• Nenhum resultado encontrado

2.3 Estratégias para minimizar o dano muscular induzido por exercício

2.3.1 Estratégias Nutricionais

2.3.1.3 Ingestão alimentar

Além das estratégias acima citadas para otimizar a recuperação muscular após o dano causado pelo exercício, é essencial que a ingestão energética seja adequada e contemple as necessidades individuais de macronutrientes e micronutrientes afim de compensar os gastos gerados pelo exercício em situações extremas (50–52). O déficit energético, que ocorre durante a recuperação muscular, pode levar a perda significativa de peso, incluindo a massa muscular, e sintomas

físicos e psicológicos de overtraining (201). Estudos que avaliaram a ingestão

alimentar em diferentes modalidades esportivas para comparar as práticas alimentares com as recomendações, demonstraram que as recomendações diárias estipuladas pelas diretrizes muitas vezes não são atingidas (50,55,56).

A maior parte das pesquisas relacionadas ao DMIE apresenta uma limitação, visto que não há a avaliação e o controle sobre a alimentação dos participantes durante o seguimento dos estudos (9,11,143), sendo que os autores apenas solicitam que os indivíduos não alterem sua alimentação no período das intervenções (13,16,31,53,54), em alguns casos fazendo apenas o preenchimento

de diário alimentar. Desta forma, não há garantia que todos os participantes tenham o consumo adequado de energia, macronutrientes e micronutrientes, além do número, do intervalo e da presença de proteína nas refeições, fatores estes que são importantes e podem ter influência sobre o processo de recuperação muscular.

A nutrição adequada é fundamental para conferir um equilíbrio proteico positivo para aumentar as taxas de síntese proteica muscular após o estímulo gerado pelo exercício (169,202). Algumas estratégias, com a ingestão de proteína após exercício de força (169,203), em porções distribuídas nas refeições ao longo do dia (170), e antes de dormir, parecem representar estratégias eficazes para inibir a degradação de proteínas musculares, estimular a síntese proteica muscular e facilitar a resposta adaptativa do músculo esquelético ao exercício (48,49). É sugerido que os estudos realizados com indivíduos que estejam com um balanço energético e nitrogenado negativos, apresentaram um potencial maior para efeitos ergogênicos associados à suplementação de proteínas (204).

O exercício de força gera a ativação da via de sinalização mTORC1

(Mammalian Target of Rapamycin Complex 1 - Complexo 1 da proteína alvo de

rapamicina em mamíferos), que regula a remodelação de proteínas musculares (205,206) e, desta forma, a nutrição pode exercer um efeito direto ou indireto sobre os fatores conhecidos que regulam o mTORC1: aminoácidos, glicose e fatores de crescimento (205). O que suporta esta informação é a evidência de que os aminoácidos essenciais estimulam a síntese de proteínas musculares (207) e a ingestão de carboidratos age na redução da degradação de proteínas (208).

O objetivo de padronizar a alimentação é garantir que os participantes realizem o mesmo número de refeições diárias, intervalos, quantidades e opções, mantenham a combinação de alimentos fontes de carboidrato e proteína nas principais refeições (café da manhã, almoço e jantar), consumam as mesmas porções de frutas e vegetais (para contemplar os micronutrientes), oleaginosas e laticínios ao longo do dia. Desta forma, o controle rigoroso da ingestão de nutrientes é de extrema importância em estudos que envolvem processo de recuperação muscular.

3REFERÊNCIASDAREVISÃO

1. Proske U, Morgan D. Muscle damage from eccentric exercise: Mechanism,

mechanical signs, adaptation and clinical applications. J Physiol. 2001;537(2):333–45.

2. Warren G, Lowe D, Armstrong R. Measurement tools used in the study of

eccentric contraction-induced injury. Sports Med. 1999;27(1):43–59.

3. Byrnes W. Delayed onset muscle soreness and training. Clin Sport Med.

1986;5(3):605–14.

4. Armstrong R. No mechanisms of exercise-induced delayed onset muscular

soreness: a brief review. Med Sci Sports Exerc. 1984;16(6):529–38.

5. Jones D a, Newham DJ, Round JM, Tolfree SEJ. Experimental human muscle

damage: Morphological changes in relation to other indices of damage. J Physiol. 1986;375:435–48.

6. Howell BYJN, Chleboun G, Conatser R. Muscle stiffness strength loss, swelling

and soreness following exercise-induced injury in humans. J Physiol. 1993;183–96.

