• Nenhum resultado encontrado

Chapter 1. Principal and associated fiber bundles

1.6. Functorial constructions with vector bundles

Given an integern≥1, we denote byVecnthe category whose objects are n-tuples(Vi)ni=1of real finite-dimensional vector spaces and whose morphisms from (Vi)ni=1to(Wi)ni=1aren-tuples(Ti)ni=1 of linear isomorphismsTi :Vi →Wi. We setVec = Vec1. A functorF : Vecn → Vecis calledsmooth if for any object (Vi)ni=1ofVecnthe map:

(1.6.1) F: GL(V1)× · · · ×GL(Vn)−→GL F(V1, . . . , Vn)

is smooth. Observe that (1.6.1) is a Lie group homomorphism; its differential at the identity is a Lie algebra homomorphism that will be denoted by:

(1.6.2) f:gl(V1)⊕ · · · ⊕gl(Vn)−→gl F(V1, . . . , Vn) . We callfthedifferentialof the smooth functorF.

Letπ : E → M be a vector bundle with typical fiber E0. Given a smooth functorF:Vec→Vecwe set:

(1.6.3) F(E) = [

x∈M

F(Ex),

1.6. FUNCTORIAL CONSTRUCTIONS WITH VECTOR BUNDLES 59

where the union in (1.6.3) is understood to be disjoint5; we have an obviously defined projection map F(E) → M that sendsF(Ex)to x, for allx ∈ M. For each x ∈ M, the fiberF(Ex) ofF(E) over x has the structure of a real vector space having the same dimension asF(E0). In order to makeF(E)into a vector bundle with typical fiberF(E0), we will describe a maximal atlas of local sections ofFRF(E0) F(E)

→M. The map:

(1.6.4) F: FRE0(E)3p7−→F(p)∈FRF(E0) F(E)

is fiber preserving and its restriction to each fiber is a morphism of principal spaces whose subjacent Lie group homomorphism is:

(1.6.5) GL(E0)3T 7−→F(T)∈GL F(E0) .

Thus, Lemma 1.3.11 gives us a unique maximal atlas of local sections ofFRF(E0) F(E) that makes (1.6.4) into a morphism of principal bundles. We will always consider F(E)to be endowed with the vector bundle structure described above.

Notice that ifs:U →FRE0(E)is a (smooth) localE0-frame ofEthenF◦s is a (smooth) localF(E0)-frame ofF(E); we callF◦sthe local frameinducedby sonF(E).

REMARK1.6.1. LetF : Vec → Vec be a smooth functor andπ : E → M be a vector bundle with typical fiberE0. Since (1.6.4) is a morphism of principal bundles whose subjacent Lie group homomorphism is the representation (1.6.5), we are in the situation described in Definition 1.5.17 and thus we have the following isomorphism of vector bundles:

CF=CF(E)◦Fb: FRE0(E)×F(E0)3[p,e]7−→F(p)·e∈F(E).

EXAMPLE 1.6.2. If F : Vec → Vec is the identity functor then for every vector bundleEthe vector bundleF(E)coincides withEitself. For any objectV ofVec, the mapfis the identity map ofgl(V).

EXAMPLE 1.6.3. Let Z be a fixed real finite-dimensional vector space and consider the constant functor F : Vec → Vec that sends any objectV of Vec to Z and any linear isomorphism T : V → W to the identity map of Z. For any object V ofVec, the mapf : gl(V) → gl(Z) is the identically zero map.

Given a vector bundleE over a differentiable manifoldM with typical fiber E0

thenF(E)is the trivial vector bundle M ×Z (recall Example 1.5.2); namely, if FRZ(M ×Z) =M ×GL(Z)is endowed with the structure of a trivial GL(Z)-principal bundle (see Example 1.3.2) then the map:

F: FRE0(E)3p7−→ Π(p),Id

∈M×GL(Z) = FRZ(M×Z) is a morphism of principal bundles.

Now, a less trivial example.

5If the union is not disjoint, one can always replaceF(Ex)with{x} ×F(Ex), or else modify the functorFso thatF(V)is replaced with{V} ×F(V), for every real finite-dimensional vector spaceV.

EXAMPLE1.6.4. LetF:Vec →Vecbe the functor that sendsV to the dual space V and a linear isomorphism T : V → W toT∗−1 : V → W, where T :W → V denotes the transpose map ofT. The functorFis clearly smooth and for any objectV ofVec, the mapfis given by:

f:gl(V)3X 7−→ −X ∈gl(V).

Given a vector bundleE then the vector bundle F(E)is denoted by E and it is called thedual bundleofE. IfE =T Mis the tangent bundle of the differentiable manifoldM then the dual bundleT M is also called thecotangent bundleofM.

