• Nenhum resultado encontrado

CAPÍTULO 5 CONCLUSÃO

5.2 Perspectivas

Uma grande motivação para a continuação desse estudo é identificar a forma das partículas de TiO2 e então calcular a seção de choque de espalhamento. Poder realizar novas

medidas usando uma esfera integradora, objetivando verificar e comparar as eficiências de conversão de cada amostra.

R

EFERÊNCIAS BIBLIOGRÁFICAS

[1] A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev., vol. 112, no. 6, pp. 1940–1949, 1958.

[2] T. H. Maiman, “Stimulated optical radiation in ruby,” Nature, vol. 187, no. 4736, pp. 493–494, 1960.

[3] G. Gould, “United States Patent,” no. 19, 1987.

[4] S. C. Zilio, Óptica Moderna Fundamentos e aplicações. 2009.

[5] R. A. Bartels et al., “Generation of Spatially Coherent Light at Extreme Ultraviolet Wavelengths,” vol. 297, no. July, pp. 376–379, 2002.

[6] D. S. Wiersma, “Disordered photonics,” vol. 7, no. March, 2013.

[7] R. V Ambartsumyan, N. G. Basov, P. G. Kryukov, and V. S. Letokhov, “A Laser with Nonresonant Feedback,” IEEE J. Quantum Electron., vol. 2, no. 9, pp. 442–446, 1966. [8] V. S. Letokhov, “Stimulated emission of an ensemble of scattering particles with

negative absorption,” ZhETF Prisma, vol. 5, no. 8. pp. 262–265, 1967.

[9] P. Sebbah and R. Carminati, “Breakthroughs in Photonics 2014 : Random Lasers,”

IEEE Photonics J., vol. 7, no. 3, pp. 1–7, 2015.

[10] L. M. G. Abegaõ, A. A. C. Pagani, S. C. Zílio, M. A. R. C. Alencar, and J. J.

Rodrigues, “Measuring milk fat content by random laser emission,” Sci. Rep., vol. 6, 2016.

[11] S. Krämmer et al., “Random-cavity lasing from electrospun polymer fiber networks,”

Adv. Mater., vol. 26, no. 48, pp. 8096–8100, 2014.

[12] A. Camposeo, F. Di Benedetto, R. Stabile, A. A. R. Neves, R. Cingolani, and D. Pisignano, “Laser Emission from Electrospun Polymer Nanofibers **,” no. 5, pp. 562– 566, 2009.

[13] D. Huang et al., “Random lasing action from electrospun nanofibers doped with laser dyes,” Laser Phys., vol. 27, no. 3, pp. 1–7, 2017.

[14] M. Planck, “On the law of the energy distribution in the normal spectrum,” Ann. Phys., vol. 4, p. 553, 1901.

[15] A. Einstein, “Zur Quantentheorie der Strahlung,” Phys. Z., vol. 18, pp. 121–128, 1917. [16] R. Eisberg and R. Resnick, Física Quântica, 23a. 2004.

[17] M. F. Moreira, “Desenvolvimento e caracterização de um sistema laser de cristal líquido colestérico acoplado à fibra óptica,” 2004.

[18] M. Bertolotti, The History of the Laser. 2005.

[19] D. Kleppner, “Rereading Einstein on Radiation,” Phys. Today, no. February, pp. 30– 33, 2005.

[20] E. de C. Valadares, A. Chaves, and E. G. Alves, Aplicações da Física Quântica do

transistor à nanotecnologia, 1a. 2005.

[21] A. Siegman, Lasers. University Science Books, 1986.

[22] D. J. Griffiths, Introduction to quantum mechanics, 2nd ed. Pearson, 2005. [23] E. Hecht, Óptica, 2a. Fundação Calouste Gulbenkian, 2002.

[24] W. T. Silfvast, Laser Fundamentals, 2a. Cambridge University Press, 2004.

[25] H. Abramczyk, “Basic Physics of Lasers,” Introd. to laser Spectrosc., pp. 1–18, 2005. [26] D. P. Sheehan and L. S. Schulman, “Population Inversion at equilibrium,” Physica A,

vol. 524, pp. 100–105, 2019.

[27] W. Kechner and M. Bass, Solid - State Lasers A Graduate Text. Springer, 2003. [28] D. W. Ball, Field Guide to Spectroscopy. SPIE Press, Bellingham, WA, 2006.

[29] R. K. Pathria, Statiscal Mechanics. Pergamon Press, Oxford, 1985.

[30] M. Young, Optics and Lasers, Vol. 5. Springer - Verlag Berlin Heidelberg, 1986. [31] S. Konno, S. Fujikawa, and K. Yasui, “206 W continuous-wave TEM00 mode 1064

nm beam generation by a laser-diode-pumped Nd:YAG rod laser amplifier,” Appl.