7. Howatson G, Van Someren K a. The prevention and treatment of

exercise-induced muscle damage. Sport Med. 2008;38(6):483–503.

8. Cheung K, Hume P, Maxwell L. Delayed Onset Muscle Soreness. Sport Med

[Internet]. 2003;33(2):145–64. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/12617692%5Cnhttp://link.springer.com/art icle/10.2165/00007256-200333020-00005

9. Cockburn E, Hayes PR, French DN, Stevenson E, St Clair Gibson A. Acute

milk-based protein–CHO supplementation attenuates exercise-induced muscle damage. Appl Physiol Nutr Metab [Internet]. 2008;33(4):775–83. Available from: http://www.nrcresearchpress.com/doi/abs/10.1139/H08-057

10. Cockburn E, Stevenson E, Hayes PR, Robson-Ansley P, Howatson G. Effect of milk-based carbohydrate-protein supplement timing on the attenuation of

exercise-induced muscle damage. Appl Physiol Nutr Metab Metab [Internet]. 2010;35(3):270–7. Available from:

http://www.nrcresearchpress.com/doi/abs/10.1139/H10-017

11. Howatson G, Hoad M, Goodall S, Tallent J, Bell PG, French DN. Exercise-induced muscle damage is reduced in resistance-trained males by branched chain amino acids: a randomized, double-blind, placebo controlled study. J Int Soc Sports Nutr. 2012;9(1):20.

12. Nosaka K, Sacco P, Mawatari K. Effects of amino acid supple-mentation on muscle soreness and damage. Int J Sport Nutr Exerc. 2006;16:620–35. 13. Rankin P, Stevenson E, Cockburn E. The effect of milk on the attenuation of

exercise-induced muscle damage in males and females. Eur J Appl Physiol [Internet]. 2015;115(6):1245–61. Available from:

http://link.springer.com/10.1007/s00421-015-3121-0

14. Wojcik J, Walberg-Rankin J, Smith L, Gwazdauskas F. Comparison of carbohydrate and milk-based beverages on muscle damage and glycogen following exercise. Int J Sport Nutr. 2001;11:406–19.

15. Bowtell J, Sumners D, Dyer A, Fox P, Mileva K. Montmorencycherry juice reduces muscle damage caused by intensive strengthexercise. Med Sci Sport Exerc. 2011;43:1544–1551.

16. Bloomer RJ, Larson DE, Fisher-Wellman KH, Galpin AJ, Schilling BK. Effect of eicosapentaenoic and docosahexaenoic acid on resting and exercise-induced

inflammatory and oxidative stress biomarkers: a randomized, placebo controlled, cross-over study. Lipids Health Dis [Internet]. 2009;8(1):36. Available from: http://www.lipidworld.com/content/8/1/36

17. Filaire E, Massart A, Rouvei M, Portier H, Rosado F, Durand D. Effects of 6 weeks of n-3 fatty acids and antioxidant mixture on lipid peroxidation at rest and postexercise. Eur J Appl Physiol. 2011;111(8):1829–39.

18. Herbert R, de Noronha M, Kamper S. Stretching to prevent or reduce muscle soreness after exercise. Cochrane Database Syst Rev. 2011;7:CD004577. 19. Lieber R, Friden J. Morphologic and mechanical basis of delayed-onset muscle

soreness. J Am Acad Orthop Surg. 2002;10:67–73.

20. Gopinath B, Buyken A, Flood V, Empson M, Rochtchina E, Mitchell P. Consumption of polyunsaturated fatty acids, fish, and nuts and risk of inflammatory disease mortality. Am J Clin Nutr. 2011;93:1073–9.

21. Huang J, Frohlich J, Ignaszewski A. The impact of dietary changes and dietary supplements on lipid profile. Can J Cardiol. 2011;27(488–505).

22. Krumbholz R, Lembke P, Schirra N. Patent: Novel use of Omega-3 Fatty Acids. EP2222292.A2, 2010.

23. Poudyal H, Panchal S, Diwan V, Brown L. Omega-3 fatty acids and metabolic syndrome: Effects and emerging mechanisms of action. Prog Lipidic Res. 2011;50:372–87.

24. Smith G, Atherton P, Dominic NR, Mohammed BS, RankiN D, Rennie MJ, et al. Omega-3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperaminoacidemiahyperinsulinemia in healthy young and middle aged men and women. Clin Scinence. 2011;121:267–78.