EXAMPLE1.6.5. LetF:Vec→Vecbe the functor that sendsV to the space Lin(V) of linear endomorphisms ofV and a linear isomorphismT : V → W to the linear isomorphism:

IT : Lin(V)3L7−→T◦L◦T−1 ∈Lin(W).

The functorFis clearly smooth and for any objectV ofVec, the map:

f:gl(V)−→gl Lin(V) is given by:

f(X)·L= [X, L] =X◦L−L◦X,

for allX ∈ gl(V)and allL ∈ Lin(V). Given a vector bundleE then the vector bundleF(E)will be denoted byLin(E).

Given vector spaces V1, . . . , Vk, W, we denote by Lin(V1, . . . , Vk;W) the space ofk-linear mapsB : V1 × · · · ×Vk → W; byLink(V, W)we denote the space ofk-linear mapsB:V×· · ·×V →W. ByLinsk(V, W)(resp.,Linak(V, W)) we denote the subspace ofLink(V, W)consisting ofsymmetric(resp.,alternating) k-linear maps.

EXAMPLE1.6.6. Let k ≥ 1 be fixed and letF : Vec → Vecbe the functor that sendsV toLink(V,R) and a linear isomorphismT : V → W to the linear isomorphism:

Link(V,R)3B7−→B(T−1·, . . . , T−1·)∈Link(W,R).

The functorFis clearly smooth and for any objectV ofVec, the map:

f:gl(V)−→gl Link(V,R) is given by:

f(X)·L=−L(X·,·, . . . ,·)−L(·, X·, . . . ,·)− · · · −L(·,·, . . . , X·), for all X ∈ gl(V) and allL ∈ Link(V,R). Given a vector bundle E then the vector bundleF(E) is denoted byLink(E,R). IfM is a differentiable manifold then a section ofLink(T M,R)is called acovariantk-tensor fieldonM.

EXAMPLE 1.6.7. By replacing Link with Linsk or Linak throughout Exam-ple 1.6.6 we obtain vector bundles Linsk(E,R), Linak(E,R). The sections of Linsk(T M,R) are calledsymmetric covariant k-tensor fieldson M and the sec-tions ofLinak(T M,R)are calledk-formsordifferential forms of degreekonM.

1.6. FUNCTORIAL CONSTRUCTIONS WITH VECTOR BUNDLES 61

EXAMPLE 1.6.8. Let Z be a fixed real finite-dimensional vector space. By replacingRwithZ throughout Examples 1.6.6 and 1.6.7 we obtain vector bundles Link(E, Z), Linsk(E, Z) andLinak(E, Z). The sections of Link(T M, Z) (resp., Linsk(T M, Z)) are calledZ-valued covariantk-tensor fields(resp.,symmetricZ -valued covariantk-tensor fields) on M; the sections ofLinak(T M, Z) are called Z-valuedk-formsonM.

Let us now generalize the construction described above to the case of smooth functors of several variables. Letn ≥ 1be fixed and letF : Vecn → Vecbe a smooth functor. Given vector bundlesE1, . . . ,En over a differentiable manifold M with typical fibersE01, . . . ,E0n, respectively, we set:

F(E1, . . . , En) = [

x∈M

F(Ex1, . . . , Exn),

where the union is understood to be disjoint. We have an obviously defined pro-jectionF(E1, . . . , En) → M that sendsF(Ex1, . . . , Exn) tox, for allx ∈ M; for eachxinMthe fiberF(Ex1, . . . , Exn)has the structure of a real finite-dimensional vector space having the same dimension asF(E01, . . . , E0n). The fiberwise product FRE1

0(E1)?· · ·?FREn

0(En)is a principal bundle overM with structural group GL(E10)× · · · ×GL(En0); the map:

(1.6.6) FRE1

0(E1)?· · ·?FREn

0(En)−−→F FRF(E1

0,...,En0) F(E1, . . . , En) (p1, . . . , pn)7−→F(p1, . . . , pn)

is fiber preserving and its restriction to each fiber is a morphism of principal spaces whose subjacent Lie group homomorphism is:

(1.6.7) GL(E01)× · · · ×GL(E0n)−→GL F(E01, . . . , E0n) (T1, . . . , Tn)7−→F(T1, . . . , Tn).

Lemma 1.3.11 gives us a unique maximal atlas of local sections of FRF(E1

0,...,En0) F(E1, . . . , En)

−→M

that makes (1.6.6) into a morphism of principal bundles. We will always consider F(E1, . . . , En)to be endowed with the vector bundle structure described above.

If si : U → FREi

0(Ei) is a (smooth) localE0i-frame of Ei, i = 1, . . . , n, thenF◦(s1, . . . , sn)is a (smooth) localF(E01, . . . , E0n)-frame of the vector bun-dleF(E1, . . . , En); we callF◦(s1, . . . , sn)the frame inducedbys1, . . . ,sn on F(E1, . . . , En).

