• Nenhum resultado encontrado

A genotipagem dos SNPs foi realizada através de sondas alelo específicas fluorescentes (TaqMan®, Life), utilizando os seguintes ensaios: C_8921230_20 (rs1800692), C_2298465_20 (rs767455), C_7514879_10 (rs1800629), C_7701116_10 (rs2230926) e C_145670_10 (rs8904). Os ensaios foram preparados conforme recomendações do fabricante. As amostras foram corridas utilizando a plataforma para PCR em tempo real ABI-7500 (Life Technologies).

3.5 Análises Estatísticas

Após a genotipagem de ambos os grupos controle e caso, foram calculadas as frequências alélicas e genotípicas, por contagem direta. Para avaliar o equilíbrio de Hardy-Weinberg e as

possíveis associações foram utilizados, respectivamente, o Teste Qui-quadrado e o Teste Exato de Fisher utilizando o pacote SNPassoc (GONZÁLEZ et al., 2007) disponível no programa R (http://www.r-project.org). Também utilizando as ferramentas do R, foram calculadas a Odds Ratio (OR) e o intervalo de confiança para 95% (IC95%). Em todas as análises, p-values < 0.05 foram considerados estatisticamente significantes.

O desequilíbrio de ligação e a formação de possíveis blocos haplotípicos e/ou combinação de alelos foram verificados através do programa Haploview versão 4.2 (BARRETT et al., 2005) e pelo SNPstats (SOLÉ et al., 2006).

Adicionalmente, foi calculado o poder do estudo por meio do programa G*power versão 3.1(FAUL et al., 2007)

4 RESULTADOS

Todos os resultados obtidos no presente trabalho estão detalhados em forma de artigo (Apêndice A)

5 CONSIDERAÇÕES FINAIS

Apesar do processo apoptótico ser o principal mecanismo envolvido na depleção de LT CD4+, conduzindo a falha imunológica, a presença de SNPs em genes da via do TNF-α/TNFR1, estudados no presente trabalho, não se mostraram associados à resposta a TARV. Havendo assim, a necessidade de novos estudos com maior número de indivíduos e com a adição de novos genes da via e um maior número de SNPs, visando esclarecer o real papel dessas variações no processo de falha imunológica em indivíduos com uso regular de TARV.

REFERÊNCIAS

ABBASI, A.; FORSBERG, K.; BISCHOF, F. The role of the ubiquitin-editing enzyme A20 in diseases of the central nervous system and other pathological processes. Front Mol

Neurosci, v. 8, p. 21, 2015.

AGHOKENG, A. F. et al. Extensive survey on the prevalence and genetic diversity of SIVs in primate bushmeat provides insights into risks for potential new cross-species transmissions.

Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases, v. 10, n. 3, p. 386–96, 2010.

APETREI, C. et al. Molecular epidemiology of simian immunodeficiency virus SIVsm in U.S. primate centers unravels the origin of SIVmac and SIVstm. Journal of virology, v. 79, n. 14, p. 8991–9005, 2005.

ARRILDT, K. T.; JOSEPH, S. B.; SWANSTROM, R. The HIV-1 env protein: a coat of many colors. Current HIV/AIDS reports, v. 9, n. 1, p. 52–63, 2012.

BAROUCH, D. H.; DEEKS, S. G. Immunologic strategies for HIV-1 remission and eradication. Science (New York, N.Y.), v. 345, n. 6193, p. 169–74, 2014.

BARRÉ-SINOUSSI, F. et al. Isolation of a T-Lymphotropic Retrovirus from a Patient at Risk for Acquired Immune Deficiency Syndrome ( AIDS ) Isolation of a T-Lymphotropic

Retrovirus from a Patient at Risk for Acquired Immune Deficiency Syndrome ( AIDS ).

Science, v. 220, n. 4599, p. 868–871, 1983.

BARRETT, J. C. et al. Haploview: Analysis and visualization of LD and haplotype maps.

