• Nenhum resultado encontrado

INTERNATIONAL SYMPOSIUM OF PHARMACEUTICAL SCIENCES, 2011, Natal Annals of II INTERNATIONAL SYMPOSIUM OF

1. Karla Simone Costa de Souza Estudo da associação dos genes

TGFΒ1, IGF1, IGF1R e LRP5 da via WNT/Β-Catenina com o desenvolvimento da osteopenia em pacientes com Diabetes mellitus tipo 1. (Co-orientadora), 2013.

1. American Diabetes Association. Standards of medical care in diabetes-- 2013. Diabetes Care. 2014 Jan;37(S1):S14–S80.

2. Sbd D. Diretrizes da Sociedade Brasileira de Diabetes 2009. 2009;

3. Eizirik DL, Colli ML, Ortis F. The role of inflammation in insulitis and beta- cell loss in type 1 diabetes. Nat Rev Endocrinol. 2009 Apr;5(4):219–26. 4. Navarro-González JF, Mora-Fernández C, Fuentes MM de, García-Pérez

J. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol. Nature Publishing Group; 2011 Jun;7(6):327–40.

5. Gluba A, Banach M, Hannam S, Mikhailidis DP, Sakowicz A, Rysz J. The role of Toll-like rerecptors in renal diseases. Nat Rev Nephrol. 2010;224– 35.

6. Ururahy MAG, Loureiro MB, Freire-Neto FP, de Souza KSC, Zuhl I, Brandão-Neto J, et al. Increased TLR2 expression in patients with type 1 diabetes: evidenced risk of microalbuminuria. Pediatr Diabetes. 2012 Mar;13:147–54.

7. Devaraj S, Jialal I, Yun J-M, Bremer A. Demonstration of increased toll- like receptor 2 and toll-like receptor 4 expression in monocytes of type 1 diabetes mellitus patients with microvascular complications. Metabolism. Elsevier Inc.; 2011 Feb;60(2):256–9.

8. El-Achkar TM, Dagher PC. Renal toll-like receptors: recent advances and implications for diasease. Nat Clin Pract Nephrol. 2006;2(10):568–81. 9. Bjørnvold M, Munthe-Kaas MC, Egeland T, Joner G, Dahl-Jørgensen K,

Njølstad PR, et al. A TLR2 polymorphism is associated with type 1 diabetes and allergic asthma. Genes Immun. 2009 Mar;10:181–7.

10. Park Y, Park S, Yoo E, Kim D, Shin H. Association of the polymorphism for Toll-like receptor 2 with type 1 diabetes susceptibility. Ann N Y Acad Sci. 2004 Dec;1037:170–4.

12. Sassy-Prigent C, Heudes D, Mandet C, Bélair MF, Michel O, Perdereau B, et al. Early glomerular macrophage recruitment in streptozotocin- induced diabetic rats. Diabetes. 2000 Mar;49(3):466–75.

13. Luotola K, Pääkkönen R, Alanne M, Lanki T, Moilanen L, Surakka I, et al. Association of variation in the interleukin-1 gene family with diabetes and glucose homeostasis. J Clin Endocrinol Metab. 2009 Nov;94(11):4575– 83.

14. Lee S-H, Lee TW, Ihm C-G, Kim MJ, Woo J-T, Chung J-H. Genetics of diabetic nephropathy in type 2 DM: candidate gene analysis for the pathogenic role of inflammation. Nephrology. 2005 Oct;10:S32–S36. 15. Thomson SC, Deng A, Bao D, Satriano J, Blantz RC, Vallon V. Ornithine

decarboxylase, kidney size, and the tubular hypothesis of glomerular hyperfiltration in experimental diabetes. J Clin Invest. 2001;107(2):217– 24.

16. Aso Y, Yoshida N, Okumura K, Wakabayashi S, Matsutomo R, Takebayashi K, et al. Coagulation and inflammation in overt diabetic nephropathy: association with hyperhomocysteinemia. Clin Chim Acta. 2004 Oct;348:139–45.

17. Saraheimo M, Teppo A-M, Forsblom C, Fagerudd J, Groop P-H. Diabetic nephropathy is associated with low-grade inflammation in type 1 diabetic patients. Diabetologia. 2003 Oct;46:1402–7.

18. Cooper JD, Smyth DJ, Bailey R, Payne F, Downes K, Godfrey LM, et al. The candidate genes TAF5L, TCF7, PDCD1, IL6 and ICAM1 cannot be excluded from having effects in type 1 diabetes. BMC Med Genet. 2007 Jan;8(71):1–14.

19. Gillespie KM, Nolsøe R, Betin VM, Kristiansen OP, Bingley PJ, Mandrup- poulsen T, et al. Is puberty an accelerator of type 1 diabetes in IL6-174CC females? Diabetes. 2005;54:1245–8.

IL6-174G/C promoter polymorphism with early-onset type 1 diabetes in females. Hum Mol Genet. 2003 May 15;12(10):1101–10.