REMARK1.6.9. LetE1, . . . ,Enbe vector bundles over a differentiable mani-foldM with typical fibersE01, . . . ,E0nrespectively, and letF:Vecn →Vecbe a smooth functor. Since (1.6.6) is a morphism of principal bundles whose subjacent Lie group homomorphism is the representation (1.6.7), we are in the situation de-scribed in Definition 1.5.17 and thus we have the following isomorphism of vector

bundles:

(1.6.8)

FRE1

0(E1)?· · ·?FREn

0(En)

×F(E10, . . . , E0n)

CF

F(E1, . . . , En) which is given by:

CF=CF(E1,...,En)◦bF: [(p1, . . . , pn),e]7−→F(p1, . . . , pn)·e.

EXAMPLE 1.6.10. Let M be a differentiable manifold, E01, . . . , E0n be real finite-dimensional vector spaces and consider the trivial vector bundles:

Ei=M×E0i, i= 1, . . . , n.

If F : Vecn → Vec is a smooth functor thenF(E1, . . . , En) can be identified as a set with the trivial vector bundle M ×F(E01, . . . , E0n). Let us show that F(E1, . . . , En) is a trivial vector bundle, i.e., such identification is a vector bun-dle isomorphism. To this aim, we look at the corresponding principal bunbun-dles of frames. The principal bundle ofF(E01, . . . , E0n)-frames ofF(E1, . . . , En)can be identified as a set with the trivial principal bundle:

M×GL F(E01, . . . , E0n) .

We have to check that such identification is an isomorphism of principal bundles.

This follows from the following two observations; first (see Exercise 1.56), the fiberwise product:

FRE1

0(E1)?· · ·?FRE0n(En) = M×GL(E01)

?· · ·? M ×GL(E0n) is identified as a principal bundle with the trivial principal bundle:

M × GL(E01)× · · · ×GL(E0n) .

Second, the map (1.6.6) can be identified with the product of the identity map of M by the map (1.6.7) so that (1.6.6) is smooth when

FRF(E1

0,...,E0n) F(E1, . . . , En)

is identified with the trivial principal bundleM×GL F(E01, . . . , E0n) .

EXAMPLE 1.6.11. LetF : Vec2 → Vecbe the functor that sends an object (V1, V2)toV1⊕V2and a morphism(T1, T2)toT1⊕T2. The functorFis smooth and for any object(V1, V2)ofVec2, the map:

f:gl(V1)⊕gl(V2)−→gl(V1⊕V2) is given by:

f(X1, X2) =X1⊕X2,

for allX1 ∈gl(V1),X2 ∈ gl(V2). Given vector bundlesE1,E2 over a differen-tiable manifoldM then the vector bundleF(E1, E2)will be denoted byE1⊕E2 is will be called theWhitney sumofE1andE2.

1.6. FUNCTORIAL CONSTRUCTIONS WITH VECTOR BUNDLES 63

EXAMPLE1.6.12. LetF :Vec2 → Vecbe the functor that sends(V1, V2)to Lin(V1, V2)and(T1, T2)to:

Lin(V1, V2)3L7−→T2◦L◦T1−1∈Lin(W1, W2),

whereT1 :V1 → W1 andT2 :V2 → W2 are linear isomorphisms. The functorF is smooth and for any object(V1, V2)ofVec2, the map:

f:gl(V1)⊕gl(V2)−→gl Lin(V1, V2) is given by:

f(X1, X2)·L=X2◦L−L◦X1,

for allX1 ∈gl(V1),X2 ∈gl(V2)and allL ∈Lin(V1, V2). Given vector bundles E1,E2overM, the vector bundleF(E1, E2)will be denoted byLin(E1, E2). A fiberwise linear mapL:E1 →E2 can be identified with a sectionx7→Lxof the vector bundleLin(E1, E2). Ifsi :U →FREi

0(Ei)is a smooth localE0i-frame of Ei,i= 1,2, and ifsdenotes the frame ofLin(E1, E2)induced bys1ands2 then the representation of the fiberwise linear mapLwith respect tos1 ands2is equal to the representation of the sectionx7→Lxwith respect tos. It follows thatLis a vector bundle morphism if and only ifx7→Lxis a smooth section ofLin(E1, E2).

From now on we will systematically identify vector bundle morphisms fromE1to E2with smooth sections of Lin(E1, E2).

