• Nenhum resultado encontrado

Implicações para o uso de retinóides em terapias

Este trabalho é o primeiro a propor uma função específica para a sinalização pelo AR na ontogenia dos circuitos proprioceptivos e também foi o primeiro a sugerir um papel para a ativação da sinalização pelo AR, via raldh2, na placa do teto da

18 Segundo Carroll et al. (2005) filogenia é o termo comumente utilizado para hipóteses de relações

evolutivas (ou seja, relações filogenéticas) de um grupo de organismos, isto é, determinar as relações ancestrais entre espécies conhecidas (ambas as que vivem e as extintas). Carroll SB, Grenier KJ, Weatherbee DS. From DNA to diversity. Molecular genetics and the evolution of animal design. 2nd ed. New York: Blackwell Publising; 2005.

133 medula espinhal, ainda pouco conhecida. A descrição deste novo domínio de expressão da raldh2 na medula espinhal dorsal representa uma contribuição para o estudo da ontogenia dos circuitos proprioceptivos espinocerebelares e intraespinhais (comissurais), pois nós demonstramos que uma via de sinalização chave, como a sinalização pelo AR, é ativada no contexto específico do desenvolvimento dos interneurônios dorsais 1, que dão origem a esses circuitos. Nossos dados suportam estudos prévios com embriões e células-tronco embrionárias que indicam que a sinalização pelo AR é requerida para a especificação de interneurônios dorsais (Wilson et al., 2004; Murashov et al., 2005). Finalmente, nossos resultados fornecem pistas na fisiopatologia de doenças que causam a perda da propriocepção (como ataxias espinocerebelares), sugerindo que os retinóides podem ser alvos para terapias farmacológicas e para terapias celulares baseadas na diferenciação de células pluripotentes.

134

6 CONCLUSÕES

• O promotor hsp68, apesar de ser bastante utilizado em análises de expressão em embriões de camundongo transgênicos, funciona como um promotor constitutivo quando aplicado na técnica de eletroporação, ativando a expressão do gene-repórter em todas as células eletroporadas. Desta forma, este promotor é inadequado para análise de enhancers em embriões de galinha. Já promotor mínimo do gene da timidina kinase do Herpes Simplex vírus (Tk) é um promotor bastante adequado apara esse tipo de análise.

• Abordagem comparativa é capaz de identificar seqüências regulatórias que desempenham funções conservadas durante o desenvolvimento.

O enhancer intrônico 1G da raldh2 é um enhancer conservado responsável por ativar a expressão do gene raldh2 na medula espinhal dorsal em tetrápodes.

O enhancer intrônico 1G é ativado por um mecanismo redundante no qual três elementos cis regulatórios que contém sítios preditos e sobrepostos de ligação para o fator de transcrição relacionado à via de sinalização Wnt, Tfc e para os fatores homeobox tipo caudal ativam o enhancer intrônico 1G na região dorsal da medula espinhal. O padrão de atividade do enhancer intrônico 1G é ainda refinado por dois elementos repressores, um Lim-homeodomínio e um homeobox Tgif, que atuam na região ventral da medula espinhal.

A expressão do gene raldh2 na medula espinhal dorsal em embriões dos peixes teleósteos medaka e peixe-zebra é ativada por outro módulo regulatório que não o enhancer intrônico 1G.

O gene raldh2 é expresso transitoriamente em interneurônios dorsais 1 da medula espinhal. Ensaios de hibridação in situ dupla para raldh2 e math1/cath1 (marcadores de interneurônios dorsais 1) nos levaram a descrever este novo território de expressão da raldh2 na medula espinhal. Provavelmente esse domínio

de expressão da raldh2 não foi detectado anteriormente devido ao seu caráter dinâmico.

Em anfíbios, aves e mamíferos, o enhancer intrônico 1G é responsável pela ativação da sinalização pelo AR em prescursores dos interneurônios dorsais 1, que dão origem à neurônios que conduzem informações proprioceptivas dos membros para o cerebelo e à interneurônios comissurais que coordenam a atividade motora.

