• Nenhum resultado encontrado

Revisão Bibliográfica

2.4 MATÉRIA-PRIMA: CÚRCUMA (Curcuma longa)

2.4.1 Fitoquímica da cúrcuma, atividade biológica e extração

Pelo menos 235 compostos fitoquímicos foram identificados a partir de espécies de

Curcuma, principalmente compostos fenólicos e terpenóides (Li et al., 2011, Nahar e Sarker,

2007). Em se tratando do rizoma da cúrcuma, esses compostos podem ser agrupados em duas frações com características de extração diferentes e com interesse industrial: a oleorresina (fração não volátil) e o óleo volátil. A oleorresina reúne os curcuminóides, compostos fenólicos responsáveis pela coloração amarela apresentada pelo rizoma e pela atividade antioxidante natural do extrato de cúrcuma (Jayaprakasha et al., 2005). A curcumina e seus dois compostos desmetoxilados, desmetoxi-curcumina e bis-desmetoxi-curcumina, são os compostos

majoritários encontrados na oleorresina (Figura 2.9). Além de ser um potente antioxidante, a curcumina exibe ainda atividades anticâncer, antibacteriana e antiviral, e devido a essas características ela representa a maior parte dos trabalhos envolvendo os compostos da cúrcuma (de Paz-Campos et al., 2014, Kasdagly et al., 2014, Sun et al., 2014, Tovsen et al., 2014).

A fração de óleo volátil é responsável pelo aroma característico da cúrcuma e representa de 5,0 a 6,0% da matéria seca (Chempakam e Parthasarathy, 2008). Sesquiterpenos são as principais substâncias encontradas, principalmente ar(aromatic)-turmerona, α-turmerona e β-turmerona, representando até 80% do óleo (Carvalho et al., 2015). Contudo, a composição do óleo volátil e o conteúdo de cada composto podem variar consideravelmente com a espécie, a localização geográfica e com o cultivo da planta (Li et al., 2011), além da forma de extração. Assim, outros compostos podem aparecer de forma expressiva no extrato, como curdiona, ar- curcumeno, zingibereno e sesquifelandreno, (Jayaprakasha et al., 2005, Chempakam e Parthasarathy, 2008, Li et al., 2011) (Figura 2.9).

Figura 2.9. Estrutura química dos principais compostos presentes na oleorresina [(a)

curcumina, (b) desmetoxi-curcumina e (c) bis-desmetoxi-curcumina] e no óleo volátil de cúrcuma [(1) ar-turmerona, (2) α-turmerona, (3) β-turmerona, (4) zingibereno, (5) curdione,

(6) sesquifelandreno]. Adaptada de Jayaprakasha et al. (2005).

A química do óleo volátil de cúrcuma recebeu pouca atenção em tempos passados, e a sua extração era muitas vezes realizada concomitantemente com a oleorresina. No entanto,

nos últimos anos vários pesquisadores começaram a se interessar pela bioatividade de seus compostos e já indicaram inúmeras funcionalidades, como propriedades de repelente a insetos (Champakaew et al., 2007), antifúngico (Singh et al., 2011, Sharma et al., 2011, Sahoo et al., 2011), bactericida (Kamazeri et al., 2012, Naz et al., 2011, Lee et al., 2011), anticarcinogênico (Zeng et al., 2012), anti-angiogênico (Chen et al., 2011), anti-inflamatório (Liju et al., 2011), anti-hiperlipidêmico (Ling et al., 2012), anti-artrite (Funk et al., 2010), entre outras.

Na extração de óleo volátil de matrizes vegetais as tecnologias mais utilizadas são ainda as técnicas convencionais de hidrodestilação (em escala laboratorial) e de destilação a vapor (em escala industrial), devido à simplicidade e produtividade das mesmas (Manzan et al., 2003). Contudo, estas técnicas possuem algumas desvantagens associadas à temperatura alta na qual o processo ocorre, como degradação térmica, hidrólise e solubilização em água de alguns compostos, podendo alterar a composição e a qualidade de muitos óleos essenciais extraídos (Reverchon e De Marco, 2006).