EXAMPLE 1.6.13. Let k ≥ 1 be fixed and let F : Veck+1 → Vec be the functor that sends (V1, . . . , Vk, W) to Lin(V1, . . . , Vk;W) and that sends linear isomorphismsTi : Vi → Vi0, i = 1, . . . , k, T : W → W0 to the linear isomor-phism:

Lin(V1, . . . , Vk;W)−→Lin(V10, . . . , Vk0;W0) B7−→T ◦B(T1−1·, . . . , Tk−1·).

The functorFis smooth and for any object(V1, . . . , Vk, W)ofVeck+1the map:

f:gl(V1)⊕ · · · ⊕gl(Vk)⊕gl(W)−→gl Lin(V1, . . . , Vk;W) is given by:

f(X1, . . . , Xk, X)·L=X◦L(·, . . . ,·)−L(X1·, . . . ,·)− · · ·

−L(·, . . . , Xk·), for allXi ∈ gl(Vi), i= 1, . . . , k,X ∈ gl(W), L ∈ Lin(V1, . . . , Vk;W). Given vector bundlesE1, . . . ,Ek,FoverM, we will denote the vector bundleF(E1, . . . , Ek, F) byLin(E1, . . . , Ek;F). WhenE1 =· · ·=Ek =E, we writeLink(E, F)rather thanLin(E1, . . . , Ek;F). Sections of the vector bundleLink(T M, F)are called F-valued covariantk-tensor fieldsonM.

EXAMPLE1.6.14. Letk≥1be fixed and letF:Vec2 →Vecbe the functor that sends(V1, V2)toLinsk(V1, V2)and(T1, T2)to:

Linsk(V1, V2)3B 7−→T2◦B(T1−1·, . . . , T1−1·)∈Linsk(W1, W2),

whereT1 : V1 → W1,T2 :V2 → W2 are linear isomorphisms. The functorFis smooth and for any object(V1, V2)ofVec2, the map:

f:gl(V1)⊕gl(V2)−→gl Linsk(V1, V2) is given by:

f(X1, X2)·L=X2◦L(·, . . . ,·)−L(X1·, . . . ,·)− · · · −L(·, . . . , X1·), for allX1 ∈ gl(V1), X2 ∈ gl(V2) and allL ∈ Linsk(V1, V2). Given vector bun-dles E, F over M, the vector bundle F(E, F) will be denoted by Linsk(E, F).

An analogous construction replacing Linsk with Linak gives us the vector bundle Linak(E, F). The sections ofLinsk(T M, F)are calledsymmetricF-valued covari-ant k-tensor fieldson M and the sections of Linak(T M, F) are calledF-valued k-formsonM.

CONVENTION. From now on, when describing smooth functors we will only specify their actions on objects and leave as an exercise to the reader the task of describing their actions on morphisms.

PROPOSITION1.6.15. Letm, n≥1be fixed and let:

F= (F1, . . . ,Fn) :Vecm −→Vecn, G:Vecn−→Vec

be smooth functors6; consider the smooth functor G◦F : Vecm → Vec. Given vector bundlesE1, . . . ,Emover a differentiable manifoldM then:

(1.6.9) (G◦F)(E1, . . . , Em) =G F1(E1, . . . , Em), . . . ,Fn(E1, . . . , Em) . PROOF. Clearly both sides of (1.6.9) are equal as sets; we have to check that the principal bundle structure of their corresponding principal bundles of frames are also the same. Denote byE0ithe typical fiber of the vector bundleEi,i= 1, . . . , m, by Fj = Fj(E01, . . . , E0m) the typical fiber of Fj(E1, . . . , Em), j = 1, . . . , n and byG =G(F1, . . . , Fn)the typical fiber of(G◦F)(E1, . . . , Em). For each j = 1, . . . , n, letFRFj Fj(E1, . . . , Em)

be endowed with the unique principal fiber bundle structure that makes the map:

(1.6.10) Fj : FRE1

0(E1)?· · ·?FREm

0 (Em)−→FRFj Fj(E1, . . . , Em) a morphism of principal bundles and letFRG (G◦F)(E1, . . . , Em)

be endowed with the unique principal bundle structure that makes the map:

(1.6.11)

FRF1 F1(E1, . . . , Em)

?· · ·?FRFn Fn(E1, . . . , Em)

G

FRG (G◦F)(E1, . . . , Em)

a morphism of principal bundles. To conclude the proof, we have to verify that the map:

(1.6.12) G◦F: FRE1

0(E1)?· · ·?FREm

0 (Em)−→FRG (G◦F)(E1, . . . , Em)

6The smoothness ofFmeans that everyFiis smooth.

1.6. FUNCTORIAL CONSTRUCTIONS WITH VECTOR BUNDLES 65

is a morphism of principal bundles. This follows from the universal property of the fiberwise product of principal bundles (Corollary 1.3.27) and from the fact that the composition of morphisms of principal bundles is a morphism of principal bundles

(see Exercise 1.43).

