• Nenhum resultado encontrado

7.2 ENSAIO EXPERIMENTAL

7.2.4 Mortalidade

O ensaio foi iniciado com 549 animais com 78 dias de idade, sendo estes divididos pelos 2 tratamentos. No dia 159, quando foi dado por terminado o ensaio, estavam presentes apenas 526 animais, tendo durante a realização deste morrido 23 animais.

Na tabela 15, podemos observar o número de animais mortos em cada tratamento, sendo que o tratamento no qual ocorreram mais mortes foi no dos animais vacinados, com 13 baixas,

Avaliação dos efeitos da vacinação contra Actinobacillus pleuropneumoniae em suínos na engorda

44

representando 4,51% do número de animais iniciais. No tratamento controlo morreram 10 animais representado estes 3,83 % dos animais que iniciaram o ensaio.

Tabela 15: Taxa de mortalidade durante o ensaio por tratamento

Estes resultados não apresentam diferenças na mortalidade entre os 2 tratamentos (P> 0,05), o que não coincide com os resultados obtidos por Gozio et al. (2006) que obtiveram diferenças estatísticas na taxa de mortalidade, sendo esta de 1,39% nos animais vacinados e de 4,17% nos animais de controlo. No trabalho de Bosch et al. (2012) as diferenças também foram significativas, tendo a taxa de mortalidade dos animais vacinados sido de 2,81%, enquanto que a dos animais controlo foi de 10,73 %. Também Bilic et al. (2000) obtiveram diferenças significativas, tendo neste caso a mortalidade dos animais do grupo vacinado sido de 0,96 % e nos animais de controlo de 5,79 %. Nestes 3 trabalhos as taxas de mortalidade dos animais vacinados foram inferiores às dos animais do grupo não vacinado. No nosso caso não houve quaisquer diferenças nas taxas de mortalidade em ambos os tratamentos. Provavelmente, a não ocorrência de qualquer surto da doença na exploração e, em particular nos animais do ensaio, não permitiu que os animais vacinados e, portanto, imunes ao agente infeccioso, mostrassem vantagens comparativas. Tratamento 2 Controlo Vacina Dia 78 261 288 Dia 159 251 275 Mortes 10 13 Taxa mortalidade (%) 3,83 4,51 Ns

Conclusão

8 Conclusão

As infecções respiratórias provocadas pelo App estão amplamente distribuídas pelos principais países produtores de suínos. Para minimizar os riscos desta infecção se disseminar por todo o efectivo, algumas explorações optam por realizar a vacinação contra o App.

Neste trabalho avaliaram-se os efeitos da aplicação de uma vacina contra o App, comparando os resultados produtivos de animais vacinados com os dos animais não vacinados. Na comparação dos resultados produtivos deste ensaio, verificou-se que não houve diferenças estatísticas significativas (P> 0,05) entre os dois tratamentos. Este resultado pode ser explicado pela não ocorrência de nenhum surto da doença durante a realização do ensaio. Os resultados produtivos (peso de abate, GMD, IC e mortalidade) dos 2 grupos de animais foram melhores quando comparados com os resultados obtidos nas explorações dos principais países produtores de porcos. Também a avaliação feita em matadouros não revelou quaisquer tipos de lesões dignas de destaque.

Num futuro estudo, sobre o efeito da vacinação contra o App, seria interessante realizar o ensaio numa exploração com evidências sorológicas do agente e em que os animais no matadouro apresentem lesões compativeis.

Avaliação dos efeitos da vacinação contra Actinobacillus pleuropneumoniae em suínos na engorda

Bibliografia

Angen, Ø., Ahrens, P., & Jessing, S. (2008). Development of a multiplex PCR test for identification of Actinobacillus pleuropneumoniae serovars 1, 7, and 12. Veterinary Microbiology 132 , 312–318. Benfield, D. (2008). The impact of viral ecology and evolution on the science of managing viral diseases of swine. AASV Annual Meeting, 377-383.

Bernardo, T., Dohoo, I., & Donald, A. (1990). Effect of ascariasis and respiratory disease on growth rate in swine. Canadian Journal of Veterinary Research 54, 278-284.

Bertram, T. (1985). Quantitative morphology of peracute pulmonary lesions in swine induced by Haemophilus pleuropneumoniae. Vet Pathol 22, 598-609.

