• Nenhum resultado encontrado

imperialis (Bromeliaceae) Annals of Botany 103: 65-77.

on microsatellite and AFLP markers

A. imperialis (Bromeliaceae) Annals of Botany 103: 65-77.

Cavalcanti, DR. 2003. Distribuição altitudinal de plantas lenhosas e relações históricas entre a floresta Atlântica do sul-sudeste e o Centro de Endemismo Pernambuco. Dissertação de Mestrado, Universidade Federal de Pernambuco, Recife.

Cavallari MM, Forzza RC, Veasey EA, Zucchi, MI, Oliveira GCX. 2006. Genetic

variation in three endangered species of Encholirium (Bromeliaceae) from Cadeia do Espinhaço, Brazil, setected using RAPD Markers. Biodiversity and Conservation 15: 4357-4373.

Chapman HM, Parh D, Oraguzie, N. 2000. Genetic structure and colonizing success of a

clonal, weedy species, Pilosella officinarum (Asteraceae). Heredity 84: 401–409.

Cole CT. 2003. Genetic variation in rare and common plants. Annual Review of Ecology and Systematic Evolution 34: 213–237.

Cubas P, Pardo C, Tahiri H. 2005. Genetic variation and relationships among Ulex

(Fabaceae) species in southern Spain and northern Morocco assessed by chloroplast microsatellite (cpSSR) markers. American Journal of Botany 92: 2031-2043

Debener T, Mattiesch, L. 1999. Construction of a genetic linkage map for roses using RAPD

and AFLP markers. Theoretical and Applied Genetics 99: 891–899.

analysis tool for large microsatellite data sets. Molecular Ecolology Notes 3: 167–169.

Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small amounts of fresh leaf

tissue. Phytochem. Bulletin of the Botanical Society of America 19: 11–15.

Earl DA, vonHoldt BM. 2011. STRUCTURE HARVESTER: a website and program for

visualizing STRUCTURE output and implementing the Evanno method. Conservation

Genetics Resources 4: 359-361.

El Mousadik A, Petit RJ. 1996. High level of genetic differentiation for allelic richness

among populations of the argan tree Argania spinosa (L) Skeels endemic to Morocco.

Theoretical and Applied Genetics 92: 832–839.

Eliades N-G, Eliades DG. 2009. HAPLOTYPE ANALYSIS: Software for analysis of

haplotype data. Forest Genetics and Forest Tree Breeding, Georg-August University Goettingen, Germany. Available on http://www.uni-goettingen.de/en/134935.html

Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals

using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611– 2620.

Excoffier L, Laval G, Schneider S. 2005. Arlequin ver. 3.11: an integrated software package

for population genetics data analysis. Evolution Bioinformatics Online 1: 47–50.

Falush D, Stephens M, Pritchard JK. 2003. Inference of population structure: extensions to

linked loci and correlated allele frequencies. Genetics 164: 1567– 1587.

Forzza RC, Silva BR. 2004. A new species of Dyckia (Bromeliaceae) from Rio de Janeiro

State, Brazil. Novon 14: 168-170.

Forzza RC. 2001. Filogenia da tribo Puyeae Wittm. e revisão taxonônica do gênero Encholirium Mart. Ex Schullt. & Schult. F. (Pitcairnioideae – Bromeliaceae). Tese

(Doutorado) – Instituto de Biociências, Universidade de São Paulo, São Paulo.

Frankham R, Ballou JD, Briscoe DA. 2010. Introduction to Conservation Genetics, second

ed. Cambridge University Press, Cambridge, UK.

Geise L, Paresque R, Sebastião H, Shirai LT, Astúa D, Marroig G. 2010. Non-volant

mammals, Parque Nacional do Catimbau, Vale do Catimbau, Buíque, state of Pernambuco, Brazil, with karyologic data. Check List 6: 180-186.

Goldstein DB, Ruiz-Linares A, Cavalli-Sforza LL, Feldman MW. 1995. An evaluation of

genetic distances for use with microsatellite loci. Genetics 139: 463–471.

Gonzalez-Astorga, J. 2004. Diversity and genetic structure of the mexican endemic epiphyte Tillandsia achyrostachys E. Morr. ex Baker var. achyrostachys (Bromeliaceae). Annals of Botany 94: 545-551.