PROPOSITION1.6.16. Letn≥1be fixed and letF:Vecn→Vecbe a smooth functor. LetE1,E1, . . . ,En,Enbe vector bundles over a differentiable manifold M andLi:Ei →Ei,i= 1, . . . , n, be vector bundle isomorphisms. The map:

F(L1, . . . , Ln) :F(E1, . . . , En)−→F(E1, . . . , En)

whose restriction to the fiber F(Ex1, . . . , Exn) is equal to F(L1x, . . . , Lnx), for all x∈M is a vector bundle isomorphism.

PROOF. ClearlyF(L1, . . . , Ln)is fiber preserving, fiberwise linear and bijec-tive. Fori = 1, . . . , n, denote byEi0(resp., byE0i) the typical fiber ofEi (resp., ofEi). Lets1,s¯1, . . . ,sn, ¯sn, be smooth local sections respectively of the prin-cipal bundles of framesFRE1

0(E1),FRE1

0(E1), . . . ,FREn0(En),FREn

0(En), all defined in the same open subsetU ofM. Set:

s=F◦(s1, . . . , sn), ¯s=F◦(¯s1, . . . ,s¯n), so that sis a smooth local section of FRF(E1

0,...,En0) F(E1, . . . , En)

and ¯sis a smooth local section ofFRF(E1

0,...,E0n) F(E1, . . . , En)

. Fori= 1, . . . , n, let:

Lei :U −→Lin(E0i, E0i)

denote the representation of Li with respect to si ands¯i (see Subsection 1.5.2);

since each Li is a morphism of vector bundles, the maps Lei are smooth. Since eachLi is a vector bundle isomorphism, the map Lei actually takes values in the setIso(E0i, E0i)of linear isomorphisms from E0i toE0i. It is easy to see that the representation ofLwith respect tosand¯sis equal to the composition of the map (Le1, . . . ,Len)with the map:

Iso(E01, E01)× · · · ×Iso(E0n, E0n)

F

Iso F(E01, . . . , E0n),F(E01, . . . , E0n)

Such map is smooth (see Exercise 1.66) and hence the representation ofL with respect tosand¯sis smooth. This concludes the proof.

EXAMPLE1.6.17. Letn≥ 1be fixed and letF :Vecn → Vecbe a smooth functor. LetE1, . . . ,Enbe vector bundles over the differentiable manifoldMwith typical fibersE01, . . . ,E0n, respectively. Lets1, . . . ,snbe smooth local sections of the principal bundlesFRE1

0(E1), . . . ,FREn

0(En)respectively, defined in an open

subsetU ofM. IfLi = ˇsi :U×E0i →Ei|Udenotes the smooth local trivialization corresponding tosithenLiis a vector bundle isomorphism and:

F(L1, . . . , Ln) = ˇs, wheres=F◦(s1, . . . , sn) :U →FRF(E1

0,...,E0n) F(E1, . . . , En) .

LetF :Vecn → Vecbe a smooth functor. Given vector bundlesE1, . . . ,En over a differentiable manifoldM and a smooth map f : M0 → M defined in a differentiable manifoldM0then there exists an obvious bijective map:

(1.6.13) fF(E1, . . . , En)−→F(fE1, . . . , fEn).

We have the following:

PROPOSITION1.6.18. Letn≥1be fixed and letF:Vecn→Vecbe a smooth functor. Given vector bundlesE1, . . . ,Enover a differentiable manifoldM and a smooth map f :M0 → M defined in a differentiable manifoldM0 then the map (1.6.13)is an isomorphism of vector bundles.

PROOF. The map (1.6.13) induces a map:

(1.6.14)

FRF(E1

0,...,E0n) fF(E1, . . . , En)

FRF(E1

0,...,E0n) F(fE1, . . . , fEn)

as in the statement of Lemma 1.5.18; the map (1.6.14) is fiber preserving and its restriction to each fiber is a morphism of principal spaces whose subjacent group homomorphism is the identity. We have to show that (1.6.14) is an isomorphism of principal bundles; in fact, by the result of Exercise 1.46, it suffices to show that (1.6.14) is a morphism of principal bundles. Recall from Subsection 1.5.3 that:

FRF(E1

0,...,E0n) fF(E1, . . . , En)

=fFRF(E1

0,...,E0n) F(E1, . . . , En) . By considering the pull-back by f of the morphism of principal bundles (1.6.6) (recall Example 1.3.23) we obtain a morphism of principal bundles:

f FRE1

0(E1)?· · ·?FRE0n(En)

fF

fFRF(E1

0,...,En0) F(E1, . . . , En)

Using the isomorphism of principal bundles described in Lemma 1.3.29 we identify the principal bundles:

(1.6.15) f FRE1

0(E1)?· · ·?FREn

0(En)

1.6. FUNCTORIAL CONSTRUCTIONS WITH VECTOR BUNDLES 67

and:

(1.6.16) fFRE1 0(E1)

?· · ·? fFREn

0(En)

= FRE1

0(fE1)?· · ·?FREn

0(fEn).

