, v. 24, n.

1, p. 91–8, jan 2002.

MCGUCKIN, M. A; LINDÉN, S. K.; SUTTON, P.; FLORIN, T. H. Mucin dynamics and enteric pathogens. Nature reviews. Microbiology, v. 9, n. 4, p. 265–78, abr 2011.

MEDEMA, J. P.; VERMEULEN, L. Microenvironmental regulation of stem cells in intestinal homeostasis and cancer. Nature, v. 474, n. 7351, p. 318–326, 15 jun 2011.

MOLOFSKY, A. V; PARDAL, R.; MORRISON, S. J. Diverse mechanisms regulate stem cell self-renewal. Current opinion in cell biology, v. 16, n. 6, p. 700–7, dez 2004.

MORAN-RAMOS, S.; TOVAR, A. R.; TORRES, N. Diet : Friend or Foe of Enteroendocrine Cells : How It Interacts with Enteroendocrine Cells 1 , 2. p. 8–20, 2012.

MUKHERJEE, S.; VAISHNAVA, S.; HOOPER, L. V. Multi-layered regulation of intestinal antimicrobial defense. Cellular and molecular life sciences : CMLS, v. 65, n. 19, p. 3019– 27, out 2008.

MUNCAN, V.; SANSOM, O. J.; TERTOOLEN, L.; et al. Rapid loss of intestinal crypts upon conditional deletion of the Wnt/Tcf-4 target gene c-Myc. Molecular and cellular biology, v. 26, n. 22, p. 8418–26, nov 2006.

NAKAMURA, T.; TSUCHIYA, K.; WATANABE, M. Crosstalk between Wnt and Notch signaling in intestinal epithelial cell fate decision. Journal of gastroenterology, v. 42, n. 9, p. 705–10, set 2007.

NIESS, J. H.; BRAND, S.; GU, X.; et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science (New York, N.Y.), v. 307, n. 5707, p. 254–8, 14 jan 2005.

NUSSE, R.; FUERER, C.; CHING, W.; et al. Wnt signaling and stem cell control. Cold

Spring Harbor symposia on quantitative biology, v. 73, p. 59–66, jan 2008.

OHLSTEIN, B.; KAI, T.; DECOTTO, E.; SPRADLING, A. The stem cell niche: theme and variations. Current opinion in cell biology, v. 16, n. 6, p. 693–9, dez 2004.

PÉREZ-BÁRCENA, J.; CRESPÍ, C.; REGUEIRO, V.; et al. Lack of effect of glutamine administration to boost the innate immune system response in trauma patients in the intensive care unit. Critical care (London, England), v. 14, n. 6, p. R233, jan 2010.

PERREAULT, N.; BEAULIEU, J. F. Use of the dissociating enzyme thermolysin to generate viable human normal intestinal epithelial cell cultures. Experimental cell research, v. 224, n. 2, p. 354–64, 1 maio 1996.

PINTO, D.; CLEVERS, H. Wnt, stem cells and cancer in the intestine. Biology of the Cell, v. 97, n. 3, p. 185–196, 9 mar 2005.

PINTO, D.; GREGORIEFF, A.; BEGTHEL, H.; CLEVERS, H. Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes & Development, v. 17, p. 1709– 1713, 2003.

PORTER, E.; BEVINS, C.; GHOSH, D.; GANZ, T. The multifaceted Paneth cell. Cellular

and Molecular Life Science, v. 59, p. 156–170, 2002.

RESCIGNO, M. CCR6(+) dendritic cells: the gut tactical-response unit. Immunity, v. 24, n. 5, p. 508–10, maio 2006.

RICHMOND, C. A.; BREAULT, D. T. Regulation of gene expression in the Intestinal Epithelium. Prog Mol Bio Transl Sci, v. 96, p. 207–229, 2010.

RINDI, G.; LEITER, A. B.; KOPIN, A. S.; BORDI, C.; SOLCIA, E. The “Normal” Endocrine Cell of the Gut: Changing Concepts and New Evidences. Annals of the New York Academy

of Sciences, v. 1014, n. 1, p. 1–12, abr 2004.

ROTH, E. Nonnutritive effects of glutamine. The Journal of nutrition, v. 138, n. 10, p. 2025S–2031S, out 2008.

RUMIO, C.; BESUSSO, D.; PALAZZO, M.; et al. Degranulation of paneth cells via toll-like receptor 9. The American journal of pathology, v. 165, n. 2, p. 373–81, ago 2004.

SANGIORGI, E.; CAPECCHI, M. R. Bmi1 is expressed in vivo in intestinal stem cells.

SANSOM, O.; REED, K.; HAYES, A. Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes & development, v. 18, p. 1385–1390, 2004. SANTA BARBARA, P. DE; BRINK, G. R. VAN DEN; ROBERTS, D. J. Development and differentiation of the intestinal epithelium. Cellular and molecular life sciences : CMLS, v. 60, n. 7, p. 1322–32, jul 2003.

SANTAOLALLA, R.; FUKATA, M.; ABREU, M. Innate immunity in the small intestine.