Bioinformatics, v. 21, p. 263–265, 2005.

BASMACIOGULLARI, S.; PIZZATO, M. The activity of Nef on HIV-1 infectivity.

Frontiers in Microbiology, v. 5, n. MAY, p. 1–12, 2014.

BERTRAND, M. J. M. et al. cIAP1 and cIAP2 Facilitate Cancer Cell Survival by Functioning as E3 Ligases that Promote RIP1 Ubiquitination. Molecular Cell, v. 30, n. 6, p. 689–700, 2008.

BORROW, P. Innate immunity in acute HIV-1 infection. Current Opinion in HIV and

AIDS, v. 6, n. 5, p. 353–363, 2011.

BRANSON, B. M.; MERMIN, J. Establishing the diagnosis of HIV infection: new tests and a new algorithm for the United States. Journal of clinical virology : the official publication of

the Pan American Society for Clinical Virology, v. 52 Suppl 1, p. S3–4, 2011.

BRENCHLEY, J. M. et al. CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. The Journal of experimental medicine, v. 200, n. 6, p. 749–59, 2004.

BRIONES, M. S.; DOBARD, C. W.; CHOW, S. A. Role of human immunodeficiency virus type 1 integrase in uncoating of the viral core. Journal of virology, v. 84, n. 10, p. 5181–90, 2010.

BUCCIGROSSI, V. et al. The HIV-1 transactivator factor (Tat) induces enterocyte apoptosis through a redox-mediated mechanism. PloS one, v. 6, n. 12, p. e29436, 2011.

CABAL-HIERRO, L.; LAZO, P. S. Signal transduction by tumor necrosis factor receptors.

Cellular Signalling, v. 24, n. 6, p. 1297–1305, 2012.

CATRYSSE, L. et al. A20 in inflammation and autoimmunity. Trends in immunology, v. 35, n. 1, p. 22–31, 2014.

CHAN, F. K. et al. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science (New York, N.Y.), v. 288, n. 5475, p. 2351–2354, 2000. CLAVEL, F. et al. Isolation of a new human retrovirus from West African patients with AIDS. Science, v. 233, n. 4761, p. 343–346, 1986.

COHEN, M. S. et al. Acute HIV-1 Infection. The New England journal of medicine, v. 364, n. 20, p. 1943–1954, 2011.

CORNETT, J. K.; KIRN, T. J. Laboratory diagnosis of HIV in adults: a review of current methods. Clinical infectious diseases : an official publication of the Infectious Diseases

Society of America, v. 57, n. 5, p. 712–8, 2013.

COURGNAUD, V.; MULLER-TRUTWIN, M.; SONIGO, P. [Evolution and virulence of primate lentiviruses]. Med Sci (Paris), v. 20, n. 4, p. 448–452, 2004.

COX, D. G.; CANZIAN, F. Genotype transposer: automated genotype manipulation for linkage disequilibrium analysis. Bioinformatics (Oxford, England), v. 17, n. 8, p. 738–739, 2001.

CRESSEY, T. R.; LALLEMANT, M. Pharmacogenetics of antiretroviral drugs for the

treatment of HIV-infected patients: An update. Infection, Genetics and Evolution, v. 7, n. 2, p. 333–342, 2007.

CUMMINS, N. W.; BADLEY, A. D. Making sense of how HIV kills infected CD4 T cells: implications for HIV cure. Molecular and Cellular Therapies, v. 2, n. 20, p. 1–7, 2014. DANIEL, M. D. et al. Isolation of T-cell tropic HTLV-III-like retrovirus from macaques.

Science (New York, N.Y.), v. 228, n. 4704, p. 1201–4, 1985.

DASKALAKIS, D. HIV diagnostic testing: evolving technology and testing strategies.

Topics in antiviral medicine, v. 19, n. 1, p. 18–22, 2011.