25. Smith G, Atherton P, Reeds D, Mohammed B ?Selm., Rankin D, Rennie M, et

al. Omega-3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperinsulinaemia?hyperaminoacidaemia in healthy young and middle-aged men and women. Clin Sci [Internet]. 2011 Sep 1 [cited 2017 Jun 17];121(6):267–78. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/21501117

26. Rodacki CL, Rodacki AL, Pereira G, Naliwaiko K, Coelho I, Pequito D, et al. Fish-oil supplementation enhances the effects of strength training in elderly women. Am J Clin Nutr [Internet]. 2012 Feb 1 [cited 2017 Jun 17];95(2):428– 36. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22218156

27. Smith GI, Julliand S, Reeds DN, Sinacore DR, Klein S, Mittendorfer B. Fish oil-derived n-3 PUFA therapy increases muscle mass and function in healthy older adults. Am J Clin Nutr [Internet]. 2015 Jul 1 [cited 2017 Jun 17];102(1):115–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25994567

28. Tsuchiya Y, Yanagimoto K, Nakazato K, Hayamizu K. Eicosapentaenoic and

docosahexaenoic acids ‑ rich fish oil supplementation attenuates strength loss

and limited joint range of motion after eccentric contractions : a randomized , double ‑ blind , placebo ‑ controlled , parallel ‑ group trial. Eur J Appl Physiol. 2016;116(6):1179–88.

29. Tartibian B, Maleki B, Abbasi A. The effects of ingestion of omega-3 fatty acids on perceived pain and external symptoms of delayed onset muscle soreness in untrained men. Clin Sport Med. 2009;19:115–9.

30. Tinsley GM, Gann JJ, Huber SR, Andre TL, La Bounty PM, Bowden RG, et al. Effects of Fish Oil Supplementation on Postresistance Exercise Muscle

Soreness. J Diet Suppl [Internet]. 2016 Jan 2 [cited 2017 May 30];14(1):89– 100. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27441600

31. Jouris KB, McDaniel JL, Weiss EP. The Effect of Omega-3 Fatty Acid

Supplementation on the Inflammatory Response to eccentric strength exercise. J Sports Sci Med [Internet]. 2011;10(3):432–8. Available from:

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3737804&tool=pmce ntrez&rendertype=abstract

32. Jakeman JR, Lambrick DM, Wooley B, Babraj JA, Faulkner JA. Effect of an acute dose of omega-3 fish oil following exercise-induced muscle damage. Eur J Appl Physiol [Internet]. 2017;117(3):575–82. Available from:

http://link.springer.com/10.1007/s00421-017-3543-y

33. Biolo G, Maggi S, Williams B, Tipton K, Wolfe R. Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am J Physiol Endocrinol Metab. 1995;268:E514–20.

34. Phillips S, Tipton K, Aarsland A, Wolf S, Wolfe R. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Phisiol. 1997;273:E99-107.

35. Rennie M, Edwards R, Halliday D, Matthews D, Wolman S, Millward D. Muscle protein synthesis measured by stable isotope techniques in man: the effects of feeding and fasting. Clin Sci. 1982;(63):519–23.

36. Cuthbertson D, Smith K, Babraj J, Leese G, Waddell T, Atherton P, et al. Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J. 2005;19(422–424).

37. Phillips SM, Tang JE, Moore DR. The role of milk- and soy-based protein in support of muscle protein synthesis and muscle protein accretion in young and elderly persons. J Am Coll Nutr. 2009;28(4):343–54.

38. Katsanos C, Kobayashi H, Sheffield-Moore M, Aarsland A, Wolfe R. A high proportionof leucine is required for optimal stimulation of the rate of muscle protein synthesis by essentialamino acids in the elderly. Am J Physiol Endocrinol Metab. 2006;291:E381–7.

39. Dreyer H, Drummond M, Pennings B, Fujita S, Glynn E, Chinkes D, et al. Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle. Am J Physiol Endocrinol MetabPhysiol Endocrinol Metab.

2008;294:E392–400.

40. Moore D, Tang J, Burd N, Rerecich T, Tarnopolsky M, Phillips S. Differential stimulation of myofibrillar and sarcoplasmic protein synthesis with protein ingestion at rest and after resistance exercise. J Physiol. 2009;587:897–904. 41. West D, Burd N, Coffey V, Baker S, Burke L, Hawley J, et al. Rapid

aminoacidemia enhances myofibrillar protein synthesis and anabolic

intramuscular signaling responses after resistance exercise. Am J Clin Nutr. 2011;94:795–893.

42. Tang JE, Moore DR, Kujbida GW, Tarnopolsky M a, Phillips SM. Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol. 2009;107(3):987–92.