• Este trabalho é o primeiro a propor que a sinalização pelo AR está envolvida no desenvolvimento de circuitos proprioceptivos, abrindo a possibilidade do uso de retinóides no estudo de tratamentos de para doenças como ataxias, que levam à perda da propriocepção.

Aguilella C, Dubourg C, Attia-Sobol J, Vigneron J, Blayau M, Pasquier L, et al. Molecular screening of the TGIF gene in holoprosencephaly: identification of two novel mutations. Hum Genet. 2003;112 (2):131-4.

Aranda A, Pascual A. Nuclear hormone receptors and gene expression. Physiol Rev. 2001;81 (3):1269-304.

Arnone MI, Davidson EH. The hardwiring of development: organization and function of genomic regulatory systems. Development. 1997;124 (10):1851-64.

Baumgartner S, Noll M. Network of interactions among pair-rule genes regulating paired expression during primordial segmentation of Drosophila. Mech Dev. 1990;33 (1):1-18.

Beland M, Pilon N, Houle M, Oh K, Sylvestre JR, Prinos P, et al. Cdx1 autoregulation is governed by a novel Cdx1-LEF1 transcription complex. Mol Cell Biol. 2004;24 (11):5028-38.

Belting HG, Shashikant CS, Ruddle FH. Multiple phases of expression and regulation of mouse Hoxc8 during early embryogenesis. J Exp Zool. 1998;282 (1-2):196-222. Ben-Arie N, McCall AE, Berkman S, Eichele G, Bellen HJ, Zoghbi HY. Evolutionary conservation of sequence and expression of the bHLH protein Atonal suggests a conserved role in neurogenesis. Hum Mol Genet. 1996;5 (9):1207-16.

Berggren K, McCaffery P, Drager U, Forehand CJ. Differential distribution of retinoic acid synthesis in the chicken embryo as determined by immunolocalization of the retinoic acid synthetic enzyme, RALDH-2. Dev Biol. 1999;210 (2):288-304.

Bermingham NA, Hassan BA, Wang VY, Fernandez M, Banfi S, Bellen HJ, et al. Proprioceptor pathway development is dependent on Math1. Neuron. 2001;30 (2):411-22.

Blentic A, Gale E, Maden M. Retinoic acid signalling centres in the avian embryo identified by sites of expression of synthesising and catabolising enzymes. Dev Dyn. 2003;227 (1):114-27.

Bloedel JR, Courville J. Cerebellar afferent systems. In: Physiology. Baltimore: Waverly Press; 1981.

Blomhoff R, Blomhoff HK. Overview of retinoid metabolism and function. J Neurobiol. 2006;66 (7):606-30.

Blumberg B, Bolado J, Jr., Moreno TA, Kintner C, Evans RM, Papalopulu N. An essential role for retinoid signaling in anteroposterior neural patterning. Development. 1997;124 (2):373-9.

Boffelli D, McAuliffe J, Ovcharenko D, Lewis KD, Ovcharenko I, Pachter L, et al. Phylogenetic shadowing of primate sequences to find functional regions of the human genome. Science. 2003;299 (5611):1391-4.

Boffelli D, Nobrega MA, Rubin EM. Comparative genomics at the vertebrate extremes. Nat Rev Genet. 2004;5 (6):456-65.

Bosco G, Poppele RE. Proprioception from a spinocerebellar perspective. Physiol Rev. 2001;81 (2):539-68.

Brodal A. Neurological Anatomy. In: Medicine RtC. 3rd ed. New York: Oxforfd University Press; 1981. p. 1053.

Cammas L, Romand R, Fraulob V, Mura C, Dolle P. Expression of the murine retinol dehydrogenase 10 (Rdh10) gene correlates with many sites of retinoid signalling during embryogenesis and organ differentiation. Dev Dyn. 2007;236 (10):2899-908. Campos-Ortega JA. Genetic mechanisms of early neurogenesis in Drosophila melanogaster. J Physiol Paris. 1994;88 (2):111-22.