Beskow, P., Lundeheim, N., & Holmgren, N. (2008). Risk factors for the development of pleuritis and pleuropneumonias in pigs. Svensk Veterinärtidning 60(12), 11-18., 11-18.

Bilic, V., Habrun, B., & Humski, A. (2000). The first evaluation of a porcinepleuropneumonia subunit vaccine in Croatia. In The 16th International Pig Veterinary Society Congress (p. 508). Melbourne.

Bosch, M., Menjon, R., Bollo, J., & Jiménez, M. (2012). Efficacy and profitability of Porcilis® App vaccination in the control of acute App outbreaks. In Proceedings of the 21th IPVS Congress, (p. 615). Korea.

Bossé, J. J., Sheehan, B., Beddek, A., Rycroft, A., Kroll, J., & Langford, P. (2002). Actinobacillus pleuropneumoniae: pathobiology and pathogenesis of infection. Microbes and Infection 4, 225- 235.

BPEX. (2011). 2010 Pig Cost of Production in Selected Countries. Agriculture and Horticulture Development Board.

Brunier, E., Dan, T., Nam, N., Ninh, N., Tung, L., & Giang, P. (2012). Cost benefit comparison between vaccinating against Actinobacillus pleuropneumoniae and using a specific antibiotic metaphylaxis program. In Proceedings of the 21th IPVS Congress, (p. 607). Korea.

Buiter, J., & Hoff, S. (1998). Ammonia Distribution in a pit-ventiladed confinement building: one- half scale model study. American Society of Agricultural Engineers 41, 1817-1827.

Chae, C. (2005). A review of Porcine Circovirus 2 - associated syndromes and diseases. The Veterinary Journal 169, 326-336.

Chiers, K. (2004). Detection of pigs carrying Actinobacillus pleuropneumoniae in their upper respiratory tract using polymerase chain reaction. Universiteit Gent.

Cho, W., Jung, K., Kim, J., Ha, Y., & Chae, C. (2005). Expression of mRNA encoding interleukin (IL)- 10, IL-12p35 and IL-12p40 in lungs from pigs experimentally infected with Actinobacillus pleuropneumoniae. Vet Res Commun 29, 111-122.

Bibliografia

48

Christensen, G., & Mousing, J. (1992). Respiratory System. In B. Straw (Ed.), Diseases of Swine 7 Edition (pp. 138-162). Iowa: Iowa University Press Ames.

de Lange, C., & Dewey, C. (2006). Management of Growing-Finishing Pigs. In B. Straw, J. Zimmerman, S. D'Allaire, & D. Taylor (Edits.), Diseases of swine (pp. 1055-1064). Iowa: Blackwell Publishing.

Dom, P., Haesebrouck, F., Ducatelle, R., & Charlier, G. (1994). In vivo association of Actinobacillus pleuropneumoniae serotype 2 with the respiratory epithelium of pigs. Infection and Immunity 66, 1262-1267.

Dom, P., Haesebrouck, F., Kamp, E., & Smits, M. (1992). Influence of Actinobacillus pleuropneumoniae serotype 2 and its cytolysins on porcine neutrophil chemiluminescence. Infection and Imnunity 60, 4328-4334.

Done, S. (1991). Environmental factors affecting the severity of pneumonia in pigs. Veterinary Record. Veterinary Record 128, 582-586.

Dubreuil, J., Jacques, M., Mittal, K., & Gottschalk, M. (2000). Actinobacillus pleuropneumoniae surface polysaccharides: their role in diagnosis and immunogenicity. Animal Health Research Reviews 1, 73-93.

Duchaine, C., Grimard, Y., & Cormier, Y. (2000). Influence of building maintenance, environmental factors and season on airborne contaminants of swine confinement building. Amer Ind. Hyg Assn J 61: 56-63, 56-63.

Frey, J., Beck, M., van den Bosch, J., Segers, R., & Nicolet, J. (1995). Development of an efficient PCR method for toxin typing of Actinobacillus pleuropneumoniae strains. Molecular and Cellular Probes 9, , 277-282.

Frey, J., Bossé, J., Chang, Y., Cullen, J., Fenwick, B., Gerlach, G., & Gygi, D. (1993). Actinobacillus pleuropneumoniae RTX-toxins: uniform designation of haemolysins, cytolysins pleurotoxin and their genes. J. Gen. Microbiol 139, 1723-1728.