DE LEYS, R. et al. Isolation and partial characterization of an unusual human

immunodeficiency retrovirus from two persons of west-central African origin. Journal of

virology, v. 64, n. 3, p. 1207–16, 1990.

atherosclerotic risk in HIV-infected never-smokers independent of antiretroviral therapy.

AIDS (London, England), v. 27, n. 16, p. 2603–14, 2013.

DIEGUEZ-GONZALEZ, R. et al. Analysis of TNFAIP3, a feedback inhibitor of nuclear factor-kappaB and the neighbor intergenic 6q23 region in rheumatoid arthritis susceptibility.

Arthritis research & therapy, v. 11, n. 2, p. R42, 2009.

DIOP, G. et al. Genomic approach of AIDS pathogenesis: exhaustive genotyping of the TNFR1 gene in a French AIDS cohort. Biomedicine & pharmacotherapy = Biomédecine &

pharmacothérapie, v. 59, n. 8, p. 474–80, set. 2005.

DOUEK, D. C.; PICKER, L. J.; KOUP, R. A. T cell dynamics in HIV-1 infection. Annual

review of immunology, v. 21, p. 265–304, 2003.

DRONDA, F. et al. Long-term outcomes among antiretroviral-naive human

immunodeficiency virus-infected patients with small increases in CD4+ cell counts after successful virologic suppression. Clinical infectious diseases : an official publication of the

Infectious Diseases Society of America, v. 35, n. 8, p. 1005–9, out. 2002.

DUTERTRE, C. A. et al. Pivotal role of M-DC8+ monocytes from viremic HIV-infected patients in TNFα overproduction in response to microbial products. Blood, v. 120, n. 11, p. 2259–2268, 2012.

ENDRES, R. et al. Apparently Normal Tumor Necrosis Factor Receptor 1 Signaling in the Absence of the Silencer of Death Domains. Molecular And Cellular Biology, v. 23, n. 18, p. 6609–6617, 2003.

FAUL, F. et al. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior research methods, v. 39, n. 2, p. 175–91, maio 2007.

FRIEDRICH, B. M. et al. Host factors mediating HIV-1 replication. Virus Research, v. 161, n. 2, p. 101–114, 2011.

FULTZ, P. N. et al. Isolation of a T-lymphotropic retrovirus from naturally infected sooty mangabey monkeys (Cercocebus atys). Proceedings of the National Academy of Sciences

of the United States of America, v. 83, n. 14, p. 5286–90, 1986.

GERETTI, A. M. HIV-1 subtypes: epidemiology and significance for HIV management.

Current opinion in infectious diseases, v. 19, p. 1–7, 2006.

GIORDANO, M. et al. The tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20) imposes a brake on antitumor activity of CD8 T cells. Proceedings of the National Academy

of Sciences USA, v. 111, n. 30, p. 11115–20, 2014a.

GIORDANO, M. et al. The tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20) imposes a brake on antitumor activity of CD8 T cells. Proceedings of the National Academy

GONZÁLEZ, J. R. et al. SNPassoc: an R package to perform whole genome association studies. Bioinformatics (Oxford, England), v. 23, n. 5, p. 644–5, mar. 2007.

GONZALEZ, S. M.; ZAPATA, W.; RUGELES, M. T. Role of Regulatory T Cells and Inhibitory Molecules in the Development of Immune Exhaustion During Human

Immunodeficiency Virus Type 1 Infection. Viral immunology, v. 29, n. 1, p. 2–10, 2016. GORRY, P. R.; ANCUTA, P. Coreceptors and HIV-1 pathogenesisCurrent HIV/AIDS

Reports, 2011.

GOUGEON, M. L. et al. Programmed cell death in peripheral lymphocytes from HIV-

infected persons: increased susceptibility to apoptosis of CD4 and CD8 T cells correlates with lymphocyte activation and with disease progression. J Immunol, v. 156, p. 3509–20., 1996. GOUGEON, M.-L.; LEDRU, É.; LECCEUR, H. Apoptose et sida. Annales de l’Institut

Pasteur / Actualités, v. 11, n. 3, p. 49–61, jul. 2000.