Como principal alternativa às técnicas convencionais, vem se estabelecendo a utilização da tecnologia SFE. Seu princípio e suas vantagens foram apresentas nas Seções 2.1 e 2.2 desta Revisão. Nas últimas duas décadas diversos trabalhos envolvidos na extração e no fracionamento de óleo volátil de diversas matrizes vegetais usando SFE foram desenvolvidos (Akanda et al., 2012, Palavra et al., 2011a, del Valle et al., 2011, Uquiche et al., 2012, Zhang et al., 2012). A qualidade do extrato produzido por SFE apresenta grande potencial de serem absorvidos pelas indústrias farmacêuticas e de costméticos, para a geração de produtos de alto valor agregado (Pereira e Meireles, 2010a).

Para a cúrcuma, alguns trabalhos na literatura reportaram a otimização da extração do óleo usando scCO2 (Began et al., 2000, Chang et al., 2006) e scCO2 adicionado de cosolvente

(Braga et al., 2003). Por exemplo, a extração do óleo usando SFE e a purificação do extrato em duas frações (frações ricas em ar-turmerona e α-β-turmerona) aplicando cromatografia sólido- líquido foram avaliadas por Chang et al. (2006). Além disso, um trabalho mais recente determinou o equilíbrio de fases de um pseudocomponente denominado α-β-ar-turmerona e composto das três turmerones (α- turmerona, β- turmerona, and ar-turmerona) em scCO2 (Kao

et al., 2007).

No campo de utilização de compostos naturais no tratamento de doenças uma especial atenção tem sido dada ao composto ar-turmerona. A aplicação desse composto tem apresentado interessantes propriedades anti-inflamatórias (Park et al., 2012a, Park et al.,

2012b), anti-proliferativa de células cancerígenas (Yue et al., 2010) e de inibição de agregação de plaquetas (Lee, 2006, Prakash et al., 2011). Poderosa ação inseticida e de repelente a insetos também tem sido reportada a esse composto (Tavares et al., 2013, Lee et al., 2001).

Alguns produtos comerciais contendo extrato SFE de cúrcuma já podem ser encontrados em mercados da América do Norte, Europa e Ásia. Para citar alguns tem-se os produtos Turmeric Liquid Phytocaps da empresa Botanica/Vancouver/Canada, Turmeric Force da empresa NewChapter/Vermont/EUA e Tumeric Supreme da empresa Gaia Herbs/Brevard/EUA.

REFERÊNCIAS

AKANDA, M. J., SARKER, M. Z., FERDOSH, S., MANAP, M. Y., AB RAHMAN, N. N. & AB KADIR, M. O. 2012. Applications of supercritical fluid extraction (SFE) of palm oil and oil from natural sources. Molecules, 17, 1764-94.

AKGÜN, M., AKGÜN, N. A. & DINÇER, S. 1999. Phase behaviour of essential oil components in supercritical carbon dioxide. The Journal of Supercritical Fluids, 15, 117- 125.

ARAUJO, C. C. & LEON, L. L. 2001. Biological activities of Curcuma longa L.

Mem Inst Oswaldo Cruz, 96, 723-8.

BABU, K. N., RAVINDRAN, P. & SHIVA, K. 2007. Botany and Crop Improvement of Turmeric. In: RAVINDRAN, P. N., BABU, K. N. & SIVARAMAN, K. (eds.)

Turmeric. CRC Press.

BARROS, H. D. F. Q., COUTINHO, J. P., GRIMALDI, R., GODOY, H. T. & CABRAL, F. A. 2016. Simultaneous extraction of edible oil from avocado and capsanthin from red bell pepper using supercritical carbon dioxide as solvent. The Journal of Supercritical

Fluids, 107, 315-320.

BEGAN, G., GOTO, M., KODAMA, A. & HIROSE, T. 2000. Response surfaces of total oil yield of turmeric (Curcuma longa) in supercritical carbon dioxide. Food Research

International, 33, 341-345.

BRAGA, M. E. M., LEAL, P. F., CARVALHO, J. E. & MEIRELES, M. A. A. 2003. Comparison of yield, composition, and antioxidant activity of turmeric (Curcuma longa L.) extracts obtained using various techniques. Journal of Agricultural and Food Chemistry, 51, 6604-6611.

BRUNNER, G. 1987. Stofftrennung mit überkritischen Gasen (Gasextraktion).

Chemie Ingenieur Technik, 59, 12-22.

BRUNNER, G. 1994. Gas extraction. An introduction to fundamentals of

supercritical fluids and the application to separation processes, New York, NY, Springer.

BRUNNER, G. 2005. Supercritical fluids: technology and application to food processing. Journal of Food Engineering, 67, 21-33.

