• Nenhum resultado encontrado

Os fungos endofiticos têm mostrado um grande potencial na produção de metabolitos bioativos. Nos últimos 2 anos, mais de 250 novos metabolitos produzidos por fungos endofiticos foram identificado. A presente proposta de trabalho tem como objetivo geral avaliar o potencial antimicrobiano de fungos endofiticos isolados de folhas de oliveira, bem como identificar o efeito da planta hospedeira nesta propriedade. O perfil volátil das espécies fungicas será ainda avaliado com o intuito de correlacionar os compostos identificados com atividade antimicrobiana exibida pelos endófitos. As espécies fúngicas a estudar serão: Penicillium commune, Penicillium canescens,

Alternaria alternata.

Objetivos especificos:

1- Avaliar a atividade antimicrobiana dos fungos endofíticos com crescimento em meio de cultura com e sem extratos aquoso de folhas de oliveira.

2- Avaliar, nas espécies fúngicas que mostraram maior atividade antimicrobiana, a Concentração Mínima Inibitória (CMI) de extratos fúngicos e de meio de cultura obtidos a partir de solventes orgânicos com diferentes polaridades. Nesta análise pretende-se avaliar se a produção dos compostos antimicrobianos, se encontram intercelularmente no micélio ou se são excretados para o meio de cultura.

3- Identificar, nas espécies fúngicas com menor CMI, os compostos volatéis potencialmente responsáveis pela atividade antimicrobiana, recorrendo a análise GC/MS.

23

Bibliografia

Aly, A. H., Edrada-Ebel, R., Wray, V., Müller, W. E., Kozytska, S., Hentschel, U., Ebel, R. (2008). Bioactive metabolites from the endophytic fungus Ampelomyces sp. isolated from the medicinal plant Urospermum picroides. Phytochemistry, 69(8), 1716-1725.

Arnold, A. E., Mejía, L. C., Kyllo, D., Rojas, E. I., Maynard, Z., Robbins, N., Herre, E. A. (2003). Fungal endophytes limit pathogen damage in a tropical tree. Proceedings of the National Academy of Sciences, 100(26), 15649-15654. Arnold, A. E. (2007). Understanding the diversity of foliar endophytic fungi: progress,

challenges, and frontiers. Fungal Biology Reviews, 21(2), 51-66.

Berdy, J. (2005). Bioactive microbial metabolites. The Journal of antibiotics, 58(1), 1- 26.

Carlet, J., Mainardi, J. L. (2012). Antibacterial agents: back to the future? Can we live with only colistin, co‐trimoxazole and fosfomycin?. Clinical Microbiology and Infection, 18(1), 1-3.

Carter, G. T. (2011). Natural products and Pharma 2011: Strategic changes spur new opportunities. Natural product reports, 28(11), 1783-1789.

Chebbi Mahjoub, R., Khemiss, M., Dhidah, M., Dellaï, A., Bouraoui, A., & Khemiss, F. (2011). Chloroformic and methanolic extracts of Olea europaea L. leaves present anti-Inflammatory and analgesic activities. ISRN pharmacology, 2011. Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical microbiology

reviews, 12(4), 564-582.

Cragg, G. M., Newman, D. J. (2005). Biodiversity: A continuing source of novel drug leads. Pure and applied chemistry, 77(1), 7-24.

Devi, N. N., & Prabakaran, J. J. (2014). Bioactive metabolites from an endophytic fungus Penicillium sp. isolated from Centella asiatica. Current Research in Environmental & Applied Mycology, 4(1), 34-43.

Ding, X., Liu, K., Deng, B., Chen, W., Li, W., Liu, F. (2013). Isolation and characterization of endophytic fungi from Camptotheca acuminata. World Journal of Microbiology and Biotechnology, 29(10), 1831-1838.

24

Donadio, S., Maffioli, S., Monciardini, P., Sosio, M., Jabes, D. (2010). Antibiotic discovery in the twenty-first century: current trends and future perspectives. The Journal of antibiotics, 63(8), 423-430.

ECDC - European Centre for Disease Prevention and Control (Antimicrobial resistance surveillance in Europe 2011. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net), Stockholm: ECDC.2012.

Finlay, R.D. (2007). Fungal endophytes in forest, woody, plants and grass land ecosystems: diversity, functional ecology, evolution. Fungal Biology Reviews, (21):49-50.