GRANDGENETT, D. P. et al. Multifunctional facets of retrovirus integrase. World Journal

of Biological Chemistry, v. 6, n. 3, p. 83–94, 2015.

GURTLER, L. G. et al. A new subtype of human immunodeficiency virus type 1 (MVP- 5180) from Cameroon. Journal of virology, v. 68, n. 3, p. 1581–1585, 1994.

HAHN, B. H. et al. AIDS as a zoonosis: scientific and public health implications. Science

(New York, N.Y.), v. 287, n. 5453, p. 607–14, 28 jan. 2000.

HAYDEN, M. S.; GHOSH, S. NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes & development, v. 26, n. 3, p. 203–34, 2012.

HEMELAAR, J. The origin and diversity of the HIV-1 pandemic. Trends in molecular

medicine, v. 18, n. 3, p. 182–92, 2012.

HOLM, G. H.; GABUZDA, D. Distinct mechanisms of CD4+ and CD8+ T-cell activation and bystander apoptosis induced by human immunodeficiency virus type 1 virions. J Virol, v. 79, n. 10, p. 6299–6311, 2005.

HU, D. J. et al. The emerging genetic diversity of HIV. The importance of global surveillance for diagnostics, research, and prevention. JAMA: the journal of the American Medical

Association, v. 275, n. 3, p. 210–6, 1996.

HUTCHINSON, J. F. T HE B IOLOGY AND E VOLUTION OF HIV. Annual Review of

Anthropology, v. 30, n. 1, p. 85–108, 28 out. 2001.

IGNEY, F. H.; KRAMMER, P. H. Death and anti-death: tumour resistance to apoptosis.

Nature reviews. Cancer, v. 2, n. 4, p. 277–288, 2002.

ISRAËL, A. The IKK complex, a central regulator of NF-kappaB activation. Cold Spring

Harbor perspectives in biology, v. 2, n. 3, p. a000158, 2010.

JAKOBSEN, M. R. et al. Viral tropism, fitness and pathogenicity of HIV-1 subtype C.

KANKI, P. J. et al. Serologic identification and characterization of a macaque T-lymphotropic retrovirus closely related to HTLV-III. Science, v. 228, p. 1199–1201, 1985.

KASER, A.; TILG, H. Inflammatory bowel diseases: highlights from the United European Gastroenterology Week 2008. Expert opinion on therapeutic targets, v. 13, n. 2, p. 259– 263, 2009.

KAUR, G. et al. Genomic architecture of HIV-1 infection: Current status &

challengesIndian Journal of Medical Research, 2013.

KELLY, C. et al. Expression of the nuclear factor-κB inhibitor A20 is altered in the cystic fibrosis epithelium. Eur Respir J, v. 41, n. 6, p. 1315–1323, 2013.

KHAITAN, A.; UNUTMAZ, D. Revisiting immune exhaustion during HIV infection.

Current HIV/AIDS reports, v. 8, n. 1, p. 4–11, 2011.

KOGAN, M.; RAPPAPORT, J. HIV-1 accessory protein Vpr: relevance in the pathogenesis of HIV and potential for therapeutic intervention. Retrovirology, v. 8, p. 25, 2011.

KORBER, B. et al. Timing the ancestor of the HIV-1 pandemic strains. Science (New York,

N.Y.), v. 288, n. 5472, p. 1789–1796, 2000.

KREBS, S. J.; ANANWORANICH, J. Immune activation during acute HIV infection and the impact of early antiretroviral therapy. Current Opinion in HIV and AIDS, v. 10, p. 1–10, 2015.

KUMAR, V. et al. Fundamentos de Robbins & Cotran - Patologia: Bases Patológicas das

Doenças. [s.l: s.n.]. v. 41, 2010.