Gadd, J. (2006). PMWS. In J. Gadd (Ed.), Producción porcina, John Gadd descubre Lo que los libros detexto no cuentan (pp. 217-224). Saragoça: SERVET.

Golberg, T. (2006). An evolutionary view of disease emergence: Why and how organisms become pathogens, and implications for emerging disease. AASV Annual Meeting Seminar, 373-374. Gonyou, H., Lemay, S., & Zhang, Y. (2006). Effects of the Environment on Productivity and Diseases. In J. Z. B. Straw (Ed.), Diseases of Swine, 9th Edition. (pp. 1027-1038). Wiley-Blackwell. Gottschaalk, M., & Taylor, D. (2006). Actinobacillus pleuropneumoniae. In B. Straw, J. Zimmerman, & S. e. D'Allaire, Diseases of Swine 9th Edition (pp. 563-576). Iowa: Blackwell Publishing.

Gottschalk, M. (2012). Actinobacillosis. In K. L. Zimmerman J., Diseases of Swine, 10th Edition (pp. 653-669). Wiley-Blackwell.

Avaliação dos efeitos da vacinação contra Actinobacillus pleuropneumoniae em suínos na engorda

Gottschalk, M., Broes, A., & Fittipaldi, N. (2003). Recent developments on Actinobacillus pleuropneumoniae. Proc Annu Meet Am Assoc Swine Vet, 387–393.

Gozio, S., Cominotti, F., Bonilauri, P., Dottori, M., Poggiali, M., & Vezzali, L. (2006). The effect of Porcilis APP on rearing results and slaughterhouse examinations in a typical heavy pig herd in northern Italy. In Proceedings of the 19th IPVS Congress (p. 303). Copenhagen.

GPP/MAMAOT, G. d. (2012). Anuário Agrícola 2011 - Informação de Mercados. Lisboa : Enigmamarelo.

Grau-Roma, L., Fraile, L., & Segalés, J. (2011). Recent advances in the epidemiology, diagnosis and control of diseases caused by porcine circovirus type 2. The Veterinary Journal, 23-32.

Guerrero, R. (1990). Respiratory disease: an important global problem in swine industry. Lausanne.

Gutierrez, C., Rodriguez Barbosa, J., Tascon, R., Costa, L., Riera, P., & Rodriguez Ferri, E. (1995). Serological characterisation and antimicrobial susceptibility of Actinobacillus pleuropneumoniae strains isolated from pigs in Spain. Vet. Rec. 137, 62-64.

Hadina, S., Vucemilo, M., Paviaia, Î., Tofant, A., & Matkovia, K. (2003). Effect of microclimate on air quality in intensive pig production. Stoãar 57, 91-99.

Haesebrouck, F., Chiers, K., Van Overbeke, I., & Ducatelle, R. (1997). Actinobacillus pleuropneumoniae infections in pigs: the role of virulence factors in pathogenesis and protection. Veterinary Microbiology 58, 239-249.

Haesebrouck, F., Pasmans, F., Chiers, K., Maes, D., Ducatelle, R., & Decostere, A. (2004). Efficacy of vaccines against bacterial diseases in swine: What can we expect? Vet Microbiol 100, 255–268. Huang, H., Potter, A., Campos, M., Leighton, F., Willson, P., Haines, D., & Yates, W. (1999). Pathogenesis of porcine Actinobacillus pleuropneumonia, Part II: Roles of proinflammatory cytokines. Can. J. Vet. Res. 63, 69-78.

Ito, H. (2010). Development of a cps-Based Multiplex PCR for Typing of Actinobacillus pleuropneumoniae Serotypes 1, 2 and 5. J Vet Med Sci. 72, 635-640.

James, A. (2005). The state of veterinary epidemiology and economics. Preventive Veterinary Medicine 67, 91-99.

Jensen, T. (2008). Aspects of Animal Health Economics in the finisher pig production - with emphasis on leg disorders. Copenhagen: University of Copenhagen.

Jirawattanapong, P.; Stockhofe-Zurwieden, N.; Binnendijk, G.P.; van Leengoed, L.A.M.G.; Wisselink, H.; Raymakers, R.; Cruijssen, T.; van der Peet-Schwering, C.M.C.; van Nes, A.; Verheijden, J.H.M.; Nielen, M. (2006). Does 3-time vaccination with App vaccine prevent pleuritis and pneumonia lesions at slaughter? Proceedings of the 11th International Symposium on Veterinary Epidemiology and Economics.

