• Nenhum resultado encontrado

Os resultados obtidos neste trabalho permitem sua continuidade em outras pesquisas como:

1. Averigua¸c˜ao em como suavizar as trajet´orias no espa¸co das juntas para diminuir as descontinuidades observadas.

2. Estudo dos m´etodos e das bibliotecas envolvidas para programa- ¸c˜ao em C do Bioloid Tipo A.

• Estudo sobre protocolo de comunica¸c˜ao serial entre os servos. • Aplica¸c˜ao do m´etodo desenvolvido no robˆo Bioloid.

3. Utiliza¸c˜ao do m´etodo desenvolvido em outras estruturas de robˆos com pernas (quadr´upedes e hex´apodos).

4. Investigar propriedades da matriz antissim´etrica para modela- mento dinˆamico de robˆos b´ıpedes antropom´orficos.

• Projeto de controladores.

5. Modelamento cinem´atico e cinem´atico diferencial pelo m´etodo de helic´oides.

• Inclus˜ao de cadeias virtuais para gera¸c˜ao de trajet´orias. • Utiliza¸c˜ao de t´ecnicas de rob´otica cooperativa.

• Estudos em est´atica. • Modelamento dinˆamico.

6. Projeto de geradores de trajet´orias com compensa¸c˜ao on-line de GCoM e ZMP.

7. Projeto de experimentos de laborat´orio em n´ıvel de gradua¸c˜ao e p´os-gradua¸c˜ao para ensino e pesquisa.

8. Projetos de geradores de trajet´orias para diversas tarefas espaci- ais.

9. Inclus˜ao de trajet´orias para realiza¸c˜ao de tarefas pelos bra¸cos (ex.: carregamento de materiais) durante a marcha.

10. Modelamento do ZMP para planos inclinados e/ou com utiliza¸c˜ao ativa dos bra¸cos.

6.2 PUBLICA ¸C ˜AO

Toscano, G. S., Simas, H. and Castelan, E. B. Modelagem de um Ge- rador de Trajet´oria Retil´ınea no Espa¸co Cartesiano para Robˆo Antro- pom´orfico Espacial. X Simp´osio Brasileiro de Automa¸c˜ao Inteligente, 2011.

REFERˆENCIAS

BROCKETT, R. Robotic manipulators and the product of exponentials formula. In: Mathematical Theory of Networks and Systems. Cambrige, Massachusetts: Springer, 1984.

CABALLERO, R.; ARMADA, M. Dynamic state feedback for zero moment point biped robot stabilization. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007.

CACCAVALE, F.; SICILIANO, B. Kinematic control of redundant free-floating robotic systems. Advanced robotics, VSP/Brill, 2001. CHESTNUTT, J. et al. Footstep planning for the honda asimo humanoid. Proceedings of the IEEE International Conference on Robotics and Automation - ICRA, 2005.

CHEVALLEREAU, C.; DJOUDI, D.; GRIZZLE, J. Stable bipedal walking with foot rotation through direct regulation of the zero moment point. IEEE Transactions on Robotics, 2008.

CLAUSER, C. Weight, volume, and center of mass of segments of the human body. [S.l.], 1969.

CRAIG, J. Introduction to robotics: mechanics and control. New York: Addison-Wesley New York;, 1989.

DAU, H.; CHEW, C.-M.; POO, A.-N. Proposal of augmented linear inverted pendulum model for bipedal gait planning. IEEE/RSJ International Conference on Intelligent Robots and Systems - IROS, 2010.

DEKKER, M. Zero-Moment Point Method for Stable Biped Walking. Eindhoven, 2009.

DOUAT, L. R. Estabiliza¸c˜ao do caminhar de um robˆo b´ıpede de 5 elos com compensa¸c˜ao do movimento dorsal. Disserta¸c˜ao (Mestrado) — Universidade Federal de Santa Catarina - Departamento de Engenharia de Automa¸c˜ao e Sistemas - Programa de P´os-Gradua¸c˜ao em Engenhaira de Automa¸c˜ao e Sistemas, 2008.

DUBOWSKY, S.; PAPADOPOULOS, E. The kinematics, dynamics, and control of free-flying and free-floating space robotic systems. IEEE Transactions on Robotics and Automation, 1993.

DUFFY, B. R. Anthropomorphism and the social robot. Robotics and Autonomous Systems, 2003.

ELFTMAN, H. The measurement of the external force in walking. Science, American Association for the Advancement of Science, 1938. FERREIRA, J. P.; CRISOSTOMO, M.; COIMBRA, A. P. Neuro-fuzzy zmp control of a biped robot. 6th WSEAS International Conference on Simulation, Modelling and Optimization, 2006.

GOSWAMI, A. Postural stability of biped robots and the foot-rotation indicator (fri) point. The International Journal of Robotics Research, 1999.

GOSWAMI, A. Kinematic and dynamic analogies between planar biped robots and the reaction mass pendulum (rmp) model. 8th IEEE-RAS International Conference on Humanoid Robots, 2008. Hitec Robotics. Robonova-I Overview. 2006. http://www.robonova. de/store/product.php?productid=16136&cat=248&page=1. [Online; acessado em 07/08/2011].

HOONSUWAN, P. et al. Designing a stable humanoid robot trajectory using a real human motion. 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology - ECTI-CON, 2009.

HUANG, P.; XU, Y.; LIANG, B. Balance control of multi-arm free-floating space robots during capture operation. IEEE International Conference on Robotics and Biomimetics - ROBIO, 2005.