Guicking D, KröGer-Kilian TIM, Weising K, Blattner FR. 2008. Single nucleotide sequence analysis: a cost and time effective protocol for the analysis of microsatellite- and indel rich chloroplast DNA regions. Molecular Ecology Resources 8: 62-65.

Hamrick JL, Godt MJW. 1996. Conservation genetics of endemic plant species. In: Avise

JC, Hamrick JL. (eds). Conservation Genetics, Chapman and Hall, New York.

Hamrick JL. 1994. Genetic diversity and conservation in tropical forests. Proceeding

International Symposium on Genetic conservation and Production of Tropical forest Tree Seed. Asean-Canada. Forest Tree Centre. In: Drysdale RM, John, SET, Yopa AC. (eds).

Hartl DL, Clark AG. 1997. Principles of Population Genetics. Sinauer & Associates,

Sunderland, Massachusetts.

Hmeljevski KV, Reis A, Montagna T, Reis MS. 2011. Genetic diversity, genetic drift and

mixed mating system in small subpopulations of Dyckia ibiramensis, a rare endemic bromeliad from Southern Brazil. Conservation Genetics 12: 761-769.

Izquierdo LY, Piñero D. 2000. High genetic diversity in the only known population of Aechmea tuitensis (Bromeliaceae). Australian Journal of Botany 48: 645-650.

Kageyama PY, Sebbenn AM, Ribas LA, Gandara FB, Castellen M, Perecim MB, Vencovsky R. 2003. Diversidade genética em espécies arbóreas tropicais de diferentes

estágios sucessionais por marcadores genéticos. Scientia Forestalis 64: 93–107.

Krapp F, Wohrmann T, Pinangé DSB, Benko-Iseppon AM, Huettel B, Weising K. 2012.

A set of plastid microsatellite loci for the genus Dyckia (Bromeliaceae) derived from 454 pyrosequencing. AJB Primer Notes & Protocols in the Plant Sciences e470-e473.

Leimu R, Mutikainen P, Koricheva J, Fischer M. 2006. How general are positive

relationships between plant population size, fitness and genetic variation? Journal of

Ecology 94: 942–952

Leme EMC, Ribeiro OBC, Miranda ZJG. 2012. New species of Dyckia (Bromeliaceae)

from Brazil. Phytotaxa 67: 9-37.

Lins RC. 1989. As áreas de exceção do agreste de Pernambuco. Sudene, Recife.

Loveless MD, Hamrick JL. 1984. Ecological determinants of genetic structure in plant

populations. Annual Review of Ecology and Systematic Evolution 15: 69–95.

Lynch M, Milligan BG. 1994. Analysis of population genetic structure with RAPD markers. Molecular Ecology 3: 91-99.

Machado IC, Lopes AV. 2004. Floral traits and pollination systems in the Caatinga, a

Braziliantropical dry forest. Annals of Botany, 94: 365-376.

Nei M. 1973. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences 70: 3321-3323.

Palma-Silva C, Lexer C, Paggi GM, Barbará T, Bered F, Bodanese-Zanettini MH. 2009.

Range-wide patterns of nuclear and chloroplast DNA diversity in Vriesea gigantea (Bromeliaceae), a neotropical forest species. Heredity 103: 503-512.

Stauracanthus (Fabaceae, Genistae) from the Iberian Peninsula and northern Morocco

assessed by chloroplast microsatellite (cpSSR) markers. American Journal of Botany

95: 98-109.

Perrier X, Jacquemoud-Collet JP. 2006. DARwin software http://darwin.cirad.fr/

Prance GT. 1982. Forest Refuges: Evidence from woody angiosperms. In: Biological

Diversification in the Tropics. Prance, GT. (ed.). Columbia University Press, New York 137-157.

Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using

multilocus genotype data. Genetics 155: 945–959.

Provan J, Powell W, Hollingsworth PM. 2001. Chloroplast microsatellites: new tools for

studies in plant ecology and evolution. Trends in Ecology and Evolution 16:

Raymond M, Rousset F. 1995. GENEPOP (version 1.2): population genetics software for

exact tests and ecumenicism. Journal of Heredity 86: 248-249

Rousset F. 2008. Genepop'007: a complete reimplementation of the Genepop software for

Windows and Linux. Molecular Ecology Resources 8: 103-106.

Sarthou C, Samadi S, Boisselier-Dubayle MC. 2001. Genetic structure of the saxicole Pitcairnia geyskesii (Bromeliaceae) on Inselbergs in French Guiana. American Journal of Botany 88: 861-868.