CARVALHO, P. I. N., OSORIO-TOBÓN, J. F., ROSTAGNO, M. A., PETENATE, A. J. & MEIRELES, M. A. A. 2015. Techno-economic evaluation of the extraction of turmeric (Curcuma longa L.) oil and ar-turmerone using supercritical carbon dioxide. Journal of Supercritical Fluids, 105, 44-54.

CHAMPAKAEW, D., CHOOCHOTE, W., PONGPAIBUL, Y., CHAITHONG, U., JITPAKDI, A., TUETUN, B. & PITASAWAT, B. 2007. Larvicidal efficacy and biological stability of a botanical natural product, zedoary oil-impregnated sand granules, against Aedes aegypti (Diptera, Culicidae). Parasitol Res, 100, 729-37.

CHANG, L.-H., JONG, T.-T., HUANG, H.-S., NIEN, Y.-F. & CHANG, C.-M. J. 2006. Supercritical carbon dioxide extraction of turmeric oil from Curcuma longa Linn and purification of turmerones. Separation and Purification Technology, 47, 119-125.

CHATTOPADHYAY, I., BISWAS, K., BANDYOPADHYAY, U. & BANERJEE, R. K. 2004. Turmeric and curcumin: biological actions and medicinal applications. Current

science, 87, 44-53.

CHEMPAKAM, B. & PARTHASARATHY, V. A. 2008. Turmeric. In: PARTHASARATHY, V. A., CHEMPAKAM, B. & ZACHARIAH, T. J. (eds.) Chemistry of

Spices. CAB International.

CHEN, W. X., LU, Y., GAO, M., WU, J. M., WANG, A. Y. & SHI, R. H. 2011. Anti-angiogenesis effect of essential oil from Curcuma zedoaria in vitro and in vivo. Journal

of Ethnopharmacology, 133, 220-226.

CORAZZA, M. L., FILHO, L. C., ANTUNES, O. A. C. & DARIVA, C. 2003. High Pressure Phase Equilibria of the Related Substances in the Limonene Oxidation in Supercritical CO2. Journal of Chemical & Engineering Data, 48, 354-358.

DA SILVA, R. P. F. F., ROCHA-SANTOS, T. A. P. & DUARTE, A. C. 2016. Supercritical fluid extraction of bioactive compounds. TrAC Trends in Analytical Chemistry, 76, 40-51.

DE MELO, M. M. R., SILVESTRE, A. J. D. & SILVA, C. M. 2014. Supercritical fluid extraction of vegetable matrices: Applications, trends and future perspectives of a convincing green technology. The Journal of Supercritical Fluids, 92, 115-176.

DE PAZ-CAMPOS, M. A., ORTIZ, M. I., CHÁVEZ PIÑA, A. E., ZAZUETA- BELTRÁN, L. & CASTAÑEDA-HERNÁNDEZ, G. 2014. Synergistic effect of the interaction between curcumin and diclofenac on the formalin test in rats. Phytomedicine, 21, 1543-1548.

DEL VALLE, J. M. 2015. Extraction of natural compounds using supercritical CO2: Going from the laboratory to the industrial application. The Journal of Supercritical

Fluids, 96, 180-199.

DEL VALLE, J. M. & AGUILERA, J. M. 1999. Revision: Extracción con CO2 a

alta presión. Fundamentos y aplicaciones en la industria de alimentos / Review: High pressure CO2 extraction. Fundamentals and applications in the food industry. Food Science and Technology International, 5, 1-24.

DEL VALLE, J. M., DE LA FUENTE, J. C. & UQUICHE, E. 2012. A refined equation for predicting the solubility of vegetable oils in high-pressure CO 2. Journal of

Supercritical Fluids, 67, 60-70.

DEL VALLE, J. M., DE LA FUENTE, J. C., UQUICHE, E., ZETZL, C. & BRUNNER, G. 2011. Mass Transfer and Equilibrium Parameters on High-Pressure CO(2)

Extraction of Plant Essential Oils.

DEL VALLE, J. M., RIVERA, O., MATTEA, M., RUETSCH, L., DAGHERO, J. & FLORES, A. 2004. Supercritical CO2 processing of pretreated rosehip seeds: effect of

process scale on oil extraction kinetics. Journal of Supercritical Fluids, 31, 159-174.

DEL VALLE, J. M. & URREGO, F. A. 2012. Free solute content and solute-matrix interactions affect apparent solubility and apparent solute content in supercritical CO2 extractions. A hypothesis paper. The Journal of Supercritical Fluids, 66, 157-175.