We have a commutative diagram:

(1.6.17) FRE1

0(fE1)?· · ·?FREn0(fEn)

fF

F

''O

OO OO OO OO OO O

FRF(E1

0,...,E0n) F(fE1, . . . , fEn) FRF(E1

0,...,E0n) fF(E1, . . . , En)

(1.6.14)pppppppppp77 pp

To conclude that (1.6.14) is a morphism of principal bundles, simply apply

Corol-lary 1.3.12 to such commutative diagram.

1.6.1. Smooth natural transformations.

DEFINITION1.6.19. Letn≥1be fixed and letF,Gbe smooth functors from VecntoVec. By asmooth natural transformationfromFtoGwe mean a ruleN that associates to each object(V1, . . . , Vn)ofVecnan open subsetDom(NV1,...,Vn) ofF(V1, . . . , Vn)and a smooth map:

NV1,...,Vn : Dom(NV1,...,Vn)−→G(V1, . . . , Vn)

in such a way that given objects(V1, . . . , Vn),(W1, . . . , Wn)ofVecnand a mor-phism(T1, . . . , Tn)from(V1, . . . , Vn)to(W1, . . . , Wn)then:

(a) F(T1, . . . , Tn) Dom(NV1,...,Vn)

= Dom(NW1,...,Wn);

(b) the following diagram is commutative:

Dom(NV1,...,Vn) NV1,...,Vn //

F(T1,...,Tn)

G(V1, . . . , Vn)

G(T1,...,Tn)

Dom(NW1,...,Wn)

NW1,...,Wn //G(W1, . . . , Wn)

A smooth natural transformationNfromF toGis said to be linear if for every object(V1, . . . , Vn)ofVecn, we have:

Dom(NV1,...,Vn) =F(V1, . . . , Vn)

and the mapNV1,...,Vn :F(V1, . . . , Vn)→G(V1, . . . , Vn)is linear.

EXAMPLE1.6.20. Consider the smooth functorsF,Gi,i= 1,2, fromVec2to Vecdefined by:

F(V1, V2) =V1⊕V2, Gi(V1, V2) =Vi, i= 1,2.

The rule that assigns to each object(V1, V2)ofVec2the map:

NiV

1,V2 :V1⊕V2 3(v1, v2)7−→vi∈Vi, is a linear smooth natural transformation fromFtoGi,i= 1,2.

EXAMPLE1.6.21. IfF,Giare as in Example 1.6.20 then the rules that assign to each object(V1, V2)ofVec2the maps:

N1V

1,V2 :V1 3v 7−→(v,0)∈V1⊕V2, N2V1,V2 :V2 3v 7−→(0, v)∈V1⊕V2,

are linear smooth natural transformations fromG1 toFand fromG2toF, respec-tively.

EXAMPLE1.6.22. Consider the smooth functorsF,GfromVec2 toVec de-fined by:

F(V1, V2) = Lin(V1, V2), G(V1, V2) = Lin(V2, V1).

The rule that assigns to each object(V1, V2)ofVec2the map:

NV1,V2 : Lin(V1, V2)3T 7−→T∈Lin(V2, V1) is a linear smooth natural transformation fromFtoG.

EXAMPLE1.6.23. Consider the smooth functorsF,GfromVec3 toVec de-fined by:

F(V1, V2, V3) = Lin(V2, V3)⊕Lin(V1, V2), G(V1, V2, V3) = Lin(V1, V3).

The rule that assigns to each object(V1, V2, V3)ofVec3the map:

NV1,V2,V3 : Lin(V2, V3)⊕Lin(V1, V2)3(T, T0)7−→T ◦T0 ∈Lin(V1, V3) is a smooth natural transformation fromFtoG.

EXAMPLE1.6.24. Letk≥1be fixed and consider the smooth functorsF,G fromVeck+1toVecdefined by:

F(V1, . . . , Vk+1) = Lin(V1, . . . , Vk;Vk+1)⊕V1⊕ · · · ⊕Vk, G(V1, . . . , Vk+1) =Vk+1.

The rule that assigns to each object(V1, . . . , Vk+1)ofVeck+1the mapNV1,...,Vk+1 defined by:

Lin(V1, . . . , Vk;Vk+1)⊕V1⊕ · · · ⊕Vk −→Vk+1

(B, v1, . . . , vk)7−→B(v1, . . . , vk) is a smooth natural transformation fromFtoG.