Schuelke M. 2000. An economic method for the fluorescent labelling of PCR fragments. Nature Biotechnology 18: 233-234.

Sgorbati S, Labra, M, Grugni E, Barcaccia G, Galasso G, Boni U, Mucciarelli M, Citterio S, Benavides-Iramátegui A, Venero-Gonzales, L. 2004. A survey of genetic

diversity and reproductive biology of Puya raimondii (Bromeliaceae), the endangered queen of the Andes. Plant Biology 6: 222-230.

Siqueira-Filho JA, Leme, EMC. 2006. Fragmentos de Mata Atlântica do Nordeste.

Biodiversidade, Conservação e suas Bromélias. Andréa Jakobson Estúdio, Rio de Janeiro.

Smith LB, Downs RJ. 1974. Pitcairnioideae (Bromeliaceae). Flora Neotropica Monograph 14: 1–660.

Sokal RR, Rohlf FI. 1995. Biometry: The Principles and Practice of Statistics in Biological

Research. Freeman and Company: New York.

Tabarelli M, Siqueira-Filho J.A. 2004. Biodiversidade e conservação do Centro de

Endemismo Pernambuco. In: Anais da XXVIII Reunião Nordestina de Botânica, 2004, Petrolina.

Tabarelli M, Santos AMM. 2004. Uma breve descrição sobre a história natural dos brejos

nordestinos. 99-110. In: Pôrto KC, Cabral JJP, Tabarelli, M. (orgs.). Brejos de Altitude em Pernambuco e Paraíba: História Natural, ecologia e conservação. Brasília, Ministério do Meio Ambiente.

Tel-Zur N, Abbo S, Myslabodski D, Mizrahi Y. 1999. Modified CTAB procedure for DNA

isolation from epiphytic cacti of the genera Hylocereus and Selenicereus (Cactaceae).

Plant Molecular Biology Reporter 17: 249–254.

Terrab A, Paun O, Talavera S, Tremetsberger K, Arista M, Stuessy TF. 2006. Genetic

diversity and population structure in natural populations of Moroccan Atlas cedar (Cedrus atlantica) determined with cpSSR markers. American Journal of Botany 93: 1274-1280.

Vekemans X, Beauwens T, Lemaire M, Roldán-Ruiz I. 2002. Data from amplified

fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Molecular Ecology

11: 139-151.

Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. 1995. AFLP: a new technique for DNA

fingerprinting. Nucleic Acids Research 23: 4407–4414.

Weir BS, Cockerham CC. 1984. Estimating F-statistics for the analysis of population

structure. Evolution 38: 1358–1370.

Weising K, Nybom H, Wolff K, Kahl G. 2005. DNA Fingerprinting in Plants, Principles,

Methods, and Applications. Second Edition. CRC Press, Taylor & Francis Group, Boca Raton, FA.

Wöhrmann T, Pinangé DSB, Krapp F, Benko-Iseppon, AM, Huettel B, Weising K.

2012b. Development of 15 nuclear microsatellite markers in the genus Dyckia (Pitcairnioideae; Bromeliaceae) using 454 pyrosequencing. Conservation Genetics

Resources 5: 81-84.

Wöhrmann T, Wagner N, Krapp F, Huettel B, Weising K. 2012a. Development of

microsatellite markers in Fosterella rusbyi (Bromeliaceae) using 454 pyrosequencing.

American Journal of Botany e160-e163.

Wright S. 1931. Evolution in Mendelian populations. Genetics 16: 97 –159.

Wright S. 1965. The interpretation of population structure by F-statistics with special regards

to system of mating. Evolution 19: 395–420.

Zhang F, Wang W, Ge Y, Shen X, Tian D, Liu J, Liu X, Yu X, Zhang Z. 2012. Genetic

relatedness among Aechmea species and hybrids inferred from AFLP markers and pedigree data. Scientia Horticulturae 139: 39-45.