HUANG, Q. et al. Planning walking patterns for a biped robot. IEEE Transactions on Robotics and Automation, 2001.

ISHIDA, T.; KUROKI, Y.; YAMAGUCHI, J. Mechanical system of a small biped entertainment robot. IEEE/RSJ International Conference on Intelligent Robots and Systems - IROS, 2003.

KAJITA, S. et al. Biped walking pattern generation by using preview control of zero-moment point. IEEE InternationalConference on Robotics and Automation - ICRA, 2003.

KAJITA, S.; YOKOI, K. Introduction `a la commande des robots humano¨ıdes: de la mod´elisation `a la g´en´eration du mouvement. Paris: Springer, 2009.

KANEKO, K. et al. Humanoid robot hrp-2. IEEE International Conference on Robotics and Automation - ICRA, 2004.

LIM, H.-O.; ISHII, A.; TAKANISHI, A. Emotion-based biped walking. Robotica, 2004.

LIU, J.; VELOSO, M. Online zmp sampling search for biped walking planning. IEEE/RSJ InternationalConference on Intelligent Robots and Systems - IROS, 2008.

MISTRY, M.; BUCHLI, J.; SCHAAL, S. Inverse dynamics control of floating base systems using orthogonal decomposition. IEEE International Conference on Robotics and Automation - ICRA, 2010. MISTRY, M. et al. Inverse kinematics with floating base and constraints for full body humanoid robot control. 8th IEEE-RAS International Conference on Humanoid Robots, 2008.

MOOSAVIAN, S.; ALGHOONEH, M.; TAKHMAR, A. Modified transpose jacobian control of a biped robot. 7th IEEE-RAS International Conference on Humanoid Robots, 2007.

MU, X.; WU, Q. A complete dynamic model of five-link bipedal walking. Proceedings of the American Control Conference, 2003. MU, X.; WU, Q. Dynamic modeling and sliding mode control of a five-link biped during the double support phase. Proceedings of the American Control Conference, 2004.

MURRAY, R. M.; LI, Z.; SASTRY, S. S. A Mathematical Introduction to Robotics Manipulation. Boca Ranton, FL: CRC Press, 1994. PAPADOPOULOS, E.; DUBOWSKY, S. On the nature of control algorithms for free-floating space manipulators. IEEE Transactions on Robotics and Automation, 1991.

POPOVIC, M.; GOSWAMI, A.; HERR, H. Ground reference points in legged locomotion: Definitions, biological trajectories and control implications. The International Journal of Robotics Research, SAGE Publications, 2005.

RAIBERT, M.; TZAFESTAS, S.; TZAFESTAS, C. Comparative simulation study of three control techniques applied to a biped robot. International Conference on Systems Engineering in the Service of Humans, 1993.

ROBOTIS. Bioloid Premium Kit Overview. 2009. http: //www.robotis.com/xe/bioloid_en. [Online; acessado em 07/08/2011].

ROSTAMI, M.; BESSONNET, G. Sagittal gait of a biped robot during the single support phase. part 2: optimal motion. Robotica, 2001.

SARDAIN, P.; BESSONNET, G. Forces acting on a biped robot. center of pressure-zero moment point. IEEE Transactions on Systems, Man and Cybernetics - Part A: Systems and Humans, 2004.

SENTIS, L. Synthesis and control of whole-body behaviors in humanoid systems. Tese (Doutorado), Stanford, CA, USA, 2007.

SICILIANO, B. et al. Robotics Modelling, Planning and Control. London: Springer, 2009.

UMETANI, Y.; YOSHIDA, K. Resolved motion rate control of space manipulators with generalized jacobian matrix. IEEE Transactions on Robotics and Automation, 1989.

VUKOBRATOVIC, M.; BOROVAC, B. Zero-moment point - thirty five years of its life. International Journal of Humanoid Robotics, Citeseer, 2004.

VUKOBRATOVIC, M.; BOROVAC, B.; POTKONJAK, V. Zmp: A review of some basic misunderstandings. International Journal of Humanoid Robotics, World Scientific, 2006.

VUKOBRATOVIC, M.; BOROVAC, B.; SURDILOVIC, D. Zero-momento point - proper interpretation and new applications. IEEE-RAS International Conference on Humanoid Robots, 2001. VUKOBRATOVIC, M.; JURICIC, D. Contribution to the synthesis of biped gait. Biomedical Engineering, IEEE Transactions on, 1969. VUKOBRATOVIC, M.; STEPANENKO, Y. On the stability of anthropomorphic systems. Mathematical Biosciences, 1972.

WESTERVELT, E. et al. Feedback control of dynamic bipedal robot locomotion. Tokyo: CRC Press, 2007.

YANFEI, W.; WEIBING, Z.; NA, L. Gait planning and simulation of robonova-1 robot. Second International Conference on Intelligent Computation Technology and Automation - ICICTA, 2009.

ZADEH, S. J. et al. A review and analysis of the trajectory gait generation for humanoid robot using inverse kinematic. 3rd International Conferenceon Electronics Computer Technology - ICECT, 2011.

ZHU, C. et al. Biped walking with variable zmp, frictional constraint, and inverted pendulum model. IEEE International Conference on Robotics and Biomimetics - ROBIO, 2004.

ZMP Inc. NUVO Overview. 2005. http://nuvo.jp/nuvo_home_e. html. [Online; acessado em 07/08/2011].

Documentos relacionados