Carroll SB, Grenier KJ, Weatherbee DS. From DNA to diversity. Molecular genetics and the evolution of animal design. 2nd ed. New York: Blackwell Publising; 2005. Castillo HA, Cravo RM, Azambuja AP, Simoes-Costa MS, Sura-Trueba S, Gonzalez J, et al. Insights into the organization of dorsal spinal cord pathways from an evolutionarily conserved raldh2 intronic enhancer. Development. 2010;137 (3):507- 18.

Chambon P. A decade of molecular biology of retinoic acid receptors. FASEB J. 1996;10 (9):940-54.

Chambon P. The nuclear receptor superfamily: a personal retrospect on the first two decades. Mol Endocrinol. 2005;19 (6):1418-28.

Chithalen JV, Luu L, Petkovich M, Jones G. HPLC-MS/MS analysis of the products generated from all-trans-retinoic acid using recombinant human CYP26A. J Lipid Res. 2002;43 (7):1133-42.

Chizhikov VV, Millen KJ. Mechanisms of roof plate formation in the vertebrate CNS. Nat Rev Neurosci. 2004;5 (10):808-12.

Chizhikov VV, Millen KJ. Roof plate-dependent patterning of the vertebrate dorsal central nervous system. Dev Biol. 2005;277 (2):287-95.

Colas JF, Schoenwolf GC. Assessing the contributions of gene products to the form- shaping events of neurulation: a transgenic approach in chick. Genesis. 2003;37 (2):64-75.

Colbert MC, Rubin WW, Linney E, LaMantia AS. Retinoid signaling and the generation of regional and cellular diversity in the embryonic mouse spinal cord. Dev Dyn. 1995;204 (1):1-12.

Conlon RA. Retinoic acid and pattern formation in vertebrates. Trends Genet. 1995;11 (8):314-9.

Cox WG, Hemmati-Brivanlou A. Caudalization of neural fate by tissue recombination and bFGF. Development. 1995;121 (12):4349-58.

Cravo RM. Controle da expressão do gene Aldh1a2 (Raldh2) durante o desenvolvimento: uma abordagem filogenética [tese (Biologia Celular e Tecidual)]. São Paulo: Universidade de São Paulo; 2008.

Davidson EH, Cameron RA, Ransick A. Specification of cell fate in the sea urchin embryo: summary and some proposed mechanisms. Development. 1998;125 (17):3269-90.

Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh CH, et al. A genomic regulatory network for development. Science. 2002;295 (5560):1669-78.

de Almeida MAA. Aplicação de métodos estatísticos e computacionais para o estudo da cis-regulação da expressão gênica [tese (Interunidades de Bioinformática)]. São Paulo: Universidade de São Paulo; 2010.

de la Cruz CC, Der-Avakian A, Spyropoulos DD, Tieu DD, Carpenter EM. Targeted disruption of Hoxd9 and Hoxd10 alters locomotor behavior, vertebral identity, and peripheral nervous system development. Dev Biol. 1999;216 (2):595-610.

Degenhardt KR, Milewski RC, Padmanabhan A, Miller M, Singh MK, Lang D, et al. Distinct enhancers at the Pax3 locus can function redundantly to regulate neural tube and neural crest expressions. Dev Biol. 2010;339 (2):519-27.

Dickman ED, Thaller C, Smith SM. Temporally-regulated retinoic acid depletion produces specific neural crest, ocular and nervous system defects. Development. 1997;124 (16):3111-21.

Diez del Corral R, Olivera-Martinez I, Goriely A, Gale E, Maden M, Storey K. Opposing FGF and retinoid pathways control ventral neural pattern, neuronal differentiation, and segmentation during body axis extension. Neuron. 2003;40 (1):65-79.

Dolle P, Fraulob V, Kastner P, Chambon P. Developmental expression of murine retinoid X receptor (RXR) genes. Mech Dev. 1994;45 (2):91-104.

Dreyer C, Ellinger-Ziegelbauer H. Retinoic acid receptors and nuclear orphan receptors in the development of Xenopus laevis. Int J Dev Biol. 1996;40 (1):255-62. Duester G. Families of retinoid dehydrogenases regulating vitamin A function: production of visual pigment and retinoic acid. Eur J Biochem. 2000;267 (14):4315- 24.