Gamboa, M. A., Laureano, S., Bayman, P. (2003). Measuring diversity of endophytic fungi in leaf fragments: Does size matter?. Mycopathologia, 156(1), 41-45. Gao, S. S., Li, X. M., Du, F. Y., Li, C. S., Proksch, P., & Wang, B. G. (2010).

Secondary metabolites from a marine-derived endophytic fungus Penicillium chrysogenum QEN-24S. Marine drugs, 9(1), 59-70.

Giauque, H., & Hawkes, C. V. (2013). Climate affects symbiotic fungal endophyte diversity and performance. American journal of botany, 100(7), 1435-1444. Greve, H., Mohamed, I. E., Pontius, A., Kehraus, S., Gross, H., König, G. M. (2010).

Fungal metabolites: structural diversity as incentive for anticancer drug development. Phytochemistry Reviews, 9(4), 537-545.

Guo, B., Dai, J. R., Ng, S., Huang, Y., Leong, C., Ong, W., Carté, B. K. (2000). Cytonic acids A and B: novel tridepside inhibitors of hCMV protease from the endophytic fungus Cytonaema species. Journal of natural products, 63(5), 602- 604.

Gupte, M., Kulkarni, P., Ganguli, B. (2002). Antifungal antibiotics. Applied microbiology and biotechnology, 58(1), 46-57.

Hallmann, J., Berg, G., & Schulz, B. (2006). Isolation procedures for endophytic microorganisms. In Microbial root endophytes (pp. 299-319). Springer Berlin Heidelberg.

H.B. Cui, W.L. Mei,C.D. Miao, H.P. Lin, K. Hong, H.F. Dai. (2008). Antibacterial constituents from the endophytic fungus Penicillium sp.0935030 of mangrove plant Acrostichum aureurm. Chemical Journal of Chinese Universities, 33, 407- 410.

Higginbotham, S. J., Arnold, A. E., Ibañez, A., Spadafora, C., Coley, P. D., Kursar, T. A. (2013). Bioactivity of fungal endophytes as a function of endophyte

25

taxonomy and the taxonomy and distribution of their host plants. PloS one, 8(9), e73192.

Higgins, K. L., Arnold, A. E., Coley, P. D., Kursar, T. A. (2014). Communities of fungal endophytes in tropical forest grasses: highly diverse host-and habitat generalists characterized by strong spatial structure. Fungal Ecology, 8, 1-11. Hoffman, M. T., & Arnold, A. E. (2008). Geographic locality and host identity shape

fungal endophyte communities in cupressaceous trees. Mycological research, 112(3), 331-344.

Hussain, H., Krohn, K., Draeger, S., Meier, K., Schulz, B. (2009). Bioactive chemical constituents of a sterile endophytic fungus from Meliotus dentatus. Records of Natural Products, 3(2), 114-117.

Huang, W. Y., Cai, Y. Z., Surveswaran, S., Hyde, K. D., Corke, H., & Sun, M. (2009). Molecular phylogenetic identification of endophytic fungi isolated from three Artemisia species. Fungal Diversity, 36, 69.

Hyde, K. D., & Soytong, K. (2008). The fungal endophyte dilemma. Fungal Divers, 33, 163-173.

Jalgaonwala, R. E., Mohite, B. V., Mahajan, R. T. (2011). A review: Natural products from plant associated endophytic fungi. J Microbiol Biotechnol Res, 1(2), 21-32. Jiao, Y., Zhang, X., Wang, L., Li, G., Zhou, J. C., Lou, H. X. (2013). Metabolites from Penicillium sp., an endophytic fungus from the liverwort Riccardia multifida (L.) S. Gray. Phytochemistry Letters, 6(1), 14-17.

Kirk P, Cannon PF, Minter DW, Stalpers JA. (2008). Ainsworth & Bisby’s Dictionary of the Fungi. 10th edn CAB International, Wallingford, UK.

Kogel, K. H., Franken, P., & Hückelhoven, R. (2006). Endophyte or parasite–what decides?. Current opinion in plant biology, 9(4), 358-363.

Kumar, D. S. S., Hyde, K. D. (2004). Biodiversity and tissue-recurrence of endophytic fungi in Tripterygium wilfordii. Fungal Divers, 17, 69-90.

Lass‐Flörl, C. (2009). The changing face of epidemiology of invasive fungal disease in Europe. Mycoses, 52(3), 197-205.