43. Pennings B, Boirie Y, Senden JMG, Gijsen AP, Kuipers H, Van Loon LJC. Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. Am J Clin Nutr.

2011;93(5):997–1005.

44. Burd N a., Yang Y, Moore DR, Tang JE, Tarnopolsky M a., Phillips SM. Greater stimulation of myofibrillar protein synthesis with ingestion of whey protein

isolate v. micellar casein at rest and after resistance exercise in elderly men. Br J Nutr. 2012;108(6):958–62.

45. Rowlands DS, Nelson AR, Raymond F, Metairon S, Mansourian R, Clarke J, et al. Protein-leucine Ingestion Activates a Regenerative Inflammo-Myogenic Transcriptome in Skeletal Muscle Following Intense Endurance Exercise. Physiol Genomics [Internet]. 2015 Oct 27 [cited 2015 Oct

31];physiolgenomics.00068.2015. Available from:

http://physiolgenomics.physiology.org/content/early/2015/10/23/physiolgenomic s.00068.2015

46. Beelen M, Zorenc A, Pennings B, Senden JM, Kuipers H, Van Loon LJ. Impact of protein coingestion on muscle protein synthesis during continuous

endurance type exercise. Am J Phisiol. 2011;300(E):945–54.

47. Burd N, West D, Moore D, Atherton P, Staples A, Prior T, et al. Enhanced amino acid sensitivity of myofibrillar protein synthesis persists for up to 24 h after resistance exercise inyoung men. J Nutr. 2011;141:568–73.

48. Res PT, Groen B, Pennings B, Beelen M, Wallis G a., Gijsen AP, et al. Protein Ingestion before Sleep Improves Postexercise Overnight Recovery. Med Sci Sport Exerc [Internet]. 2012;44(8):1560–9. Available from:

http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=0 0005768-201208000-00020

49. Pennings B, Koopman R, Beelen M, Senden JMG, Saris WHM, Loon LJC Van. Exercising before protein intake allows for greater use of dietary protein – derived amino acids for de novo muscle protein synthesis in both young and elderly men 1 – 3. Am J Clin Nutr. 2011;93:322–31.

50. Burke L, Cox G, Culmmings N, B. D. Guidelines for daily carbohydrate intake: do athletes achieve them? Sport Med. 2001;31:267–99.

51. van Erp-Baart A, Sarie W, Binkhorst R, VOS J, ELVERS J. Nationwide survey on nutritional habits in elite athletes. Part I. Energy, carbohydrate, protein, and fat intake. Int J Sport Med. 1989;10(1):S3–10.

52. Hawley J, Dennis S, Lindsay F, Noakes T. Nutritional practices of athletes: are they sub-optimal? J Sport Sci Sport Sci. 1995;13:S75-81.

53. Mickleborough TD, Sinex J a, Platt D, Chapman RF, Hirt M. The effects PCSO-524®, a patented marine oil lipid and omega-3 PUFA blend derived from the New Zealand green lipped mussel (Perna canaliculus), on indirect markers of muscle damage and inflammation after muscle damaging exercise in untrained men: a random. J Int Soc Sports Nutr [Internet]. 2015;12(1):10. Available from: http://www.jissn.com/content/12/1/10

54. Cockburn E, Robson-Ansley P, Hayes PR, Stevenson E. Effect of volume of milk consumed on the attenuation of exercise-induced muscle damage. Eur J Appl Physiol [Internet]. 2012;112(9):3187–94. Available from:

http://link.springer.com/10.1007/s00421-011-2288-2

55. Schröder H, Navarro E, Mora J, Seco J, Torregrosa J, Tramullas A. Dietary Habits and Fluid Intake of a Group of Elite Spanish Basketball Players: A Need for Professional Advice? Eur J Sport Sci. 2004;4(2):1–15.

56. Beidleman B, Puhl J, De Souza M. Energy balance in female distance. Am J Clin Nutr. 1995;61(2):303–11.

57. Clarkson PM, Hubal MJ. Exercise-induced muscle damage in humans. Am J Phys Med Rehabil [Internet]. 2002 Nov [cited 2017 May 3];81(11 Suppl):S52-69. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12409811

mechanical signs , adaptation and clinical applications. J Physiol. 2001;333– 45.