Bibliografia

50

Jirawattanapong, P.; Stockhofe-Zurwieden, N.; van Leengoed, L.; Binnendijk, G.; Wisselink, H.J.; Raymakers, R.; Cruijsen, T.; van der Peet-Schwering, C.; van Nes, A.; Nielen, M. (2008). Efficacy of a subunit vaccine against Actinobacillus pleuropneumoniae in an endemically infected swine herd. Journal of Swine Health and Production 16, 193-199.

Kluge, J., Beran, G., Hill, H., & Platt, K. (1999). Pseudorabies (Aujeszky's Disease). In B. Straw, S. D'Allaire, W. Mengeling, & D. Taylor (Edits.), Diseases of Swine (pp. 146-233). Ames: Iowa State University Press.

Liggett, A., Harrison, L., & Farrell, R. (1987). Sequential study of lesion development in experimental haemophilus pleuropneumonia. Res Vet Sci.42, 204-212.

Losinger, W. (2005). Economic impacts of reduced pork production associated with the diagnosis of Actinobacillus pleuropneumoniae on grower/finisher swine operations in the United States. Preventive Veterinary Medicine 68, 181-193.

Losinger, W., Bush, E., Smith, M., & Corso, B. (1998). Mortality attributed to respiratory problems among finisher pigs in the United States. Prev. Vet. Med. 37, 21-31.

Maas, A., Jacobsen, I., Meens, J., & Gerlach, G. (2006). Use of an Actinobacillus pleuropneumoniae multiple mutant as a vaccine that allows differentiation of vaccinated and infected animals. Infect Immun 74, 4124-4132.

MacInnes, J., & Rosendal, S. (1988). Prevention and control of Actinobacillus (Haemophilus) pleuropneumoniae infection in swine: a review. Can. Vet. J. 29, 572-574.

Magowan, E., Moss, B., Gordon, A., & McCann, E. (2010). Effect of average daily gain between weaning and slaughter (105 kg) on the meat quality of fast growing Landrace/Large White pigs. Agri-Food and Biosciences Institute .

Martelli, P., Guadagnini, P., Foccoli, E., & Ballarini, G. (1996). Efficacy of an Actinobacillus pleuropneumoniae subunit vaccine in the control of pleuropneumonia: A field trial. In P. Monetti, & G. Vignola (Edits.), Proceedings of the 14th International Pig Veterinary Society Congress (p. 214). Bologna: Faculty of Veterinary Medicine, University of Bologna,.

McInerney, J. P. (1988). McInerney, J. P., 1988a. The economic analysis of livestock disease: the developing framework. Acta Veterinaria Scandinavica 84, 66-74.

McInerney, J. P. (1996). Old economics for new problems - livestock disease: Presidential address. Journal of Agricultural Economics 47, 295-314.

Miller, G., Forster, D., Tsai, J., & Bowman, G. (1995). Productivity and profitability differences between pseudorabies-infected and pseudorabies-noninfected farrow-to-finish swine herds. J Am Vet Med Assoc 206, 446-451.

Mittal, K., Higgins, R., & Larivière, S. (1987). An evaluation of agglutination and coagglutination techniques for serotyping of Haemophilus pleuropneumoniae isolates. Am J Vet Res.48, 219-226. Muirhead, M., & Alexander, T. (2002). Managing Pig Health and the Treatment of Disease: A Reference for the farm. Nottingham University Press.

Avaliação dos efeitos da vacinação contra Actinobacillus pleuropneumoniae em suínos na engorda

Muller, W. (2000). Emission und Imission von Staub und Mikroorganismen aus Stallanlagen. Umwelt und tiergerechte Haltung von Nutz, 27-33.

Nechvatalova, K., Knotigova, P., Krejci, J., Faldyna, M., Gopfert, E., Satran, P., & Toman, M. (2005). Significance of different types and levels of antigen-specific immunity to Actinobacillus pleuropneumoniae infection in piglets. Vet. Med. – Czech, 50, 47–59.

Negrete-Abascal, E., Tenorio, V., Guerrero, A., Garcia, R., Reyes, M., & de la Garza, M. (1998). Purification and characterization of a protease from Actinobacillus pleuropneumoniae serotype 1, an antigen common to all the serotypes. Can. J. Vet. Res.62, 183-190.