Li, J. Y., Strobel, G., Sidhu, R., Hess, W. M., Ford, E. J. (1996). Endophytic taxol- producing fungi from bald cypress, Taxodium distichum. Microbiology, 142(8), 2223-2226.

26

Liang, H., Xing, Y., Chen, J., Zhang, D., Guo, S., Wang, C. (2012). Antimicrobial activities of endophytic fungi isolated from Ophiopogon japonicus (Liliaceae). BMC complementary and alternative medicine, 12(1), 238.

Lu, H., Zou, W. X., Meng, J. C., Hu, J., Tan, R. X. (2000). New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Science, 151(1), 67-73.

Lu, Y., Chen, C., Chen, H., Zhang, J., Chen, W. (2011). Isolation and Identification of endophytic fungi from Actinidia macrosperma and investigation of their bioactivities. Evidence-Based Complementary and Alternative Medicine, 2012. Moricca, S., Ginetti, B., & Ragazzi, A. (2012). Species-and organ-specificity in

endophytes colonizing healthy and declining Mediterranean oaks.

Phytopathologia Mediterranea, 51(3), 587-598.

Ondeyka, JG., Helms, G.L, Hensens, O.D., Goetz, M.A., Zink, D.L., Tsipouras, A. (1997). Nodulisporic acid A, a novel and potent insecticide from a Nodulosporium sp. Isolation, structure determination, and chemical transformation. Journal of the American Chemical Society, 119: 8809-8816. Ownley, B. H., Gwinn, K. D., Vega, F. E. (2010). Endophytic fungal entomopathogens

with activity against plant pathogens: ecology and evolution. In The Ecology of Fungal Entomopathogens (pp. 113-128). Springer Netherlands.

Pfaller, M. A., Diekema, D. J. (2007). Epidemiology of invasive candidiasis: a persistent public health problem. Clinical microbiology reviews, 20(1), 133-163. Porras-Alfaro, A., & Bayman, P. (2011). Hidden fungi, emergent properties: endophytes

and microbiomes. Phytopathology, 49(1), 291.

Qadri, M., Johri, S., Shah, B. A., Khajuria, A., Sidiq, T., Lattoo, S. K., Riyaz-Ul- Hassan, S. (2013). Identification and bioactive potential of endophytic fungi isolated from selected plants of the Western Himalayas. SpringerPlus, 2(1), 8. Qin, J. C., Zhang, Y. M., Gao, J. M., Bai, M. S., Yang, S. X., Laatsch, H., & Zhang, A.

L. (2009). Bioactive metabolites produced by Chaetomium globosum, an endophytic fungus isolated from Ginkgo biloba. Bioorganic & medicinal chemistry letters, 19(6), 1572-1574.

Radić, N., & Štrukelj, B. (2012). Endophytic fungi—The treasure chest of antibacterial substances. Phytomedicine, 19(14), 1270-1284.

27

Robl, D., da Delabona, P., Mergel, C. M., Rojas, J. D., dos Costa, P., Pimentel, I. C., & Padilla, G. (2013). The capability of endophytic fungi for production of hemicellulases and related enzymes. BMC biotechnology, 13(1), 94.

Rodriguez, R. J., White Jr, J. F., Arnold, A. E., & Redman, R. S. (2009). Fungal endophytes: diversity and functional roles. New Phytologist, 182(2), 314-330. Rukachaisirikul, V., Sommart, U., Phongpaichit, S., Sakayaroj, J., & Kirtikara, K.

(2008). Metabolites from the endophytic fungus Phomopsis sp. PSU-D15. Phytochemistry, 69(3), 783-787.

Saikkonen, K., Ion, D., & Gyllenberg, M. (2002). The persistence of vertically transmitted fungi in grass metapopulations. Proceedings of the Royal Society of London. Series B: Biological Sciences, 269(1498), 1397-1403.

Saikkonen, K., Wäli, P., Helander, M., & Faeth, S. H. (2004). Evolution of endophyte– plant symbioses. Trends in plant science, 9(6), 275-280.

Scherlach, K., & Hertweck, C. (2009). Triggering cryptic natural product biosynthesis in microorganisms. Org. Biomol. Chem., 7(9), 1753-1760.

Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., & Griffith, G. W. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences, 109(16), 6241-6246.

Schulz, B., & Boyle, C. (2005). The endophytic continuum. Mycological research, 109(6), 661-686.