59. Morgan DL, Allen DG. Early events in stretch-induced muscle damage. J Appl Physiol [Internet]. 1999 Dec [cited 2017 May 7];87(6):2007–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10601142

60. Proske U, Allen TJ. Damage to skeletal muscle from eccentric exercise. Exerc Sport Sci Rev [Internet]. 2005 Apr [cited 2017 May 7];33(2):98–104. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15821431

61. Byrne C, Twist C, Eston R. Neuromuscular function after exercise-induced muscle damage: theoretical and applied implications. Sports Med [Internet]. 2004 [cited 2017 May 7];34(1):49–69. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/14715039

62. Cheung K, Hume P, Maxwell L. Delayed onset muscle soreness : treatment strategies and performance factors. Sports Med [Internet]. 2003 [cited 2017 May 7];33(2):145–64. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/12617692

63. Clarkson PM, Nosaka K, Braun B. Muscle function after exercise-induced muscle damage and rapid adaptation. Med Sci Sports Exerc [Internet]. 1992 May [cited 2017 May 7];24(5):512–20. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/1569847

64. Jakeman JR, Macrae R, Eston R. A single 10-min bout of cold-water immersion therapy after strenuous plyometric exercise has no beneficial effect on recovery from the symptoms of exercise-induced muscle damage. Ergonomics [Internet]. 2009 Apr [cited 2017 May 7];52(4):456–60. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/19401897

65. Webb EC, Willems ME. Effects of Wearing Graduated Compression Garment during Eccentric Exercise. Med Sport [Internet]. 2010 Dec 1 [cited 2017 May 3];14(4):193–8. Available from:

http://versita.metapress.com/openurl.asp?genre=article&id=doi:10.2478/v1003 6-010-0031-4

66. Ostrowski K, Rohde T, Asp S, Schjerling P, Pedersen BK. Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. J Physiol [Internet]. 1999 Feb 15 [cited 2017 May 7];287–91. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/9925898

67. PHILLIPS T, CHILDS AC, DREON DM, PHINNEY S, LEEUWENBURGH C. A Dietary Supplement Attenuates IL-6 and CRP after Eccentric Exercise in Untrained Males. Med Sci Sport Exerc [Internet]. 2003 Dec [cited 2017 May 7];35(12):2032–7. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/14652498

68. Howatson G, van Someren KA. The prevention and treatment of exercise-induced muscle damage. Sports Med [Internet]. 2008 [cited 2017 May 9];38(6):483–503. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/18489195

69. McHugh MP. Recent advances in the understanding of the repeated bout effect: the protective effect against muscle damage from a single bout of eccentric exercise. Scand J Med Sci Sports [Internet]. 2003 Apr [cited 2017 May 9];13(2):88–97. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/12641640

70. Bruno Manfredini Baroni. Adaptações neuromusculares de extensores de joelho ao treinamento excêntrico em dinamômetro isocinético. 2012.

71. Armstrong R, Warren G, Warren J. Mechanisms of exercise-induced muscle fibre injury. Sport Med. 1991;12:184–207.

72. Ebbeling CB, Clarkson PM. Exercise-induced muscle damage and adaptation. Sports Med [Internet]. 1989 Apr [cited 2017 May 14];7(4):207–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2657962

73. Armstrong RB, Ogilvie RW, Schwane JA. Eccentric exercise-induced injury to rat skeletal muscle. J Appl Physiol [Internet]. 1983 Jan [cited 2017 May

14];54(1):80–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6826426 74. Bigland-Ritchie B, Woods JJ. Integrated electromyogram and oxygen uptake

during positive and negative work. J Physiol [Internet]. 1976 Sep [cited 2017 May 14];260(2):267–77. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/978517

75. Newham DJ, McPhail G, Mills KR, Edwards RH. Ultrastructural changes after concentric and eccentric contractions of human muscle. J Neurol Sci [Internet]. 1983 Sep [cited 2017 May 14];61(1):109–22. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/6631446

76. Morgan DL. New insights into the behavior of muscle during active lengthening. Biophys J [Internet]. 1990 Feb [cited 2017 May 14];57(2):209–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2317547

77. Morgan DL, Proske U. POPPING SARCOMERE HYPOTHESIS EXPLAINS STRETCH-INDUCED MUSCLE DAMAGE. Clin Exp Pharmacol Physiol [Internet]. 2004 Aug [cited 2017 May 14];31(8):541–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15298548

78. Lieber RL, Fridén J. Mechanisms of muscle injury after eccentric contraction. J Sci Med Sport [Internet]. 1999 Oct [cited 2017 May 14];2(3):253–65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10668762

79. Fridén J, Sjöström M, Ekblom B. Myofibrillar damage following intense eccentric exercise in man. Int J Sports Med [Internet]. 1983 Aug [cited 2017 May 14];4(3):170–6. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/6629599

80. Armstrong R. Mechanisms of exercise-induced delayed onset muscular soreness: a brief review. Med Sci Sports Exerc. 1984;16(6):529–38.