FORNARI, R. E., ALESSI, P. & KIKIC, I. 1990. High pressure fluid phase equilibria: experimental methods and systems investigated (1978–1987). Fluid Phase

Equilibria, 57, 1-33.

FREUD, R. J. & LITTLE, R. C. 1995. SAS System for Regression. SAS Series in

FUNK, J. L., FRYE, J. B., OYARZO, J. N., ZHANG, H. P. & TIMMERMANN, B. N. 2010. Anti-Arthritic Effects and Toxicity of the Essential Oils of Turmeric (Curcuma longa L.). Journal of Agricultural and Food Chemistry, 58, 842-849.

JAYAPRAKASHA, G. K., JAGAN MOHAN RAO, L. & SAKARIAH, K. K. 2005. Chemistry and biological activities of C. longa. Trends in Food Science &

Technology, 16, 533-548.

KAMAZERI, T., SAMAH, O. A., TAHER, M., SUSANTI, D. & QARALLEH, H. 2012. Antimicrobial activity and essential oils of Curcuma aeruginosa, Curcuma mangga, and Zingiber cassumunar from Malaysia. Asian Pacific Journal of Tropical Medicine, 5, 202-209.

KAO, L., CHEN, C. R. & CHANG, C. M. J. 2007. Supercritical CO2 extraction of

turmerones from turmeric and high-pressure phase equilibrium of CO2+turmerones. Journal of Supercritical Fluids, 43, 276-282.

KASDAGLY, M., RADHAKRISHNAN, S., REDDIVARI, L.,

VEERAMACHANENI, D. N. R. & VANAMALA, J. 2014. Colon carcinogenesis: Influence of Western diet-induced obesity and targeting stem cells using dietary bioactive compounds.

Nutrition, 30, 1242-1256.

KING, J. W. 2002. Supercritical fluid extraction: Present status and prospects.

Grasas Y Aceites, 53, 8-21.

KING, J. W. 2014. Modern Supercritical Fluid Technology for Food Applications.

Annual Review of Food Science and Technology, 5, 215-238.

LAURENT, A., LACK, E., GAMSE, T. & MARR, R. 2001. Chapter 6 Separation operations and equipment. In: BERTUCCO, A. & VETTER, G. (eds.) Industrial Chemistry

Library. Elsevier.

LEE, H.-S., SHIN, W.-K., SONG, C., CHO, K.-Y. & AHN, Y.-J. 2001. Insecticidal Activities of ar-Turmerone Identified in Curcuma longa Rhizome against Nilaparvata lugens (Homoptera: Delphacidae) and Plutella xylostella (Lepidoptera: Yponomeutidae). Journal of

Asia-Pacific Entomology, 4, 181-185.

LEE, H. S. 2006. Antiplatelet property of Curcuma longa L. rhizome-derived ar- turmerone. Bioresource Technology, 97, 1372-1376.

LEE, K. H., KIM, B. S., KEUM, K. S., YU, H. H., KIM, Y. H., CHANG, B. S., RA, J. Y., MOON, H. D., SEO, B. R., CHOI, N. Y. & YOU, Y. O. 2011. Essential Oil of

Curcuma longa Inhibits Streptococcus mutans Biofilm Formation. Journal of Food Science, 76, H226-H230.

LI, S., YUAN, W., DENG, D., WANG, P., YANG, P. & AGGARWAL, B. B. 2011. Chemical Composition and Product Quality Control of Turmeric (Curcuma longa L.).

Pharmaceutical Crops, 2, 28-54.

LIJU, V. B., JEENA, K. & KUTTAN, R. 2011. An evaluation of antioxidant, anti- inflammatory, and antinociceptive activities of essential oil from Curcuma longa. L. Indian

Journal of Pharmacology, 43, 526-531.

LING, J. J., WEI, B., LV, G. P., JI, H. & LI, S. P. 2012. Anti-hyperlipidaemic and antioxidant effects of turmeric oil in hyperlipidaemic rats. Food Chemistry, 130, 229-235.

LOPES, B. L. F., SÁNCHEZ-CAMARGO, A. P., FERREIRA, A. L. K., GRIMALDI, R., PAVIANI, L. C. & CABRAL, F. A. 2012. Selectivity of supercritical carbon dioxide in the fractionation of fish oil with a lower content of EPA + DHA. The

Journal of Supercritical Fluids, 61, 78-85.