Phys. Lett., vol. 79, no. 17, pp. 2696–2697, 2001.

[32] Z. Wei, G. Lu, K. Yang, X. Long, and Y. Huang, “A digital intensity stabilization system for HeNe laser,” Opt. Laser Technol., vol. 44, no. 1, pp. 63–66, 2012.

[33] D. Chen et al., “Burst mode dye laser with high pulse energy at 10 kHz repetition rate,”

Opt. Laser Technol., vol. 111, no. September 2018, pp. 290–294, 2019.

[34] G. Huber, C. Kränkel, and K. Petermann, “Solid-state lasers: status and future [Invited],” J. Opt. Soc. Am. B, vol. 27, no. 11, p. B93, 2010.

[35] U. Brackmann, Laser Dyes, 3a. Lambda Physik AG, 2000.

[36] C. B. Hitz, J. J. Ewing, and J. Hecht, Introduction to Laser Technology, 4a. IEEE Press,

2012.

[37] H. Kogelnik and T. Li, “Laser Beams and Resonators,” Appl. Opt., vol. 5, no. 10, p. 1550, 1966.

[38] V. Folli, Nonlinear Optics and Laser Emission through Random Media. Springer, 2012.

[39] D. M., “Molecular Expression,” Florida State University. [Online]. Available: https://micro.magnet.fsu.edu/primer/java/lasers/heliumneonlaser/index.html. [Accessed: 03-Jun-2019].

[40] M. Csele, Fundamentals of Light Sources and Lasers, 1a. Wiley Interscience, 2004. [41] O. Svelto, Principles of Lasers, 5a. Springer, 2010.

[42] A. Yariv, Quantum electronics, 3a. Jhon Wiley & Sons, 1989.

[43] D. Wiersma, “The smallest random laser,” Nature, vol. 406, no. 6792, pp. 132–133, 2000.

[44] A. S. L. Gomes, “Random Lasers: Recent Advances And Applications,” Lat. Am. Opt.

Photonics Conf. OSA, 2014.

[45] D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys., vol. 4, no. 5, pp. 359–367, 2008.

[46] N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature, vol. 368, no. 6470, pp. 436–438, 1994.

[47] H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon Statistics of Random Lasers with Resonant Feedback,” Phys. Rev. Lett., vol. 86, no. 20, pp. 4524–4527, 2001.

[48] R. C. Poison, M. E. Raikh, and Z. V. Vardeny, “Universal properties of random lasers,”

IEEE J. Sel. Top. Quantum Electron., vol. 9, no. 1, pp. 120–123, 2003.

[49] F. Luan, B. Gu, A. S. L. Gomes, K. T. Yong, S. Wen, and P. N. Prasad, “Lasing in nanocomposite random media,” Nano Today, vol. 10, no. 2, pp. 168–192, 2015. [50] D. V. Churkin et al., “Experimental and theoretical study of longitudinal power

distribution in a random DFB fiber laser,” vol. 20, no. 10, 2012.

[51] G. Morello, A. Camposeo, M. Moffa, and D. Pisignano, “Electrospun amplified fiber optics,” ACS Appl. Mater. Interfaces, vol. 7, no. 9, pp. 5213–5218, 2015.

[52] R. C. Polson and Z. V. Vardeny, “Cancerous tissue mapping from random lasing emission spectra,” J. Opt. A Pure Appl. Opt., vol. 12, no. 2, 2010.

[53] S. García-Revilla, M. Zayac, R. Balda, M. Al-Saleh, D. Levy, and J. Fernández, “1Low threshold random lasing in dye-doped silica nano powders,” Opt. Express, vol. 17, no. 15, 2009.

[54] H. C. van de Hulst, Light Scattering by small particles. Dover Publications, lnc. New York, 1981.

[55] G. van Soest, Experiments on random lasers. University of Amsterdam. Ponsen & Looijen bv, 2001.

[56] D. L. Andrews, Rayleigh Scattering and Raman Effect, Theory, 3rd ed. Elsevier Ltd., 2017.

[57] R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci.

Technol., vol. 12, no. 5, p. R33, 2001.

[58] H. Horvath, “Gustav Mie and the scattering and absorption of light by particles: Historic developments and basics,” J. Quant. Spectrosc. Radiat. Transf., vol. 110, no. 11, pp. 787–799, 2009.

[59] G. Mie, “Beitrage zur Optik truber Medien speziell kolloidaler Metallosungen,” Ann.

Phys. Berlin, vol. 25, no. 3, pp. 377–445, 1908.

[60] H. Du, “Mie-scattering calculation,” vol. 43, no. 9, pp. 1951–1956, 2004.

[61] H. Cao, “Review on latest developments in random lasers with coherent feedback,” J.