81. De Vries HA. Quantitative electromyographic investigation of the spasm theory of muscle pain. Am J Phys Med [Internet]. 1966 Jun [cited 2017 May

14];45(3):119–34. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/5938206

82. Byrnes WC, Clarkson PM. Delayed onset muscle soreness and training. Clin Sports Med [Internet]. 1986 Jul [cited 2017 May 14];5(3):605–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3521903

83. Duncan CJ. Role of calcium in triggering rapid ultrastructural damage in muscle: a study with chemically skinned fibres. J Cell Sci [Internet]. 1987 May [cited 2017 May 16];87 ( Pt 4):581–94. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/3116006

84. Gissel H, Clausen T. Excitation-induced Ca2+ influx and skeletal muscle cell damage. Acta Physiol Scand [Internet]. 2001 Mar [cited 2017 May

16];171(3):327–34. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/11412145

85. McNeil PL, Khakee R. Disruptions of muscle fiber plasma membranes. Role in exercise-induced damage. Am J Pathol [Internet]. 1992 May [cited 2017 May 16];140(5):1097–109. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/1374591

86. Yasuda T, Sakamoto K, Nosaka K, Wada M, Katsuta S. Loss of sarcoplasmic reticulum membrane integrity after eccentric contraction. Acta Physiol Scand. 1997;161(4):581–2.

87. Nielsen JS, Madsen K, Jorgensen L V., Sahlin K. Effects of lengthening contraction on calcium kinetics and skeletal muscle contractility in humans. Acta Physiol Scand [Internet]. 2005 Jul [cited 2017 May 16];184(3):203–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15954988

88. Byrd SK. Alterations in the sarcoplasmic reticulum: a possible link to exercise-induced muscle damage. Med Sci Sports Exerc [Internet]. 1992 May [cited 2017 May 16];24(5):531–6. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/1569849

89. Fridén J, Seger J, Sjöström M, Ekblom B. Adaptive response in human skeletal muscle subjected to prolonged eccentric training. Int J Sports Med [Internet]. 1983 Aug [cited 2017 May 16];4(3):177–83. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/6629600

90. Yu J-G, Malm C, Thornell L-E. Eccentric contractions leading to DOMS do not cause loss of desmin nor fibre necrosis in human muscle. Histochem Cell Biol. 2002;118(1):29–34.

91. Yu J-G, Fürst DO, Thornell L-E. The mode of myofibril remodelling in human skeletal muscle affected by DOMS induced by eccentric contractions.

Histochem Cell Biol [Internet]. 2003 May [cited 2017 May 16];119(5):383–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12712356

92. Yu J-G, Carlsson L, Thornell L-E. Evidence for myofibril remodeling as

opposed to myofibril damage in human muscles with DOMS: an ultrastructural and immunoelectron microscopic study. Histochem Cell Biol [Internet]. 2004 Mar 1 [cited 2017 May 16];121(3):219–27. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/14991331

93. Yu J-G, Thornell L-E. Desmin and actin alterations in human muscles affected by delayed onset muscle soreness: a high resolution immunocytochemical study. Histochem Cell Biol [Internet]. 2002 Aug [cited 2017 May

16];118(2):171–9. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/12189520

94. Hill J, Howatson G, van Someren K, Leeder J, Pedlar C. Compression garments and recovery from exercise-induced muscle damage: a

meta-analysis. Br J Sports Med [Internet]. 2014 Sep [cited 2017 May 3];48(18):1340– 6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23757486

95. Lau WY, Blazevich AJ, Newton MJ, Wu SSX, Nosaka K. Assessment of Muscle Pain Induced by Elbow-Flexor Eccentric Exercise. J Athl Train [Internet]. 2015 Nov [cited 2017 Jun 19];50(11):1140–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26523661

96. McLeay Y, Barnes MJ, Mundel T, Hurst SM, Hurst RD, Stannard SR. Effect of New Zealand blueberry consumption on recovery from eccentric exercise-induced muscle damage. J Int Soc Sports Nutr [Internet]. 2012 Jul 11 [cited 2017 May 17];9(1):19. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/22564864

97. Connolly Da J, McHugh M, Padilla-Zakour O. Efficacy of a tartcherry juice

Documentos relacionados