MANZAN, A., TONIOLO, F. S., BREDOW, E. & POVH, N. P. 2003. Extraction of essential oil and pigments from Curcuma longa L. by steam distillation and extraction with volatile solvents. Journal of Agricultural and Food Chemistry, 51, 6802-6807.

MARQUES, L. L. M., PANIZZON, G. P., AGUIAR, B. A. A., SIMIONATO, A. S., CARDOZO-FILHO, L., ANDRADE, G., DE OLIVEIRA, A. G., GUEDES, T. A. & MELLO, J. C. P. D. 2016. Guaraná (Paullinia cupana) seeds: Selective supercritical extraction of phenolic compounds. Food Chemistry, 212, 703-711.

MEIRELES, M. A. A. 2003. Supercritical extraction from solid: process design data (2001-2003). Current Opinion in Solid State & Materials Science, 7, 321-330.

MEIRELES, M. A. A. 2008. Extraction of Bioactive Compounds from Latin American Plants. In: MARTINEZ, J. L. (ed.) Supercritical Fluid Extraction of Nutraceuticals

and Bioactive Compounds. CRC Press.

MÉNDEZ-SANTIAGO, J. & TEJA, A. S. 1999. The solubility of solids in supercritical fluids. Fluid Phase Equilibria, 158–160, 501-510.

MEZZOMO, N., MARTÍNEZ, J., MARASCHIN, M. & FERREIRA, S. R. S. 2013. Pink shrimp (P. brasiliensis and P. paulensis) residue: Supercritical fluid extraction of carotenoid fraction. The Journal of Supercritical Fluids, 74, 22-33.

MORAES, M. N., ZABOT, G. L. & MEIRELES, M. A. A. 2014. Extraction of tocotrienols from annatto seeds by a pseudo continuously operated SFE process integrated with low-pressure solvent extraction for bixin production. The Journal of Supercritical Fluids.

NAHAR, L. & SARKER, S. 2007. Phytochemistry of the Genus Curcuma. In: RAVINDRAN, P. N., BABU, K. N. & SIVARAMAN, K. (eds.) Turmeric. CRC Press.

NAZ, S., ILYAS, S., JABEEN, S. & PARVEEN, Z. 2011. Composition and Antibacterial Activity of the Essential Oil from the Rhizome of Turmeric (Curcuma longa L.).

Asian Journal of Chemistry, 23, 1639-1642.

PALAVRA, A. M. F., COELHO, J. P., BARROSO, J. G., RAUTER, A. P., FARELEIRA, J., MAINAR, A., URIETA, J. S., NOBRE, B. P., GOUVEIA, L., MENDES, R. L., CABRAL, J. M. S. & NOVAIS, J. M. 2011a. Supercritical carbon dioxide extraction of bioactive compounds from microalgae and volatile oils from aromatic plants. Journal of

Supercritical Fluids, 60, 21-27.

PALAVRA, A. M. F., COELHO, J. P., BARROSO, J. G., RAUTER, A. P., FARELEIRA, J. M. N. A., MAINAR, A., URIETA, J. S., NOBRE, B. P., GOUVEIA, L., MENDES, R. L., CABRAL, J. M. S. & NOVAIS, J. M. 2011b. Supercritical carbon dioxide extraction of bioactive compounds from microalgae and volatile oils from aromatic plants. The

Journal of Supercritical Fluids, 60, 21-27.

PARK, S. Y., JIN, M. L., KIM, Y. H., KIM, Y. & LEE, S. J. 2012a. Anti- inflammatory effects of aromatic-turmerone through blocking of NF-κB, JNK, and p38 MAPK signaling pathways in amyloid β-stimulated microglia. International Immunopharmacology, 14, 13-20.

PARK, S. Y., KIM, Y. H., KIM, Y. & LEE, S.-J. 2012b. Aromatic-turmerone’s anti-inflammatory effects in microglial cells are mediated by protein kinase A and heme oxygenase-1 signaling. Neurochemistry International, 61, 767-777.

PEREIRA, C. & MEIRELES, M. A. 2010a. Supercritical Fluid Extraction of Bioactive Compounds: Fundamentals, Applications and Economic Perspectives. Food and

Bioprocess Technology, 3, 340-372.

PEREIRA, C. G. & MEIRELES, M. A. A. 2007. Economic analysis of rosemary, fennel and anise essential oils obtained by supercritical fluid extraction. Flavour and Fragrance

PEREIRA, C. G. & MEIRELES, M. A. A. 2010b. Supercritical Fluid Extraction of Bioactive Compounds: Fundamentals, Applications and Economic Perspectives. Food and

Bioprocess Technology, 3, 340-372.