Duester G, Mic FA, Molotkov A. Cytosolic retinoid dehydrogenases govern ubiquitous metabolism of retinol to retinaldehyde followed by tissue-specific metabolism to retinoic acid. Chem Biol Interact. 2003;143-144:201-10.

Dupe V, Lumsden A. Hindbrain patterning involves graded responses to retinoic acid signalling. Development. 2001;128 (12):2199-208.

Dupe V, Matt N, Garnier JM, Chambon P, Mark M, Ghyselinck NB. A newborn lethal defect due to inactivation of retinaldehyde dehydrogenase type 3 is prevented by maternal retinoic acid treatment. Proc Natl Acad Sci U S A. 2003;100 (24):14036-41. Duret L, Bucher P. Searching for regulatory elements in human noncoding sequences. Curr Opin Struct Biol. 1997;7 (3):399-406.

Durston AJ, Timmermans JP, Hage WJ, Hendriks HF, de Vries NJ, Heideveld M, et al. Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature. 1989;340 (6229):140-4.

Fan X, Molotkov A, Manabe S, Donmoyer CM, Deltour L, Foglio MH, et al. Targeted disruption of Aldh1a1 (Raldh1) provides evidence for a complex mechanism of retinoic acid synthesis in the developing retina. Mol Cell Biol. 2003;23 (13):4637-48. Fatma N, Kubo E, Chylack LT, Jr., Shinohara T, Akagi Y, Singh DP. LEDGF regulation of alcohol and aldehyde dehydrogenases in lens epithelial cells: stimulation of retinoic acid production and protection from ethanol toxicity. Am J Physiol Cell Physiol. 2004;287 (2):508-16.

Fetcho JR. The spinal motor system in early vertebrates and some of its evolutionary changes. Brain Behav Evol. 1992;40 (2-3):82-97.

Gaunt SJ, Drage D, Cockley A. Vertebrate caudal gene expression gradients investigated by use of chick cdx-A/lacZ and mouse cdx-1/lacZ reporters in transgenic mouse embryos: evidence for an intron enhancer. Mech Dev. 2003;120 (5):573-86. Germain P, Iyer J, Zechel C, Gronemeyer H. Co-regulator recruitment and the mechanism of retinoic acid receptor synergy. Nature. 2002;415 (6868):187-92.

Gilbert SF. Developmental Biology. 8th ed. Sunderland: Sinauer Associates; 2006. Gowan K, Helms AW, Hunsaker TL, Collisson T, Ebert PJ, Odom R, et al. Crossinhibitory activities of Ngn1 and Math1 allow specification of distinct dorsal interneurons. Neuron. 2001;31 (2):219-32.

Grillner S. The motor infrastructure: from ion channels to neuronal networks. Nat Rev Neurosci. 2003;4 (7):573-86.

Grillner S, Williams T, Lagerback PA. The edge cell, a possible intraspinal mechanoreceptor. Science. 1984;223 (4635):500-3.

Hale F. The Relation of Vitamin A to the Eye Development in the Pig. Journal of Animal Science. 1935;126-8.

Hardison RC. Conserved noncoding sequences are reliable guides to regulatory elements. Trends Genet. 2000;16 (9):369-72.

Harrison RL, Byrne BJ, Tung L. Electroporation-mediated gene transfer in cardiac tissue. FEBS Lett. 1998;435 (1):1-5.

Hassan B, Vaessin H. Regulatory interactions during early neurogenesis in Drosophila. Dev Genet. 1996;18 (1):18-27.

Hedges SB, Kumar S. Genomic clocks and evolutionary timescales. Trends Genet. 2003;19 (4):200-6.

Helms AW, Johnson JE. Progenitors of dorsal commissural interneurons are defined by MATH1 expression. Development. 1998;125 (5):919-28.

Hemmati-Brivanlou A, Kelly OG, Melton DA. Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell. 1994;77 (2):283-95.

Hemmati-Brivanlou A, Melton D. Vertebrate neural induction. Annu Rev Neurosci. 1997;20:43-60.