Zhivotovsky LA. 1999. Estimating population structure in diploids with multilocus dominant

Supplementary data

Table S1. Distribuition and frequencies of the haplotypes (cpDNA) in all Dyckia populations sampled Haplotype Code Haplotype composition* Population Frequencies

Haplo-1 97 92 76 85 78 66 79 98 Brejo 0.70 Haplo-2 97 92 76 86 78 66 79 98 Brejo 0.30 Haplo-3 98 91 75 86 79 68 79 99 Mr 0.11 Haplo-4 98 91 75 86 79 68 81 99 Ca/Mr 0.74 / 0.44 Haplo-5 98 91 75 86 79 72 80 99 Lajes 0.11 Haplo-6 98 91 75 86 79 73 79 96 Lajes 0.22 Haplo-7 98 91 75 86 80 72 79 100 Ca/Lajes 0.21 / 0.22 Haplo-8 98 91 75 86 80 72 81 100 Lajes 0.05 Haplo-9 98 91 75 86 81 73 79 99 Lajes 0.11 Haplo-10 98 91 76 85 78 67 79 98 Pico 0.10 Haplo-11 98 91 76 86 79 72 79 99 Mr 0.11 Haplo-12 98 91 76 86 79 72 81 99 Mr 0.11 Haplo-13 98 91 76 86 79 73 79 96 Lajes 0.22 Haplo-14 98 91 76 86 79 73 79 99 Lajes 0.11 Haplo-15 98 91 76 86 80 72 79 99 Mr 0.11 Haplo-16 98 91 76 86 80 72 81 99 Mr 0.11 Haplo-17 98 91 77 85 78 67 79 98 Pico 0.40 Haplo-18 98 91 77 86 78 67 79 98 Pico 0.40 Haplo-19 98 92 77 85 78 67 79 98 Pico 0.10 Haplo-20 99 91 76 85 78 62 79 98 Cat 0.20 Haplo-21 99 91 76 85 78 62 80 98 Cat 0.10 Haplo-22 99 91 76 85 78 66 79 98 Cat 0.70 Haplo-23 99 91 76 85 78 67 79 98 Srita 1.00 Haplo-24 99 91 77 85 78 66 79 97 Pesq 0.70 Haplo-25 99 91 77 86 78 66 79 97 Pesq 0.30

* The haplotypes are characterized by their fragments sizes, in base pairs, across the eight plastid loci Ca, “Cachoeira” population; Mr, “Morrão” population; Cat, “Catimbau” population

!

!

Figure S1. Weighted Neighbour joining dendrogram based on genetic distance of 15 nuclear SSR loci in populations of the three Dyckia species. Numbers are bootstrap support values.

Figure S2. Indication of the most likely number of clusters after Evanno et al. (2005) in the STRUCTURE analisys. Results from 10 replicates for each 1≤ ∆K ≤10 values with both AFLP (A) and nSSRs (B). ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

Conclusões Gerais

• Os resultados, quanto à reconstrução filogenética aqui apresentados, forneceram os

primeiros insights em nível infra-genérico no gênero Dyckia, reconhecido pela sua extrema diversidade morfológica e diversificação recente. Além disso, mesmo apresentando-se como um grupo claramente monofilético, o baixo suporte nos clados basais indica que, possivelmente, as barreiras reprodutivas inter-específicas ainda não estão inteiramente definidas. Desta forma, eventos de hibridizações e introgressões parecem ser comum em Dyckia, principal causa, portanto, do baixo sinal filogenético encontrado nas reconstruções realizadas. !

• O conjunto de primers desenvolvidos (nucleares e plastidiais) mostraram-se promissores candidatos nas análises populacionais tanto dentro do gênero Dyckia como em outros grupos dentro da família Bromeliaceae, tendo em vista os elevados indices de amplificação heterólogas observados.

• Considerando os resultados populacionais apresentados, mediante a análise agregada de marcadores dominantes (AFLP) e co-dominantes (microssatélites), com particular histórias evolutivas dentro do genoma, notificou-se a significativa eficácia de tais marcadores em revelar padrões de conectividade e diversidade em populações de

Dyckia !

• Os dados moleculares em conjunto com as características morfológicas apresentadas pelas populações de Dyckia, ocorrentes nos inselbergs de Pernambuco, não puderam confirmar D. limae como uma unidade taxonômica definida, em relação as demais populações de D. pernambucana. Por ser micro-endêmica do PARNA do Catimbau, localizado na cidade de Buíque, e dada a natureza intrínseca do ambiente (única formação sedimentar do Planalto da Borborema), as distinções morfológicas encontradas possivelmente podem ser explicadas pelas particularidades adaptativas a tal formação rochosa elevados indices de diferenciação genetica.!

! ! !

Anexos

Instruções para autores:

Documentos relacionados