LE MOING, V. et al. Long-term evolution of CD4 count in patients with a plasma HIV RNA persistently <500 copies/mL during treatment with antiretroviral drugs. HIV Med, v. 8, n. 3, p. 156–163, 2007.

LI, J.; YIN, Q.; WU, H. Structural basis of signal transduction in the TNF receptor

superfamily. [s.l: s.n.]. v. 119

LYLES, R. H. et al. Natural history of human immunodeficiency virus type 1 viremia after seroconversion and proximal to AIDS in a large cohort of homosexual men. Multicenter AIDS Cohort Study. The Journal of infectious diseases, v. 181, n. 3, p. 872–880, 2000. MA, A.; MALYNN, B. A. A20: linking a complex regulator of ubiquitylation to immunity and human disease. Nat Rev Immunol, v. 12, n. 11, p. 774–785, 2012.

MAKVANDI-NEJAD, S.; ROWLAND-JONES, S. How does the humoral response to HIV-2 infection differ from HIV-1 and can this explain the distinct natural history of infection with these two human retroviruses? Immunology letters, v. 163, n. 1, p. 69–75, 2015.

MARCHETTI, G. et al. Immune reconstitution in HIV+ subjects on lopinavir/ritonavir-based HAART according to the severity of pre-therapy CD4+. Curr HIV Res, v. 10, p. 597–605, 2012.

MASCIOTRA, S. et al. Evaluation of an alternative HIV diagnostic algorithm using

specimens from seroconversion panels and persons with established HIV infections. Journal

of Clinical Virology, v. 52, n. SUPPL. 1, p. S17–S22, 2011.

MATTAPALLIL, J. J. et al. Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature, v. 434, n. 7037, p. 1093–1097, 2005.

MAUCLÈRE, P. et al. Serological and virological characterization of HIV-1 group O infection in Cameroon. AIDS (London, England), v. 11, n. 4, p. 445–53, 1997.

MBITA, Z.; HULL, R.; DLAMINI, Z. Human Immunodeficiency Virus-1 (HIV-1)-Mediated Apoptosis: New Therapeutic Targets. Viruses, v. 6, p. 3181–3227, 2014.

MILLER, S. A.; DYKES, D. D.; POLESKY, H. F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research, v. 16, n. 3, p. 1215, 1988.

MINISTÉRIO DA SAÚDE/BRASIL. Protocolo Clínico e Diretrizes Terapêuticas para

Manejo da Infecção pelo HIV em crianças e adolescentesMinistério da Saúde/Brasil.

Brasília: [s.n.]. Disponível em:

<http://www.aids.gov.br/sites/default/files/anexos/publicacao/2014/55939/08_05_2014_proto colo_pediatrico_pdf_36225.pdf>.

MINISTÉRIO DA SAÚDE/BRASIL. Boletim Epidemiológico HIV-AIDS. [s.l: s.n.]. MOIR, S.; CHUN, T.-W.; FAUCI, A. S. Pathogenic mechanisms of HIV disease. Annual

review of pathology, v. 6, p. 223–248, 2011.

MOIR, S.; FAUCI, A. S. B cells in HIV infection and disease. Nature reviews.

Immunology, v. 9, n. 4, p. 235–45, 2009.

MOYO, S. et al. Identifying Recent HIV Infections: From Serological Assays to Genomics.

Viruses, v. 7, n. 10, p. 5508–5524, 2015.

MURPHY, G.; AITKEN, C. HIV testing-The perspective from across the pond. Journal of

Clinical Virology, v. 52, n. SUPPL. 1, p. S71–S76, 2011.

NORBURY, C. J.; HICKSON, I. D. Cellular responses to DNA damage. Annual review of

pharmacology and toxicology, v. 41, p. 367–401, 2001.

OWEN, S. M. et al. Alternative algorithms for human immunodeficiency virus infection diagnosis using tests that are licensed in the United States. Journal of clinical microbiology, v. 46, n. 5, p. 1588–95, 2008.