1.6. FUNCTORIAL CONSTRUCTIONS WITH VECTOR BUNDLES 69

EXAMPLE1.6.25. Letk≥1be fixed and consider the smooth functorsFfrom Veck+2 toVecdefined by:

F(V1, . . . , Vk+2) = Lin(Vk+1, Vk+2)⊕Lin(V1, . . . , Vk;Vk+1), G(V1, . . . , Vk+2) = Lin(V1, . . . , Vk;Vk+2).

The rule that assigns to each object(V1, . . . , Vk+2)ofVeck+2the mapNV1,...,Vk+2 defined by:

Lin(Vk+1, Vk+2)⊕Lin(V1, . . . , Vk;Vk+1)−→Lin(V1, . . . , Vk;Vk+2) (L, B)7−→L◦B

is a smooth natural transformation fromFtoG.

EXAMPLE1.6.26. Consider the smooth functorsF,GfromVec2 toVec de-fined by:

F(V1, V2) = Lin(V1, V2), G(V1, V2) = Lin(V2, V1).

Given real vector spacesV1, V2, we denote by Iso(V1, V2) the (possibly empty) subset ofLin(V1, V2) consisting of linear isomorphisms. The rule that assigns to each object(V1, V2)ofVec2the map:

NV1,V2 : Iso(V1, V2)3T 7−→T−1∈Lin(V2, V1) is a smooth natural transformation fromFtoG.

EXAMPLE1.6.27. Consider the smooth functorsF,GfromVectoVecdefined by:

F(V) = Lin(V), G(V) =R. The rule that assigns to each objectV ofVecthe map:

NV : Lin(V)3T 7−→det(T)∈R is a smooth natural transformation fromFtoG.

Given smooth functorsF,GfromVecntoVec, a smooth natural transforma-tionNfromFtoGand vector bundlesE1, . . . ,Enover a differentiable manifold M thenNinduces a map:

(1.6.18) NE1,...,En : Dom(NE1,...,En)−→G(E1, . . . , En), where:

Dom(NE1,...,En) = [

x∈M

Dom(NE1

x,...,Enx)⊂F(E1, . . . , En).

The mapNE1,...,En is defined by the requirement that for eachx ∈M, its restric-tion toDom(NEx1,...,Exn)is equal toNE1

x,...,Enx.

PROPOSITION1.6.28. Letn≥ 1be fixed. Given smooth functorsF,Gfrom Vecn to Vec, a smooth natural transformation N from F toG and vector bun-dles E1, . . . , En over a differentiable manifold M then Dom(NE1,...,En) is an open subset of the total space of the vector bundleF(E1, . . . , En) and the map NE1,...,En is smooth. In particular, ifNis linear thenNE1,...,Enis a vector bundle morphism.

PROOF. Denote byE0i the typical fiber ofEi,i= 1, . . . , n. The naturality of Nimplies that the open subsetDom(NE1

0,...,E0n)of the vector spaceF(E01, . . . , E0n) is invariant under the representation (1.6.7) so that, by Lemma 1.4.11, the fiber product:

(1.6.19) FRE1

0(E1)?· · ·?FRE0n(En)

×Dom(NE1

0,...,E0n) is an open submanifold of:

FRE1

0(E1)?· · ·?FRE0n(En)

×F(E01, . . . , E0n).

It follows easily from the naturality ofNthat the vector bundle isomorphism (1.6.8) carries (1.6.19) toDom(NE1,...,En), soDom(NE1,...,En)is indeed an open subset ofF(E1, . . . , En). The naturality ofNalso implies that the diagram:

(1.6.20)

P ×Dom(NE1

0,...,E0n)

CF =

IdP×NE1 0,...,En

0 //P ×G(E01, . . . , E0n)

= CG

Dom(NE1,...,En)

NE1,...,En

//G(E1, . . . , En) commutes, where P = FRE1

0(E1) ? · · ·? FREn

0(En). The fact that the map NE1,...,En is smooth now follows from the fact that the map IdP × NE1

0,...,En0 is

smooth (Lemma 1.4.11).

EXAMPLE1.6.29. LetE1,E2be vector bundles over a differentiable manifold M and consider the Whitney sum E1⊕E2. Applying Proposition 1.6.28 to the linear smooth natural transformations described in Examples 1.6.20 and 1.6.21 we conclude that the projectionspri : E1⊕E2 → Ei and the inclusionsιi : Ei → E1 ⊕ E2, i = 1,2, are vector bundle morphisms. This implies the following property: ifis a section ofE1⊕E2andi = pri◦,i= 1,2, are thecoordinates ofthenis smooth if and only if1and2are smooth. Namely, ifis smooth then obviously1and2are smooth, because the projections are smooth; conversely, if 1 and2 are smooth then= ι1122. See Exercises 1.70 and 1.71 for more basic results concerning Whitney sums.