21. Myśliwska J, Zorena K, Myśliwiec M, Malinowska E, Raczyńska K, Balcerska A. The -174GG interleukin-6 genotype is protective from retinopathy and nephropathy in juvenile onset type 1 diabetes mellitus. Pediatr Res. 2009 Sep;66(3):341–5.

22. Kitamura A, Hasegawa G, Obayashi H, Kamiuchi K, Ishii M, Yano M, et al. Interleukin-6 polymorphism (-634C/G) in the promotor region and the progression of diabetic nephropathy in type 2 diabetes. Diabet Med. 2002 Dec;19(12):1000–5.

23. Mensah-Brown EPK, Obineche EN, Galadari S, Chandranath E, Shahin A, Ahmed I, et al. Streptozotocin-induced diabetic nephropathy in rats: the role of inflammatory cytokines. Cytokine. 2005 Aug 7;31(3):180–90. 24. Schram MT, Chaturvedi N, Schalkwijk CG, Fuller JH, Stehouwer CDA,

EURODIAB PCS. Markers of inflammation are cross-sectionally associated with microvascular complications and cardiovascular disease in type 1 diabetes - the EURODIAB Prospective Complications Study. Diabetologia. 2005 Feb;48(2):370–8.

25. Boraska V, Skrabic V, Culic VC, Becic K, Kapitanovic S, Zemunik T. Association of TNF promoter polymorphisms with type 1 diabetes in the South Croatian population. Biol Res. 2008;41:157–63.

26. Boraska V, Zeggini E, Groves CJ, Rayner NW, Skrabić V, Diakite M, et al. Family-based analysis of tumor necrosis factor and lymphotoxin-alpha tag polymorphisms with type 1 diabetes in the population of South Croatia. Hum Immunol. 2009 Mar;70(3):195–9.

27. Iwamoto M, Mizuiri S, Arita M, Hemmi H. Nuclear factor-kappaB activation in diabetic rat kidney: evidence for involvement of P-selectin in diabetic nephropathy. Tohoku J Exp Med. 2005;206(2):163–71.

28. Tam FWK, Riser BL, Meeran K, Rambow J, Pusey CD, Frankel AH. Urinary monocyte chemoattractant protein-1 (MCP-1) and connective

29. Hoorn EJ, Pisitkun T, Zietse R, Gross P, Frokiaer J, Wang NS, et al. Prospects for urinary proteomics: exosomes as a source of urinary biomarkers. Nephrology (Carlton). 2005 Jun;10(3):283–90.

30. Pisitkun T, Shen R-F, Knepper M a. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13368–73.

31. Vestra MD, Masiero A, Roiter AM, Saller A, Crepaldi G. Studies in Patients With Type 2 Diabetes. 2003;52(August 2002).

32. Chang J-H, Paik S-Y, Mao L, Eisner W, Flannery PJ, Wang L, et al. Diabetic kidney disease in FVB/NJ Akita mice: temporal pattern of kidney injury and urinary nephrin excretion. PLoS One. 2012 Jan;7(4):e33942. 33. Lemley K V. Diabetes and chronic kidney disease: lessons from the Pima

Indians. Pediatr Nephrol. 2008 Nov;23(11):1933–40.

34. Zhou H, Cheruvanky A, Hu X, Matsumoto T, Hiramatsu N, Cho ME, et al. Urinary exosomal transcription factors, a new class of biomarkers for renal disease. Kidney Int. 2008 Sep;74(5):613–21.

35. Su J, Li S-J, Chen Z-H, Zeng C-H, Zhou H, Li L-S, et al. Evaluation of podocyte lesion in patients with diabetic nephropathy: Wilms’ tumor-1 protein used as a podocyte marker. Diabetes Res Clin Pract. 2010 Feb;87(2):167–75.

36. Quaggin SE. Transcriptional regulation of podocyte specification and differentiation. Microsc Res Tech. 2002 May 15;57(4):208–11.

37. Shankland SJ. The podocyte’s response to injury: role in proteinuria and glomerulosclerosis. Kidney Int. 2006 Jun;69(12):2131–47.

Ressaltamos que os dados referentes à expressão do RNAm não foram explorados nos dois artigos apresentados anteriormente, entretanto estes dados estão sendo analisados em conjunto com os demais com o intuito de serem alvos de uma nova publicação.

Foi possível observar um aumento significativo da expressão para os genes TLR2 e MYD88 no grupo DM1 quando comparado com o grupo NG (p<0,05) (FIGURA 1).

FIGURA 1 – Expressão de RNAm em PBMCs dos genes TLR2 (A), TLR4 (B),

MYD88 (C), IL1B (D), IL6 (E) e TNFA (F), normalizados pela β-actina nos grupos estudados. As barras representam, o número de vezes (fold change) da expressão do RNAm nos grupos em relação à média da expressão no grupo normoglicêmico. NG: Grupo normoglicêmico; DM1: Grupo Diabetes tipo 1

p=0,001 p=0,641 p=0,002 p=0,518

C

D

E

F

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE - UFRN

Documentos relacionados