PERRUT, M. 2000. Supercritical fluid applications: Industrial developments and economic issues. Industrial & Engineering Chemistry Research, 39, 4531-4535.

PRADO, I. M., ALBUQUERQUE, C. L. C., CAVALCANTI, R. N. & MEIRELES, M. A. A. Use of commercial process simulator to estimate the cost of manufacturing (COM) of carotenoids obtained via supercritical technology from palm and buriti trees. Proceedings of the 9th International Symposium on Supercritical Fluids, 2009. Arcachon, France.

PRADO, J. M., ASSIS, A. R., MAROSTICA-JUNIOR, M. R. & MEIRELES, M. A. A. 2010. Manufacturing cost of supercritical-extacted oils and carotenoids from amazonian plants. Journal of Food Process Engineering, 33, 348-369.

PRADO, J. M., DALMOLIN, I., CARARETO, N. D. D., BASSO, R. C., MEIRELLES, A. J. A., VLADIMIR OLIVEIRA, J., BATISTA, E. A. C. & MEIRELES, M. A. A. 2012. Supercritical fluid extraction of grape seed: Process scale-up, extract chemical composition and economic evaluation. Journal of Food Engineering, 109, 249-257.

PRADO, J. M., PRADO, G. H. C. & MEIRELES, M. A. A. 2011. Scale-up study of supercritical fluid extraction process for clove and sugarcane residue. Journal of

Supercritical Fluids, 56, 231-237.

PRADO, J. M. D. 2010. Estudo do aumento de escala do processo de extração

supercrítica em leito fixo. Doutorado em Engenharia de Alimentos Tese, Universidade Estadual

de Campinas.

PRAKASH, P., MISRA, A., SURIN, W. R., JAIN, M., BHATTA, R. S., PAL, R., RAJ, K., BARTHWAL, M. K. & DIKSHIT, M. 2011. Anti-platelet effects of Curcuma oil in experimental models of myocardial ischemia-reperfusion and thrombosis. Thrombosis

Research, 127, 111-118.

PRASAD, S. & AGGARWAL, B. B. 2011. Turmeric, the Golden Spice: From Traditional Medicine to Modern Medicine.

PREMAVALLI, K. 2007. Turmeric as Spice and Flavorant. In: RAVINDRAN, P. N., BABU, K. N. & SIVARAMAN, K. (eds.) Turmeric. CRC Press.

PRONYK, C. & MAZZA, G. 2009. Design and scale-up of pressurized fluid extractors for food and bioproducts. Journal of Food Engineering, 95, 215-226.

PRZYGODA, K. & WEJNEROWSKA, G. 2015. Extraction of tocopherol- enriched oils from Quinoa seeds by supercritical fluid extraction. Industrial Crops and

Products, 63, 41-47.

QUISPE-CONDORI, S. 2005. Determinação de parâmetros de processo nas

diferentes etapas de extração supercrítica de produtos naturais: Artemisia annua, Cordia verbenacea, Ocimum selloi, Foeniculum vulgare. Doutorado em Engenharia de Alimentos

Tese, Universidade Estadual de Campinas.

QUISPE-CONDORI, S., SANCHEZ, D., FOGLIO, M. A., ROSA, P. T. V., ZETZL, C., BRUNNER, G. & MEIRELES, M. A. A. 2005. Global yield isotherms and kinetic of artemisinin extraction from Artemisia annua L leaves using supercritical carbon dioxide.

Journal of Supercritical Fluids, 36, 40-48.

RAVINDRAN, P. 2007. Turmeric - The Golden Spice of Life. In: RAVINDRAN, P. N., BABU, K. N. & SIVARAMAN, K. (eds.) Turmeric. CRC Press.

REVERCHON, E. & DE MARCO, I. 2006. Supercritical fluid extraction and fractionation of natural matter. Journal of Supercritical Fluids, 38, 146-166.

REVERCHON, E. & DE MARCO, I. 2007. Essential Oils Extraction and Fractionation Using Supercritical Fluids. Supercritical Fluid Extraction of Nutraceuticals and

Bioactive Compounds. CRC Press.