OWEN, S. M. Testing for acute HIV infection: implications for treatment as prevention.

Current opinion in HIV and AIDS, v. 7, n. 2, p. 125–30, 2012.

PAIARDINI, M.; MÜLLER-TRUTWIN, M. HIV-associated chronic immune activation.

Immunological Reviews, v. 254, n. 1, p. 78–101, 2013.

(London, England), v. 11, n. 4, p. 493–498, 1997.

PEETERS, M.; D’ARC, M.; DELAPORTE, E. Origin and diversity of human retroviruses.

AIDS Reviews, v. 16, n. 1, p. 23–34, 2014.

PICKER, L. J. et al. Insufficient production and tissue delivery of CD4+ memory T cells in rapidly progressive simian immunodeficiency virus infection. The Journal of experimental

medicine, v. 200, n. 10, p. 1299–314, 2004.

PITRAK, D. L. et al. Apoptosis Pathways in HIV-1-Infected Patients Before and After Highly Active Antiretroviral Therapy: Relevance to Immune Recovery. AIDS research and human

retroviruses, v. 30, n. 00, p. 1–9, 11 nov. 2014.

PLANTIER, J.-C. et al. A new human immunodeficiency virus derived from gorillas. Nature

medicine, v. 15, p. 871–872, 2009.

RAJASURIAR, R. et al. Persistent immune activation in chronic HIV infection: do any interventions work? AIDS (London, England), v. 27, n. 8, p. 1199–208, 2013.

REEVES, J. D.; DOMS, R. W. Human immunodeficiency virus type 2. Journal of General

Virology, v. 83, p. 1253–1265, 2002.

REEVES, R. K. et al. CD16- natural killer cells: Enrichment in mucosal and secondary lymphoid tissues and altered function during chronic SIV infection. Blood, v. 115, n. 22, p. 4439–4446, 2010.

RIBEIRO, R. M. et al. In vivo dynamics of T cell activation, proliferation, and death in HIV-1 infection: why are CD4+ but not CD8+ T cells depleted? Proceedings of the National

Academy of Sciences of the United States of America, v. 99, n. 24, p. 15572–15577, 2002.

RULAND, J.; MAK, T. W. Transducing signals from antigen receptors to nuclear factor kappaB. Immunological reviews, v. 193, p. 93–100, 2003.

SAIDAKOVA, E. V et al. T cell apoptosis in HIV-infected patients with incomplete immune recovery after antiretroviral therapy. Doklady biological sciences : proceedings of the

Academy of Sciences of the USSR, Biological sciences sections / translated from Russian,

v. 450, n. 1, p. 189–91, 2013.

SAUCE, D.; ELBIM, C.; APPAY, V. Monitoring cellular immune markers in HIV infection: from activation to exhaustion. Current opinion in HIV and AIDS, v. 8, n. 2, p. 125–31, 2013.

SENNIKOV, S. V et al. Polymorphisms in the tumor necrosis factor receptor genes affect the expression levels of membrane-bound type I and type II receptors. Mediators of

inflammation, v. 2014, p. 745909, 2014.

SHARP, P. M.; HAHN, B. H. Origins of HIV and the AIDS pandemic. Cold Spring Harbor

perspectives in medicine, v. 1, n. 1, p. a006841, 2011.

Immune Activation in Rectal Mucosae of HIV-Positive Noncontrollers. Journal of Virology, v. 85, n. 21, p. 11422–11434, 2011.

SIMON, F. et al. Identification of a new human immunodeficiency virus type 1 distinct from group M and group O. Nature medicine, v. 4, n. 9, p. 1032–1037, 1998.

SOLÉ, X. et al. SNPStats: a web tool for the analysis of association studies. Bioinformatics

(Oxford, England), v. 22, n. 15, p. 1928–9, 1 ago. 2006.