Current opinion in gastroenterology, v. 27, n. 2, p. 125–131, 2011.

SATO, T.; ES, J. H. VAN; SNIPPERT, H. J.; et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature, v. 469, n. 7330, p. 415–8, 20 jan 2011.

SATO, T.; VRIES, R. G.; SNIPPERT, H. J.; et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, v. 459, n. 7244, p. 262–5, 14 maio 2009.

SAWADA, M.; TAKAHASHI, K.; SAWADA, S.; MIDORIKAWA, O. Selective killing of Paneth cells by intravenous administration of dithizone in rats. Int. J. Exp. Path, v. 72, p. 407–421, 1991.

SCHRÖDER, N.; GOSSLER, A. Expression of Notch pathway components in fetal and adult mouse small intestine. Gene expression patterns, v. 2, p. 247–250, 2002.

SCHUSTER, J. M.; NELSON, P. S. Toll receptors: an expanding role in our understanding of human disease. Journal of leukocyte biology, v. 67, n. 6, p. 767–73, jun 2000.

SCOVILLE, D. H.; SATO, T.; HE, X. C.; LI, L. Current view: intestinal stem cells and signaling. Gastroenterology, v. 134, n. 3, p. 849–64, mar 2008.

SÉMONT, A; MOUISEDDINE, M.; FRANÇOIS, A; et al. Mesenchymal stem cells improve small intestinal integrity through regulation of endogenous epithelial cell homeostasis. Cell

death and differentiation, v. 17, n. 6, p. 952–61, jun 2010.

SHAKER, A.; RUBIN, D. C. Intestinal stem cells and epithelial-mesenchymal interactions in the crypt and stem cell niche. Translational research  : the journal of laboratory and

clinical medicine, v. 156, n. 3, p. 180–7, set 2010.

SHIMAZU, R.; AKASHI, S.; OGATA, H.; et al. MD-2, a Molecule that Confers Lipopolysaccharide Responsiveness on Toll-like Receptor 4. Journal of Experimental

TESORI, V.; PUGLISI, M. A.; LATTANZI, W.; GASBARRINI, G. B.; GASBARRINI, A. Update on small intestinal stem cells. World journal of gastroenterology : WJG, v. 19, n. 29, p. 4671–8, 7 ago 2013.

THORNTON, D. J.; ROUSSEAU, K.; MCGUCKIN, M. A. Structure and function of the polymeric mucins in airways mucus. Annual review of physiology, v. 70, p. 459–86, jan 2008.

VAISHNAVA, S.; BEHRENDT, C. L.; ISMAIL, A. S.; ECKMANN, L.; HOOPER, L. V. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host- microbial interface. Proceedings of the National Academy of Sciences of the United States

of America, v. 105, n. 52, p. 20858–63, 30 dez 2008.

VAISHNAVA, S.; YAMAMOTO, M.; SEVERSON, K. M.; et al. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science

(New York, N.Y.), v. 334, n. 6053, p. 255–8, 14 out 2011.

VILSBØLL, T.; HOLST, J. J. Incretins, insulin secretion and Type 2 diabetes mellitus.

Diabetologia, v. 47, n. 3, p. 357–66, mar 2004.

WANG, W. W.; QIAO, S. Y.; LI, D. F. Amino acids and gut function. Amino acids, v. 37, n. 1, p. 105–10, maio 2009.

WEHKAMP, J.; HARDER, J.; WEICHENTHAL, M.; et al. NOD2 (CARD15) mutations in Crohn’s disease are associated with diminished mucosal alpha-defensin expression. Gut, v. 53, n. 11, p. 1658–64, nov 2004.

WISCHMEYER, P. E.; KAHANA, M.; WOLFSON, R.; et al. Glutamine induces heat shock protein and protects against endotoxin shock in the rat. Journal of applied physiology

(Bethesda, Md. : 1985), v. 90, n. 6, p. 2403–10, jun 2001.

WOLFS, T. G. A M.; DERIKX, J. P. M.; HODIN, C. M. I. M.; et al. Localization of the lipopolysaccharide recognition complex in the human healthy and inflamed premature and adult gut. Inflammatory bowel diseases, v. 16, n. 1, p. 68–75, jan 2010.

WONG, M. H.; SAAM, J. R.; STAPPENBECK, T. S.; REXER, C. H.; GORDON, J. I. Genetic mosaic analysis based on Cre recombinase and navigated laser capture microdissection. Proceedings of the National Academy of Sciences of the United States of

America, v. 97, n. 23, p. 12601–6, 7 nov 2000.

2, n. 3, p. 203–12, jan 2006.

YEUNG, T. M.; CHIA, L. A; KOSINSKI, C. M.; KUO, C. J. Regulation of self-renewal and differentiation by the intestinal stem cell niche. Cellular and molecular life sciences  :

CMLS, v. 68, n. 15, p. 2513–23, ago 2011.

ZECCHINI, V.; DOMASCHENZ, R.; WINTON, D.; JONES, P. Notch signaling regulates the differentiation of post-mitotic intestinal epithelial cells. Genes & develop, v. 19, p. 1686– 1691, 2005.

Documentos relacionados