Negrete-Abascal, E., Tenorio, V., Serrano, J., Garcia, C., & de la Garza, M. (1994). Secreted proteases from Actinobacillus pleuropneumoniae serotype 1 degrade porcine gelatin, hemoglobin and immunoglobulin A. Can J Vet Res., 58, 83-86.

Nicolet, J. (1992). Actinobacillus pleuropneumoniae. In B. S. Editor, Diseases of Swine 7th Edition (pp. 401-408). Iowa: Iowa University Press Ames.

Nielsen, R., & O'Connor, P. (1984). Serological characterization of 8 Haemophilus pleuropneumoniae stains and proposal of a new serotype: serotype 8. ActaVeterinaria Scandinavica, 96-106.

Oldfield, N., Donovan, E., Worrall, K., Wooldridge, K., Langford, P., Rycroft, A., & Ala'Aldeen, D. (2008). Identification and characterization of novel antigenic vaccine candidates of Actinobacillus pleuropneumoniae. Vaccine 26, 1942-1954.

Pavičić, Z.; Balenović, T.; Valpotić, H.; Tofant, A.; Popović, M.; Balenović, M.; Matković, K; Valpotić, I. (2006). Influence of Porcine Housing Density on Species Diversity and Number of Airborne Microorganisms at Fattening Facilities. ACTA VET. BRNO 75, 533–540.

Pijpers, A., Schoevers, E., van Gogh, H., van Leengoed, L., Visser, I., van Miert, A., & J.H., V. (1991). The influence of disease on feed and water consumption and on pharmacokinetics of orally administered oxytetracycline in pigs. Journal Animal Science 69, 2947-2954.

Pol, J., Van Leengoed, L., Stockhofe, N., Kok, G., & Wensvoort, G. (1997). Dual infections of PRRSV/influenza or PRRSV/Actinobacillus pleuropneumoniae in the respiratory tract. Veterinary Microbiology 55, 259–264.

Ramjeet, M., Deslandes, V., Goure, J., & Jacques, M. (2008). Actinobacillus pleuropneumoniae vaccines: from bacterins to new insights into vaccination strategies. Anim Health Res Rev 9, 25-45. SAS. (2007). SAS Institute Incorporacion. Cary,NC.

Scheepens, C. (1996). Climatic stress in swine: hazards for health. The Pig Journal 37, 130-136. Scheepens, C., Hessing, M., Hensen, E., & and Henricks, P. (1994). Effect of climatic stress on the immunological reactivity of weaned pigs. The Veterinary Quarterly 16, 137-143.

Bibliografia

52

Schuchert, J., Inzana, T., Angen, Ø., & Jessing, S. (2004). Detection and Identification of Actinobacillus pleuropneumoniae Serotypes 1, 2, and 8 by Multiplex PCR. Journal of Clinical Microbiology 42, 4344–4348.

Shope, R. (1964 ). Porcine contagious pleuropneumonia. I. Experiment transmission, etiology and pathology. J Exp Med119, 357–368.

Sjölund, M. (2010). Actinobacillus pleuropneumoniae - A Major Respiratory Pathogen in Pig. Uppsala: SLU Service/ Repro.

Sjölund, M., de la Fuente, A., Fossum, C., & Wallgren, P. (2009). Responses of pigs to a re- challenge with Actinobacillus pleuropneumoniae after being treated with different antimicrobials following their initial exposure. Veterinary Record 164, 550-555.

Sørensen, V., Jorsal, S., & Mousing, J. (2006). Diseases of the Respiratory System. In Diseases of Swine 9th Edition (pp. 149-178). Ames: Blackwell Publishing.

Sotillo, A., & Méndez, M. (2004). Producción porcina intensiva. Madrid: Editorial Agrícola Española, S.A.

Stark, K. (2000). Epidemiological investigation of the influence of environmental risk factors on respiratory diseases in swine--a literature review. The Veterinary Journal 59, 37-56.

Stark, K. D. (1998). Systens for the prevention and control of infectius diseases in pigs. New Zealand: Massey University.

Stark, K., Keller, H., & Eggenberger, E. (1992). Risk factors for the re-infection of specific pathogen free pig breeding herds with enzootic pneumonia. Veterinary Record 131, 532-535.