RODRIGUES, V. M. 2001. Determinação da solubilidade em sistemas pseudo

ternários: cravo-da-índia (Eugenia caryophyllus) + CO2, gengibre (Zingiber officinale) + CO2

e erva-doce (Pimpinella anisum) + CO2. Doutorado em Engenharia de Alimentos Tese,

Universidade Estadual de Campinas.

RODRIGUES, V. M., SOUSA, E. M. B. D., MONTEIRO, A. R., CHIAVONE- FILHO, O., MARQUES, M. O. M. & MEIRELES, M. A. A. 2002. Determination of the solubility of extracts from vegetable raw material in pressurized CO2: a pseudo-ternary mixture formed by cellulosic structure+solute+solvent. The Journal of Supercritical Fluids, 22, 21-36.

ROSA, P. & MEIRELES, M. A. A. 2009. Fundamentals of supercritical extraction from solid matrices. In: MEIRELES, M. A. A. (ed.) Extracting Bioactive Compounds for Food

Products. CRC Press.

ROSA, P. T. V. & MEIRELES, M. A. A. 2005. Rapid estimation of the manufacturing cost of extracts obtained by supercritical fluid extraction. Journal of Food

SAHOO, R. K., KUANAR, A., JOSHI, R. K., DAS, A. P., NAYAK, S. & SUBUDHI, E. 2011. Anti-dermatophytic activity of eucalyptol rich turmeric somaclone oil against human pathogenic isolates. Journal of Medicinal Plants Research, 5, 1594-1597.

SANTOS, D. T. & MEIRELES, M. A. A. 2011. Extraction of Volatile Oils by Supercritical Fluid Extraction: Patent Survey. Recent Patents on Engineering, 5, 17-22.

SANTOS, P., AGUIAR, A. C., BARBERO, G. F., REZENDE, C. A. & MARTÍNEZ, J. 2015. Supercritical carbon dioxide extraction of capsaicinoids from malagueta pepper (Capsicum frutescens L.) assisted by ultrasound. Ultrasonics Sonochemistry, 22, 78-88. SARKER, S. & NAHAR, L. 2007. Bioactivity of Turmeric. Turmeric. CRC Press. SELVA, P., SUSANA, B. & ESTEBAN, B. 2007. Fundamentals of Supercritical Fluid Technology. Supercritical Fluid Extraction of Nutraceuticals and Bioactive Compounds. CRC Press.

SHARMA, R., SHARMA, G. & SHARMA, M. 2011. Additive and inhibitory effect of antifungal activity of Curcuma longa (Turmeric) and Zingiber officinale (Ginger) essential oils against Pityriasis versicolor infections. Journal of Medicinal Plants Research, 5, 6987-6990.

SINGH, S., RAJESH, B. S. S., SAHOO, K., SUBUDHI, E. & NAYAK, S. 2011. Chemical Composition of Turmeric Oil (Curcuma longa L. cv. Roma) and its Antimicrobial Activity against Eye Infecting Pathogens. Journal of Essential Oil Research, 23, 11-18.

SMITH, R., INOMATA, H. & PETERS, C. 2013. Chapter 4 - Historical Background and Applications. In: RICHARD SMITH, H. I. & COR, P. (eds.) Supercritical

Fluid Science and Technology. Elsevier.

SMITH, R. M. 1999. Supercritical fluids in separation science--the dreams, the reality and the future. J Chromatogr A, 856, 83-115.

SOLANA, M., RIZZA, C. S. & BERTUCCO, A. 2014. Exploiting microalgae as a source of essential fatty acids by supercritical fluid extraction of lipids: Comparison between Scenedesmus obliquus, Chlorella protothecoides and Nannochloropsis salina. The Journal of

Supercritical Fluids, 92, 311-318.

SOUZA, A. T., CORAZZA, M. L., CARDOZO-FILHO, L., GUIRARDELLO, R. & MEIRELES, M. A. A. 2004. Phase Equilibrium Measurements for the System Clove (Eugenia caryophyllus) Oil + CO2. Journal of Chemical & Engineering Data, 49, 352-356.

SOVOVÁ, H. & ROUMIANA, P. S. 2011. Supercritical fluid extraction from vegetable materials. Reviews in Chemical Engineering.

SUN, L.-N., YANG, Z.-Y., LV, S.-S., LIU, X.-C., GUAN, G.-J. & LIU, G. 2014. Curcumin prevents diabetic nephropathy against inflammatory response via reversing caveolin- 1 Tyr14 phosphorylation influenced TLR4 activation. International Immunopharmacology, 23, 236-246.