Phys. A. Math. Gen., vol. 38, no. 49, pp. 10497–10535, 2005.

[62] D. S. Wiersma, Light in strongly scattering and amplifying random media. Academisch Proefschrift., 1995.

[63] J. Hecht, Understanding lasers, 3a. Wiley-IEEE Press, 2008.

[64] G. van Soest, M. Tomita, and A. Lagendijk, “Amplifying volume in scattering media,”

Opt. Lett., vol. 24, no. 5, pp. 306–308, 1999.

[65] H. Cao et al., “Random lasers with coherent feedback,” IEEE J. Sel. Top. Quantum

Electron., vol. 9, no. 1, pp. 111–119, 2003.

[66] E. S. Araújo, “Otimização de micro/nanofibras de polímeros biocompatíveis

sintetizadas pela técnica de eletrofiação para aplicações farmacológicas,” Universidade Federal da Bahia, 2015.

[67] D. da S. Manoel, “Materiais Híbridos de Sílica/orgânico dopados com Rodamina B: Propriedades Luminescentes e Emissão Laser Randômico,” Rio Claro - SP, 2017. [68] S. L. Gómez, R. D. F. Turchiello, C. S. Lopes, A. A. Bernal-Cardenas, and V. M.

Lenart, “Montagem experimental de baixo custo da técnica da lâmina para a

caracterização de um feixe laser do tipo Gaussiano,” Rev. Bras. Física Tecnológica

Apl., vol. 3, no. 1, pp. 18–29, 2016.

[69] M. A. Marques, C. A. Rego, J. H. Rodrigues, L. Bernardinho, and J. R. Salcedo, “Propagação de Feixes Laser,” vol. 12, pp. 53–59, 1989.

[71] M. A. F. de Souza, A. Lencina, and P. Vaveliuk, “Controlling bichromatic emission in scattering gain media,” Opt. Lett., vol. 31, no. 9, p. 1244, 2006.

[72] C. V. Shank, “Physics of dye lasers,” Rev. Mod. Phys., vol. 47, no. 3, pp. 649–657, 1975.

[73] P. Vaveliuk, A. M. de Brito Silva, and P. C. de Oliveira, “Model for bichromatic laser emission from a laser dye with nanoparticle scatterers,” Phys. Rev. A, vol. 68, no. 1, 2003.

[74] S. J. Marinho, L. M. Jesus, L. B. Barbosa, D. Reyes Ardila, M. A. R. C. Alencar, and J. J. Rodrigues, “Bi-chromatic random laser from alumina porous ceramic infiltrated with rhodamine B,” Laser Phys. Lett., vol. 12, no. 5, p. 55801, 2015.

[75] R. G. S. El-Dardiry and A. Lagendijk, “Tuning random lasers by engineered absorption,” Appl. Phys. Lett., vol. 98, no. 16, pp. 1–4, 2011.

[76] M. C. Albuquerque de Oliveira et al., “A random laser based on electrospun polymeric composite nanofibers with dual-size distribution,” Nanoscale Adv., vol. 1, no. 2, pp. 728–734, 2019.

[77] M. Bahoura, K. . Morris, and M. . Noginov, “Threshold and slope efficiency of Nd0.5La0.5Al3(BO3)4 ceramic random laser: effect of the pumped spot size,” Opt.

[78] W. L. Sha, C.-H. Liu, F. Liu, and R. R. Alfano, “Competition between two lasing modes of Sulforhodamine 640 in highly scattering media,” Opt. Lett., vol. 21, no. 16, p. 1277, 1996.

[79] X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A - At. Mol. Opt.

Phys., vol. 79, no. 5, pp. 1–7, 2009.

[80] W. Z. W. Ismail, D. Liu, S. Clement, D. W. Coutts, E. M. Goldys, and J. M. Dawes, “Spectral and coherence signatures of threshold in random lasers,” J. Opt. (United

Kingdom), vol. 16, no. 10, 2014.

[81] Y.-J. Lee et al., “Flexible random lasers with tunable lasing emissions,” Nanoscale, no. 10, pp. 1–9, 2018.

[82] Y. J. Lee et al., “A curvature-tunable random laser,” Nanoscale, vol. 11, no. 8, pp. 3534–3545, 2019.

[83] H. Yu and B. Li, “Wavelength-converted wave-guiding in dye-doped polymer nanofibers,” Sci. Rep., vol. 3, pp. 1–6, 2013.

[84] F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, “Light-Emitting Polymer Single Nanofibers,” ACS Nano, vol. 4, no. 9, pp. 5332–5338, 2010.

[85] D. S. Wiersma and S. Cavalieri, “A temperature-tunable random laser,” Nature, vol. 414, no. December, pp. 708–709, 2001.

Documentos relacionados