Straw, B., MacLachlan, N., Corbett, W., Carter, P., & Schey, H. (1985). Comparison of tissue reactions produced by Haemophilus pleuropneumoniae vaccines made with six different adjuvants in swine. Can J Comp Med 49, 149–151.

Straw, B., Shin, S., & Yeager, A. (1990). Effect of pneumonia on growth rate and feed efficiency of minimal disease pigs exposed to Actinobacillus pleuropneumoniae and Mycoplasma hyopneumoniae. Preventive Veterinary Medicine 9, 287-294.

Straw, B., Tuovinen, V., & Bigras-Poulin, M. (1989). Estimation of the cost of pneumonia in swine herds. J Am Vet Med Assoc. 195, 1702-1706.

Taylor, D. (1999). Actinobacillus pleuropneumoniae. In B. Straw, S. D'Allaire, W. Mengeling, & D. Taylor, Diseases of swine, 8th Edition (pp. 343-354). Iowa State University Press.

Thacker, E. (2001). Immunology of the porcine respiratory disease complex. Vet Clin North Am Food Anim Pract 17, 551-565.

Thacker, E., Halbur, P., Ross, R., Thanawongnuwech, R., & Thacker, B. (1999). Mycoplasma hyopneumoniae potentiation of porcine reproductive and respiratory syndrome virus-induced pneumonia. J Clin Microbiol 37, 620–627.

Avaliação dos efeitos da vacinação contra Actinobacillus pleuropneumoniae em suínos na engorda

Tielen, M. (1995). Prevention of respiratory diseases through optimal environmental control. Pigs- Misset, 30-31.

van Overbeke, I. (2004). A pathogenitc approach to vaccination against pleuropneumonia in swine. Ghent: Ghent University.

van Overbeke, I., Chiers, K., Ducatelle, R., & Haesebrouck, F. (2001). Effect of endobronchial challenge with Actinobacillus pleuropneumoniae serotype 9 of pigs vaccinated with a vaccine containing Apx toxins and transferrin-binding proteins. J Vet Med B Infect Dis Vet Public Health 48, 15-20.

VanAlstine, W. (2012). Respiratory System. In Diseases of Swine (10th Edition ed., pp. 1273-1331). Wiley- Blackwell.

Vanden Bergh, P., Zeccchinon, L., Fett, T., & Desmecht, D. (2008). Pleuropneumonie à Actinobacillus pleuropneumoniae: pathogénie, diagnostic, traitement et prophylaxie. Ann. Méd. Vét.152, 152-179.

Vieira-Brito, F. (1997). Análise de indicadores da patologia respiratória de suinos por Actinobacillus pleuropneumoniae. Vila Real: Universidade de Trás-os-Montes e Alto Douro. Vigre, H., Angen, O., Barfod, K., Thanning Lavristsen, D., & Sorensen, V. (2002). Transmission of Actinobacillus pleuropneumoniae in pigs under field-like conditions: Emphasis on tonsillar colonisation and passively acquired colostral antibodies. Veterinary Microbiology 89, 151-159. Vigre, H., Ersboll, A., & Sorensen, V. (2003). Decay of acquired colostral antibodies to Actinobacillus pleuropneumoniae in pigs. J. Vet. Med. B 50, 430-435.

Wilson, R., & Kierstead, M. (1976). Haemophilus parahemolyticus associated with abortion in swine. Can Vet J 17, 222.

Wongnarkpet, S., Morris, R., & Pfeiffer, D. (1999). Field efficacy of a combined use of Mycoplasma hyopneumoniae and Actinobacillus pleuropneumoniae vaccines in growing pigs. Preventive Veterinary Medicine 39, 13-24.

Yoshimura, H., Takagi, M., Ishimura, M., & Endoh, Y. (2002). Comparative in vitro activity of 16 antimicrobial agents against Actinobacillus pleuropneumoniae. Vet. Res. Commun. 26,. Vet. Res. Commun. 26, 11-19.

Zhou, L.; Jones, S.C.P.; Angen, Ø.; Bosse, J.T.; Nash, J.H.E.; Frey, J.; Zhou, R.; Chen, H.C.; Kroll, J.S.; Rycroft, A.N.; Langford, P.R. (2008). A multiplex PCR that can distinguish between immunologically cross-reactive serotype 3, 6 and 8 Actinobacillus pleuropneumoniae strains. J. Clin. Microbiol. 46, 800-803 .

Documentos relacionados