Hochgreb T, Linhares VL, Menezes DC, Sampaio AC, Yan CY, Cardoso WV, et al. A caudorostral wave of RALDH2 conveys anteroposterior information to the cardiac field. Development. 2003;130 (22):5363-74.

Hooiveld MH, Morgan R, in der Rieden P, Houtzager E, Pannese M, Damen K, et al. Novel interactions between vertebrate Hox genes. Int J Dev Biol. 1999;43 (7):665-74. Itasaki N, Bel-Vialar S, Krumlauf R. 'Shocking' developments in chick embryology: electroporation and in ovo gene expression. Nat Cell Biol. 1999;1 (8):203-7.

Iulianella A, Vanden Heuvel G, Trainor P. Dynamic expression of murine Cux2 in craniofacial, limb, urogenital and neuronal primordia. Gene Expr Patterns. 2003;3 (5):571-7.

Jessell TM. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet. 2000;1 (1):20-9.

Kastner P, Grondona JM, Mark M, Gansmuller A, LeMeur M, Decimo D, et al. Genetic analysis of RXR alpha developmental function: convergence of RXR and

RAR signaling pathways in heart and eye morphogenesis. Cell. 1994;78 (6):987- 1003.

Kastner P, Mark M, Ghyselinck N, Krezel W, Dupe V, Grondona JM, et al. Genetic evidence that the retinoid signal is transduced by heterodimeric RXR/RAR functional units during mouse development. Development. 1997;124 (2):313-26.

Kawaguchi R, Yu J, Honda J, Hu J, Whitelegge J, Ping P, et al. A membrane receptor for retinol binding protein mediates cellular uptake of vitamin A. Science. 2007;315 (5813):820-5.

Kelly OG, Melton DA. Induction and patterning of the vertebrate nervous system. Trends Genet. 1995;11 (7):273-8.

Knepper JL, James AC, Ming JE. TGIF, a gene associated with human brain defects, regulates neuronal development. Dev Dyn. 2006;235 (6):1482-90.

Krull CE. A primer on using in ovo electroporation to analyze gene function. Dev Dyn. 2004;229 (3):433-9.

Kurokawa D, Kiyonari H, Nakayama R, Kimura-Yoshida C, Matsuo I, Aizawa S. Regulation of Otx2 expression and its functions in mouse forebrain and midbrain. Development. 2004a;131 (14):3319-31.

Kurokawa D, Takasaki N, Kiyonari H, Nakayama R, Kimura-Yoshida C, Matsuo I, et al. Regulation of Otx2 expression and its functions in mouse epiblast and anterior neuroectoderm. Development. 2004b;131 (14):3307-17.

Langeland JA, Carroll SB. Conservation of regulatory elements controlling hairy pair- rule stripe formation. Development. 1993;117 (2):585-96.

Lee KJ, Mendelsohn M, Jessell TM. Neuronal patterning by BMPs: a requirement for GDF7 in the generation of a discrete class of commissural interneurons in the mouse spinal cord. Genes Dev. 1998;12 (21):3394-407.

Lewis KE. How do genes regulate simple behaviours? Understanding how different neurons in the vertebrate spinal cord are genetically specified. Philos Trans R Soc Lond B Biol Sci. 2006;361 (1465):45-66.

Li H, Wagner E, McCaffery P, Smith D, Andreadis A, Drager UC. A retinoic acid synthesizing enzyme in ventral retina and telencephalon of the embryonic mouse. Mech Dev. 2000;95 (1-2):283-9.

Linker C, De Almeida I, Papanayotou C, Stower M, Sabado V, Ghorani E, et al. Cell communication with the neural plate is required for induction of neural markers by BMP inhibition: evidence for homeogenetic induction and implications for Xenopus animal cap and chick explant assays. Dev Biol. 2009;327 (2):478-86.

Liu A, Niswander LA. Bone morphogenetic protein signalling and vertebrate nervous system development. Nat Rev Neurosci. 2005;6 (12):945-54.

Liu JP, Laufer E, Jessell TM. Assigning the positional identity of spinal motor neurons: rostrocaudal patterning of Hox-c expression by FGFs, Gdf11, and retinoids. Neuron. 2001;32 (6):997-1012.