TANG, M. W.; SHAFER, R. W. HIV-1 antiretroviral resistance: Scientific principles and clinical applications. Drugs, v. 72, n. 9, p. 1–25, 2012.

UNAIDS. AIDS by the numbers 2015. [s.l: s.n.]. Disponível em: <http://search.unaids.org>. UNAIDS. GLOBAL AIDS RESPONSE PROGRESS REPORTING 2015. [s.l: s.n.]. VALLARI, A. et al. Four new HIV-1 group N isolates from Cameroon: Prevalence continues to be low. AIDS research and human retroviruses, v. 26, n. 1, p. 109–115, 2010.

VALLARI, A. et al. Confirmation of putative HIV-1 group P in Cameroon. Journal of

virology, v. 85, n. 3, p. 1403–1407, 2011.

WAHEED, A. A.; FREED, E. O. HIV Type 1 Gag as a Target for Antiviral Therapy. AIDS

Research and Human Retroviruses, v. 28, n. 1, p. 54–75, 2012.

WAJANT, H.; SCHEURICH, P. TNFR1-induced activation of the classical NF-κB pathway.

The FEBS journal, v. 278, n. 6, p. 862–76, 2011.

WANG, L.; DU, F.; WANG, X. TNF-?? Induces Two Distinct Caspase-8 Activation Pathways. Cell, v. 133, n. 4, p. 693–703, 2008.

WANG, X. et al. HIV-1 and HIV-2 infections induce autophagy in Jurkat and CD4+ T cells.

Cellular signalling, v. 24, n. 7, p. 1414–9, 2012.

WATERS, J. P.; POBER, J. S.; BRADLEY, J. R. Tumour necrosis factor in infectious disease. The Journal of pathology, v. 230, n. 2, p. 132–47, 2013.

WERTZ, I. E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF- kB signalling. Nature, v. 430, n. 7000, p. 694–699, 2004.

WIERCIŃSKA-DRAPALO, A. et al. Increased plasma transforming growth factor-beta1 is associated with disease progression in HIV-1-infected patients. Viral immunology, v. 17, n. 1, p. 109–113, 2004.

WILEN, C. B.; TILTON, J. C.; DOMS, R. W. HIV: Cell Binding and Entry. Cold Spring

Harbor Perspectives in Medicine, v. 2, n. 8, p. a006866–a006866, 2012.

WOROBEY, M. et al. Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960.

Nature, v. 455, n. 7213, p. 661–664, 2008.

XU, F. et al. Association of TNF-α, TNFRSF1A and TNFRSF1B gene polymorphisms with the risk of sporadic breast cancer in northeast Chinese Han women. PloS one, v. 9, n. 7, p.

e101138, 2014.

ZIDI, S. et al. Involvement of Toll-like receptors in cervical cancer susceptibility among Tunisian women. Bull Cancer, v. 101, n. 10, p. e31–5, 2014.

APÊNDICE A

Polimorfismos de base única em genes da via TNF-α/TNFR1 e a resposta ao tratamento antirretroviral na infecção pelo vírus HIV-1

Maria Leonilda Gondim Silvaa,b, Ronaldo Celerino da Silvab, Antonio Victor Campos Coelhob,c, Paulo Sérgio Ramos de Araújod, Neyla Maria Pereira Alvesb , Lucas André Cavalcanti Brandãoa,b*

aDepartamento de Patologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brasil.

bLaboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco,Recife, Pernambuco, Brasil

cDepartmento de Genética, Universidade Federal de Pernambuco, Recife, Pernambuco, Brasil. dHospital das Clinícas (HC-UFPE), Universidade Federal de Pernambuco, Recife, Pernambuco, Brasil.

*Autor Correspondente:

Dr. Lucas André Cavalcanti Brandão

Departamento de Patologia – Universidade Federal de Pernambuco

Av. Prof. Moraes Rego, S/N, Cidade Universitária. CEP: 50670-901. Recife, Pernambuco, Brasil. Telefone: +55 8121268484 e fax: +55 8121268485.