REMARK1.6.30. Letπ :E → M be a vector bundle andE1,E2 be vector subbundles ofEsuch thatEx =Ex1⊕Ex2, for allx∈M; denote byji :Ei →E, i= 1,2, the inclusion maps. Consider the Whitney sumE1⊕E2 and denote by ιi :Ei → E1⊕E2,i= 1,2, the inclusion maps. By the result of Exercise 1.70, there exists a unique vector bundle morphismj:E1⊕E2→Esuch thatj◦ιi =ji, i= 1,2. Clearlyjis a vector bundle isomorphism. We will use the isomorphismj to identify the vector bundleEwith the Whitney sumE1⊕E2. Thus, ifE1,E2are vector subbundles of a vector bundleEsuch thatEx =Ex1⊕Ex2, for allx ∈M, we will writeE =E1⊕E2.

EXAMPLE1.6.31. LetE1, . . . ,Ek,F be vector bundles over a differentiable manifold M, B be a smooth section of Lin(E1, . . . , Ek;F) and i be a smooth section ofEi, i = 1, . . . , k. Applying Proposition 1.6.28 to the smooth natural

1.6. FUNCTORIAL CONSTRUCTIONS WITH VECTOR BUNDLES 71

transformation of Example 1.6.24 we obtain that the section B(1, . . . , k) ofF defined by:

B(1, . . . , k)(x) =Bx 1(x), . . . , k(x)

, x∈M, is smooth. Namely, the map:

NE1,...,Ek+1 : Lin(E1, . . . , Ek;Ek+1)⊕E1⊕ · · · ⊕Ek −→Ek+1 is smooth and:

B(1, . . . , k) =NE1,...,Ek,F ◦(B, 1, . . . , k).

Recall also that(B, 1, . . . , k) is smooth (Example 1.6.29). Thus, every smooth sectionB ofLin(E1, . . . , Ek;F)defines aC(M)-multilinear map:

Γ(E1)× · · · ×Γ(Ek)3(1, . . . , k)7−→B(1, . . . , k)∈Γ(F).

The result of Exercises 1.63 and 1.72 says that, conversely, every C (M)-mul-tilinear map from Γ(E1)× · · · ×Γ(Ek) toΓ(F)is defined by a unique smooth sectionB ofLin(E1, . . . , Ek;F). In view of this correspondence we will be al-lowed to identify smooth sections ofLin(E1, . . . , Ek;F) with the corresponding C(M)-multilinear maps.

EXAMPLE1.6.32. LetE1, . . . ,Ek,F,F0 be vector bundles over a differen-tiable manifold M, B be a section of Lin(E1, . . . , Ek;F) andL : F → F0 be a vector bundle morphism. Recall from Example 1.6.12 that we identifyL with the smooth sectionx 7→ Lx ofLin(F, F0). We will denote (with some abuse of notation) byL◦B the section ofLin(E1, . . . , Ek;F0)defined by:

(L◦B)(x) =Lx◦B(x),

for allx∈ M. We claim that ifB is smooth then alsoL◦B is smooth. Namely, by Example 1.6.29,(L, B)is a smooth section of the Whitney sum:

Lin(F, F0)⊕Lin(E1, . . . , Ek;F).

IfNis the smooth natural transformation defined in Example 1.6.25 then:

L◦B =NE1,...,Ek,F,F0◦(L, B), and thereforeL◦B is smooth by Proposition 1.6.28.

EXAMPLE 1.6.33. Given real finite-dimensional vector spaces V1, . . . , Vk, Vk+1, . . . ,Vk+p,W then we have a linear isomorphism:

Lin V1, . . . , Vk; Lin(Vk+1, . . . , Vk+p;W)

−→Lin(V1, . . . , Vk+p;W) B7−→Be

(1.6.21) defined by:

Be(v1, . . . , vk, vk+1, . . . , vk+p) =B(v1, . . . , vk)·(vk+1, . . . , vk+p)∈W, for allv1 ∈V1, . . . ,vk+p ∈Vk+p. The linear isomorphism (1.6.21) defines a linear smooth natural transformation between smooth functors and therefore, given vector

bundlesE1, . . . ,Ek+p,F over a differentiable manifoldM, as an application of Proposition 1.6.28 we get an isomorphism of vector bundles:

Lin E1, . . . , Ek; Lin(Ek+1, . . . , Ek+p;F)

−→Lin(E1, . . . , Ek+p;F).

We will henceforth identify the vector bundles:

Lin E1, . . . , Ek; Lin(Ek+1, . . . , Ek+p;F)

, Lin(E1, . . . , Ek+p;F) using such isomorphism.