Lu HC, Revelli JP, Goering L, Thaller C, Eichele G. Retinoid signaling is required for the establishment of a ZPA and for the expression of Hoxb-8, a mediator of ZPA formation. Development. 1997;124 (9):1643-51.

Lumsden A, Krumlauf R. Patterning the vertebrate neuraxis. Science. 1996;274 (5290):1109-15.

Maden M, Ong DE, Summerbell D, Chytil F, Hirst EA. Cellular retinoic acid-binding protein and the role of retinoic acid in the development of the chick embryo. Dev Biol. 1989;135 (1):124-32.

Malpel S, Mendelsohn C, Cardoso WV. Regulation of retinoic acid signaling during lung morphogenesis. Development. 2000;127 (14):3057-67.

Mark M, Ghyselinck NB, Chambon P. Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu Rev Pharmacol Toxicol. 2006;46:451-80.

McCaffery P, Wagner E, O'Neil J, Petkovich M, Drager UC. Dorsal and ventral retinal territories defined by retinoic acid synthesis, break-down and nuclear receptor expression. Mech Dev. 1999;82 (1-2):119-30.

Mekler LB. On the problem of oncogene of tumour viruses. Acta Virol. 1975;19 (6):501-8.

Mendelsohn C, Batourina E, Fung S, Gilbert T, Dodd J. Stromal cells mediate retinoid-dependent functions essential for renal development. Development. 1999;126 (6):1139-48.

Meyer BI, Gruss P. Mouse Cdx-1 expression during gastrulation. Development. 1993;117 (1):191-203.

Molotkov A, Fan X, Deltour L, Foglio MH, Martras S, Farres J, et al. Stimulation of retinoic acid production and growth by ubiquitously expressed alcohol dehydrogenase Adh3. Proc Natl Acad Sci U S A. 2002;99 (8):5337-42.

Moss JB, Xavier-Neto J, Shapiro MD, Nayeem SM, McCaffery P, Drager UC, et al. Dynamic patterns of retinoic acid synthesis and response in the developing mammalian heart. Dev Biol. 1998;199 (1):55-71.

Muhr J, Graziano E, Wilson S, Jessell TM, Edlund T. Convergent inductive signals specify midbrain, hindbrain, and spinal cord identity in gastrula stage chick embryos. Neuron. 1999;23 (4):689-702.

Muller T, Brohmann H, Pierani A, Heppenstall PA, Lewin GR, Jessell TM, et al. The homeodomain factor lbx1 distinguishes two major programs of neuronal differentiation in the dorsal spinal cord. Neuron. 2002;34 (4):551-62.

Murashov AK, Pak ES, Hendricks WA, Owensby JP, Sierpinski PL, Tatko LM, et al. Directed differentiation of embryonic stem cells into dorsal interneurons. FASEB J. 2005;19 (2):252-4.

Niederreither K, Abu-Abed S, Schuhbaur B, Petkovich M, Chambon P, Dolle P. Genetic evidence that oxidative derivatives of retinoic acid are not involved in retinoid signaling during mouse development. Nat Genet. 2002;31 (1):84-8.

Niederreither K, Dolle P. Retinoic acid in development: towards an integrated view. Nat Rev Genet. 2008;9 (7):541-53.

Niederreither K, Subbarayan V, Dolle P, Chambon P. Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat Genet. 1999;21 (4):444-8.

Niederreither K, Vermot J, Schuhbaur B, Chambon P, Dolle P. Retinoic acid synthesis and hindbrain patterning in the mouse embryo. Development. 2000;127 (1):75-85.

Nobrega MA, Pennacchio LA. Comparative genomic analysis as a tool for biological discovery. J Physiol. 2004;554 (1):31-9.

Northcutt RG, Gans C. The genesis of neural crest and epidermal placodes: a reinterpretation of vertebrate origins. Q Rev Biol. 1983;58 (1):1-28.

Novitch BG, Chen AI, Jessell TM. Coordinate regulation of motor neuron subtype identity and pan-neuronal properties by the bHLH repressor Olig2. Neuron. 2001;31 (5):773-89.