TAVARES, W. D. S., DE SOUSA FREITAS, S., GRAZZIOTTI, G. H., PARENTE, L. M. L., LIÃO, L. M. & ZANUNCIO, J. C. 2013. Ar-turmerone from Curcuma longa (Zingiberaceae) rhizomes and effects on Sitophilus zeamais (Coleoptera: Curculionidae) and Spodoptera frugiperda (Lepidoptera: Noctuidae). Industrial Crops and Products, 46, 158- 164.

TOVSEN, M. L., BRUZELL, E., FERRARI, E., SALADINI, M., GAWARE, V. S., MÁSSON, M., KRISTENSEN, S. & TØNNESEN, H. H. 2014. Antibacterial phototoxic effects of synthetic asymmetric and glycosylated curcuminoids in aqueous formulations: Studies on curcumin and curcuminoids. LIV. Journal of Photochemistry and Photobiology B:

Biology, 140, 150-156.

TREYVAUD AMIGUET, V., KRAMP, K. L., MAO, J., MCRAE, C., GOULAH, A., KIMPE, L. E., BLAIS, J. M. & ARNASON, J. T. 2012. Supercritical carbon dioxide extraction of polyunsaturated fatty acids from Northern shrimp (Pandalus borealis Kreyer) processing by-products. Food Chemistry, 130, 853-858.

TURTON, R., BAILIE, R. C., WHITING, W. B. & SHAEIWITZ, J. A. 1998.

Analysis, synthesis, and design of chemical process, PTR, Upper Saddler River, Prentice Hall.

UQUICHE, E., HUERTA, E., SANDOVAL, A. & DEL VALLE, J. M. 2012. Effect of boldo (Peumus boldus M.) pretreatment on kinetics of supercritical CO2 extraction of essential oil. Journal of Food Engineering, 109, 230-237.

URIBE, J. A. R., PEREZ, J. I. N., KAUIL, H. C., RUBIO, G. R. & ALCOCER, C. G. 2011. Extraction of oil from chia seeds with supercritical CO2. The Journal of Supercritical

Fluids, 56, 174-178.

VALSALA, P. & PETER, K. 2007. Turmeric Production - Constraints, Gaps, and Future Vision. In: RAVINDRAN, P. N., BABU, K. N. & SIVARAMAN, K. (eds.) Turmeric. CRC Press.

VEGGI, P. C. 2013. Obtenção de Compostos Fenólicos de Plantas Brasileiras via

Tecnologia Supercrítica utilizando Cossolventes e Extração Assistida por Ultrassom.

Doutorado em Engenharia de Alimentos Tese, Universidade Estadual de Campinas.

YEN, H.-W., YANG, S.-C., CHEN, C.-H., JESISCA & CHANG, J.-S. 2015. Supercritical fluid extraction of valuable compounds from microalgal biomass. Bioresource

Technology, 184, 291-296.

YUE, G. G. L., CHAN, B. C. L., HON, P.-M., LEE, M. Y. H., FUNG, K.-P., LEUNG, P.-C. & LAU, C. B. S. 2010. Evaluation of in vitro anti-proliferative and immunomodulatory activities of compounds isolated from Curcuma longa. Food and Chemical

Toxicology, 48, 2011-2020.

ZABOT, G. L., MORAES, M. N. & MEIRELES, M. A. A. 2012. Supercritical Fluid Extraction of Bioactive Compounds from Botanic Matrices: Experimental Data, Process Parameters and Economic Evaluation. Recent Patents on Engineering, 6, 182-206.

ZABOT, G. L., MORAES, M. N., PETENATE, A. J. & MEIRELES, M. A. A. 2013. Influence of the bed geometry on the kinetics of the extraction of clove bud oil with supercritical CO2. The Journal of Supercritical Fluids.

ZENG, J. H., REN, L. Y., XU, Y., DAI, P., CHEN, X., WANG, J., WANG, X. H. & WANG, J. H. 2012. Study on spectrum-effect relationship between fingerprint of essential oil and of anti-tumor effect from Curcuma kwangsiensis. African Journal of Pharmacy and

Pharmacology, 6, 1348-1351.

ZHANG, J. P., HOU, X. L., YU, T., LI, Y. & DONG, H. Y. 2012. Response Surface Optimization of Nigella glandulifera Freyn Seed Oil Yield by Supercritical Carbon Dioxide Extraction. Journal of Integrative Agriculture, 11, 151-158.

CAPÍTULO 3

Documentos relacionados