E-mail: lucabrand@gmail.com

Resumo

A infecção pelo Vírus da Imunodeficiência Humana 1 (HIV-1) tem como característica clássica a depleção de linfócitos T (LT) CD4+, que quando não tratada culmina na Síndrome da Imunodeficiência Adquirida (AIDS). Com o advento da Terapia Antirretroviral (TARV), observou-se uma verdadeira revolução. A TARV, apesar de não eliminar o vírus, consegue manter a carga viral em níveis indetectáveis, melhorando a qualidade de vida dos indivíduos infectados. No entanto, 15-30% dos indivíduos em uso regular de TARV e com carga viral indetectável não conseguem recuperar os níveis de LT CD4+ (Recuperação Imunológica).

Estudos apontam que a apoptose está envolvida na depleção dos LT CD4+ e que variações genéticas como polimorfismos de base única (SNPs) em moléculas envolvidas nas vias da apoptose podem levar a diferentes respostas imunológicas do indivíduo à infecção. Neste sentido, o presente estudo se objetiva em investigar o papel de SNPs (rs1800692, rs767455, rs2270926, rs8904, rs1800629) em genes codificadores de proteínas que ativam a via extrínseca da apoptose, através do TNF-α/TNFR1, e sua relação com a recuperação imunológica de pacientes com uso regular de TARV. Foram estudados 113 pacientes HIV positivos, atendidos e tratados no Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), em uso de TARV por um ano e com carga viral indetectável, os quais foram divididos em dois grupos: sucesso imunológico (controle) e falha imunológica (caso). Não foram observadas associações entre os polimorfismos dos genes estudados com o sucesso ou a falha imunológica apresentada pelos indivíduos fazendo uso regular da TARV. Também não foi observada nenhuma associação entre a falha com as variáveis clínicas: peso, etnia, idade, gênero e esquema terapêutico. Apesar da ausência de associações dos SNPs estudados com a falha imunológica, alguns fatores limitantes do estudo devem ser considerados (pequeno número amostral, não inclusão de outras moléculas da via estudada), havendo necessidade de novos estudos de réplica em outras populações.

Palavras-chave: Apoptose, SNPs, TNF-α/TNFR1, HIV, TARV.

Introdução

O Vírus da Imunodeficiência Humana (HIV) infecta majoritariamente linfócitos T CD4+

do hospedeiro (WILEN; TILTON; DOMS, 2012), levando a uma profunda depleção deste tipo celular, resultando no surgimento de doenças definidoras da Síndrome da Imunodeficiência Adquirida (AIDS) (PAIARDINI; MÜLLER-TRUTWIN, 2013). Indivíduos infectados apresentam ativação imune crônica e um padrão inflamatório desde a fase aguda da infecção. A ativação imune crônica, juntamente com a perda continuada dos linfócitos T CD4+ leva o indivíduo ao estado de exaustão imune, incapacitando as células do sistema imune em responder de forma eficiente a infecção pelo HIV e outros patógenos. Assim, a contagem de LT CD4+ é tida como um determinante para progressão da doença (GONZALEZ; ZAPATA; RUGELES, 2016).

Com o advento da Terapia Antirretroviral (TARV), na década de 80, foi observado um grande avanço na luta contra a infecção. Mesmo não eliminando o vírus, a TARV, após uso regular por três meses, reduz significativamente a carga viral a níveis indetectáveis e incrementa os níveis de LT CD4+. Cerca de 80% dos indivíduos conseguem alcançar o sucesso virológico (carga viral plasmática inferior a 50 cópias/mL). No entanto existe um grupo de indivíduos que não consegue recuperar os níveis de LT CD4+, mesmo apresentando carga viral indetectável. Esses pacientes são conhecidos como pacientes em falha imunológica (COHEN et al., 2011).

Documentos relacionados