Novitch BG, Wichterle H, Jessell TM, Sockanathan S. A requirement for retinoic acid- mediated transcriptional activation in ventral neural patterning and motor neuron specification. Neuron. 2003;40 (1):81-95.

Ono Y, Fukuhara N, Yoshie O. TAL1 and LIM-only proteins synergistically induce retinaldehyde dehydrogenase 2 expression in T-cell acute lymphoblastic leukemia by acting as cofactors for GATA3. Mol Cell Biol. 1998;18 (12):6939-50.

Ovcharenko I, Loots GG, Nobrega MA, Hardison RC, Miller W, Stubbs L. Evolution and functional classification of vertebrate gene deserts. Genome Res. 2005;15 (1):137-45.

Ovcharenko I, Nobrega MA, Loots GG, Stubbs L. ECR Browser: a tool for visualizing and accessing data from comparisons of multiple vertebrate genomes. Nucleic Acids Res. 2004;32 (Web Server issue):280-6.

Papalopulu N, Clarke JD, Bradley L, Wilkinson D, Krumlauf R, Holder N. Retinoic acid causes abnormal development and segmental patterning of the anterior hindbrain in Xenopus embryos. Development. 1991;113 (4):1145-58.

Pennacchio LA, Rubin EM. Genomic strategies to identify mammalian regulatory sequences. Nat Rev Genet. 2001;2 (2):100-9.

Persson M, Stamataki D, te Welscher P, Andersson E, Bose J, Ruther U, et al. Dorsal-ventral patterning of the spinal cord requires Gli3 transcriptional repressor activity. Genes Dev. 2002;16 (22):2865-78.

Quandt K, Frech K, Karas H, Wingender E, Werner T. MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res. 1995;23 (23):4878-84.

Reijntjes S, Gale E, Maden M. Generating gradients of retinoic acid in the chick embryo: Cyp26C1 expression and a comparative analysis of the Cyp26 enzymes. Dev Dyn. 2004;230 (3):509-17.

Ross SA, McCaffery PJ, Drager UC, De Luca LM. Retinoids in embryonal development. Physiol Rev. 2000;80 (3):1021-54.

Rossant J, Zirngibl R, Cado D, Shago M, Giguere V. Expression of a retinoic acid response element-hsplacZ transgene defines specific domains of transcriptional activity during mouse embryogenesis. Genes Dev. 1991;5 (8):1333-44.

Sandell LL, Sanderson BW, Moiseyev G, Johnson T, Mushegian A, Young K, et al. RDH10 is essential for synthesis of embryonic retinoic acid and is required for limb, craniofacial, and organ development. Genes Dev. 2007;21 (9):1113-24.

Sasai Y, Lu B, Steinbeisser H, Geissert D, Gont LK, De Robertis EM. Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell. 1994;79 (5):779-90.

Schneider H. Métodos de análise filogenética. Um guia prático. 3rd ed. Ribeirão Preto: Editora Holos; 2007.

Schwartz RJ, Olson EN. Building the heart piece by piece: modularity of cis-elements regulating Nkx2-5 transcription. Development. 1999;126 (19):4187-92.

Sheng HZ, Bertuzzi S, Chiang C, Shawlot W, Taira M, Dawid I, et al. Expression of murine Lhx5 suggests a role in specifying the forebrain. Dev Dyn. 1997;208 (2):266- 77.

Shih SJ, Allan C, Grehan S, Tse E, Moran C, Taylor JM. Duplicated downstream enhancers control expression of the human apolipoprotein E gene in macrophages and adipose tissue. J Biol Chem. 2000;275 (41):31567-72.

Signore IA, Guerrero N, Loosli F, Colombo A, Villalon A, Wittbrodt J, et al. Zebrafish and medaka: model organisms for a comparative developmental approach of brain asymmetry. Philos Trans R Soc Lond B Biol Sci. 2009;364 (1519):991-1003.

Simoes-Costa MS, Azambuja AP, Xavier-Neto J. The search for non-chordate retinoic acid signaling: lessons from chordates. J Exp Zoolog B Mol Dev Evol.