Shweta, S., Zuehlke, S., Ramesha, B. T., Priti, V., Mohana Kumar, P., Ravikanth, G., & Uma Shaanker, R. (2010). Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10- hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry, 71(1), 117- 122.

Silva, G. H., Teles, H. L., Zanardi, L. M., Marx Young, M. C., Eberlin, M. N., Hadad, R., & Araújo, Â. R. (2006). Cadinane sesquiterpenoids of Phomopsis cassiae, an endophytic fungus associated with Cassia spectabilis (Leguminosae). Phytochemistry, 67(17), 1964-1969.

Sileshi G. Wubsheta, Nils T. Nyberga, Mysore V. Tejesvib, Anna Maria Pirttiläb,Marena Kajulac, Sampo Mattilac, Dan Staerka,. (2013). Targeting high performance liquid chromatography high resolution mass spectrometry solid- phase extraction nuclear magnetic resonance analysis with high-resolution

28

radical scavenging profiles. Bioactive secondary metabolites from the endophytic fungus Penicillium namyslowskii-journal of Chromatography A, (1302), 34-39.

Smith, S. A., Tank, D. C., Boulanger, L. A., Bascom-Slack, C. A., Eisenman, K., Kingery, D., & Strobel, S. A. (2008). Bioactive endophytes warrant intensified exploration and conservation. PLoS One, 3(8), e3052.

Soliman, S. S., Trobacher, C. P., Tsao, R., Greenwood, J. S., & Raizada, M. N. (2013). A fungal endophyte induces transcription of genes encoding a redundant fungicide pathway in its host plant. BMC plant biology, 13(1), 93.

Strobel, G., & Daisy, B. (2003). Bioprospecting for microbial endophytes and their natural products. Microbiology and Molecular Biology Reviews, 67(4), 491-502. Suryanarayanan, T. S., Thirunavukkarasu, N., Govindarajulu, M. B., Sasse, F., Jansen, R., & Murali, T. S. (2009). Fungal endophytes and bioprospecting. Fungal Biology Reviews, 23(1), 9-19.

Tayung, K., Barik, B. P., Jha, D. K., & Deka, D. C. (2011). Identification and characterization of antimicrobial metabolite from an endophytic fungus, Fusarium solani isolated from bark of Himalayan yew. Mycosphere, 2(3), 203- 213.

Torres, M. S., White Jr, J. F., Zhang, X., Hinton, D. M., & Bacon, C. W. (2012). Endophyte-mediated adjustments in host morphology and physiology and effects on host fitness traits in grasses. Fungal Ecology, 5(3), 322-330.

VanderMolen, K. M., Raja, H. A., El-Elimat, T., & Oberlies, N. H. (2013). Evaluation of culture media for the production of secondary metabolites in a natural products screening program. AMB Express, 3(1), 71.

Wang, Y., Xu, L., Ren, W., Zhao, D., Zhu, Y., & Wu, X. (2012). Bioactive metabolites from Chaetomium globosum L18, an endophytic fungus in the medicinal plant Curcuma wenyujin. Phytomedicine, 19(3), 364-368.

Waqas, M., Khan, A. L., Kamran, M., Hamayun, M., Kang, S. M., Kim, Y. H., & Lee, I. J. (2012). Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules, 17(9), 10754-10773. Wicklow, D. T., Roth, S., Deyrup, S. T., & Gloer, J. B. (2005). A protective endophyte

of maize: Acremonium zeae antibiotics inhibitory to Aspergillus flavus and Fusarium verticillioides. Mycological Research, 109(05), 610-618.

29

Yenn, T. W., Lee, C. C., Ibrahim, D., Zakaria, L. (2012). Enhancement of anti-candidal activity of endophytic fungus Phomopsis sp. ED2, isolated from Orthosiphon stamineus Benth, by incorporation of host plant extract in culture medium. Journal of Microbiology, 50(4), 581-585.

Yu, H., Zhang, L., Li, L., Zheng, C., Guo, L., Li, W., .& Qin, L. (2010). Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiological research, 165(6), 437-449.

Zhang, B., Salituro, G., Szalkowski, D., Li, Z., Zhang, Y., Royo, I., & Moller, D. E. (1999). Discovery of a small molecule insulin mimetic with antidiabetic activity in mice. Science, 284(5416), 974-977.

Zhang, H. W., Song, Y. C., & Tan, R. X. (2006). Biology and chemistry of endophytes. Natural product reports, 23(5), 753-771.

Documentos relacionados