• Nenhum resultado encontrado

5. Conclusões e Perspectivas

5.2 Perspectivas

Este trabalho trouxe como resultado principal o mapeamento das interações que acontecem entre os resíduos do colágeno e o domínio-I da integrina α2β1, moldadas pela influência do metal de coordenação. O conhecimento das interações mais importantes, bem como os resíduos mais significativos, pode nos promover pistas de como ocorrem os eventos complexos que envolvem a interação entre integrina e colágeno, assim como também, identificar regiões as quais possa haver a ação de fármacos agonistas ou antagonistas para a ligação integrina α2β1-colágeno, visto que algumas doenças são originadas da exacerbação desta ligação e outras pela diminuição da expressão destas ligações.

Apesar do seu significativo potencial terapêutico, apenas alguns agentes com base em peptídeos tem sido utilizados para regular as funções da integrina α2β1 alvejando o domínio-I α2. A maior dificuldade para o desenvolvimento desses fármacos é a complexidade das integrinas, visto que as mesmas atuam em variados tipos celulares. Logo, o desafio encontra- se em desenvolver drogas com alta especificidade que driblem a redundância destas moléculas.

Neste contexto, a análise de regiões com sequências específicas para ligantes são fundamentalmente importantes para o desenvolvimento de novas drogas. Assim este trabalho

69 é extremamente relevante na tentativa de esclarecer as especificidades que envolvem a interação entre o domínio-I de α2β1 e o colágeno com sequência GFOGER. Destaca-se também a utilização bem sucedida de métodos computacionais nessa análise, comprovando a eficácia destes métodos nas análises de sistemas biológicos complexos.

70 REFERÊNCIAS BIBLIOGRÁFICAS

Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. 2010. Biologia

Molecular da Célula. 5ª Edição. Editora Artmed, 2010.

Albuquerque, E. L. et al. DNA-based nanobiostructured devices: The role of

quasiperiodicity and correlation effects. Physics Reports, v. 535, p. 139-209, 2014.

Allinger, N.L; Lii, J.H. Molecular mechanics. The MM3 force field for hydrocarbons. 3.

The van der Waals' potentials and crystal data for aliphatic and aromatic

hydrocarbons. J. Am. Chem. Soc.111 (23), pp 8576–8582, 1989.

Alon, R.; Etzioni, A. LAD-III, a novel group of leukocyte integrin activation deficiencies. Trends Immunol; 24:561-6, 2003.

Azreq, M-A. E.; et al. Cooperation between IL-7 Receptor and Integrin α2β1 (CD49b)

Drives Th17-Mediated Bone Loss. J Immunol 2015 195:4198-4209, 2015.

Akiyama, S.K.; Nagata, K.; Yamada, K.M. Cell surface receptors for extracellular matrix

components. Biochim Biophys Acta. 1031(1):91–110, 1990.

Assoian, R.K.; Klein, E.A. Growth control by intracellular tension and extracellular

stiffness. Trends Cell Biol., Vol. 7. pp. 347-52, 2008.

Baronas-Lowell, D.; Lauer-Fields, J. L.; Borgia, J. A.; Sferrazza, G. F.; Al-Ghoul, M.; Minond, D.; Fields, G. B. Differential modulation of human melanoma cell

metalloproteinase expression by alpha2beta1 integrin and CD44 triple-helical ligands derived from type IV collagen. J. Biol. Chem. 279,43503-43513, 2004.

Bartolome, R. A.; Barderas, R.; Torres, S.; Fernandez-Acenero, M. J.; Mendes, M.; Garcıa- Foncillas, J.; Lopez-Lucendo, M.; Casal, J. I. Cadherin-17 interacts with alpha2beta1

integrin to regulate cell proliferation and adhesion in colorectal cancer cells causing liver metastasis. Oncogene 33, 1658-1669, 2014.

Barczyk, M.; Carracedo, S.; Gullberg, D. Integrins. Cell Tissue Res, 339: 269–280, 2010. Barreiro, E.J.; Rodrigues, C.R.; Albuquerque, M.G.; Sant’anna, C.M.R; Alencastro, R.B.

Modelagem molecular: Uma ferramenta para o planejamento racional de fármacos em química medicinal. Química Nova, v. 20 n. 3, p. 300-310, 1997.

71 Bateman, J.F.; Lamande, S.R.; Ramshaw, J.A.M. Collagen superfamily, in: W.D. Comper (Ed.), Extracellular Matrix, Harwood Academic Press, Melbourne, pp. 22–67, 1996.

Bella, J.; Eaton, M.; Brodsky, B.; Berman, H.M. Crystal and molecular structure of a

collagen-like peptide at 1.9 A resolution. Science, 266 5182, 75-81, 1994.

Bella, J.; Berman, H.M. Integrin–collagen complex: a metal–glutamate handshake. Structure, Vol 8 No 6, 2000.

Berthet, V.; et al. Role of endoproteolytic processing in the adhesive and signaling

functions of alphavbeta5 integrin. J Biol Chem, 275(43): p. 33308-13, 2000.

Birk, D.E; Fitch, J.M; Babiarz, J.P.; Linsenmayer, T.F. Collagen type I and type V are

present in the same fibril in the avian corneal stroma. J. Cell Biol. 106 999–1008, 1988. Bork, P.; et al. Domains in plexins: links to integrins and transcription factors. Trends Biochem Sci, 24(7): p. 261-3, 1999.

Bouaouina, M.; Lad, Y.; Calderwood, D. A. The N-terminal domains of talin cooperate

with the phosphotyrosine binding-like domain to activate β1 and 3 integrins. J. Biol. Chem., 6118-6125, 2008.

Boyd, D. B. Compendium of software for molecular modeling. In: Lipkowitz, K. B. & Boyd, D. B. Reviews in computational chemistry. VCH Pub, New York, 1990.

Brakebusch, C.; Fassler, R. The integrin-actin connection, an eternal love affair. EMBO J, 22:2324–2333, 2003.

Brooijmans, N.; Kuntz, I. D. Molecular recognition and docking algorithms. Annu. Rev. Biophys. Biomol. Struct. 32, 335-373, 2003.

Bruckner, P. Prockop, D.J. Proteolytic enzymes as probes for the triple – delical

conformation of procollagen. Anal. Biochem. 110 360 – 368, 1981.

Burke, R.D. Invertebrate integrins: structure, function, and evolution. Int Rev Cytol, 191:257–284, 1999.

Burke, K. Perspective on density functional theory. The Journal of Chemical Physics, v.136, n. 15, p. 150901, 2012.

72 Calderwood, D.A.; Tuckwell, D.S.; Humphries, M.J. Specificity of integrin I-domain-ligand

binding. Biochem Soc Trans, 23:504S, 1995.

Calvete, J.J.; Henschen, A.; Gonzalez-Rodriguez, J. Assignment of disulphide bonds in

human platelet GPIIIa. A disulphide pattern for the beta-subunits of the integrin family. Biochem J, 274 (Pt 1): p. 63-71, 1991.

Campbell, I.D.; Humphries, M.J. Integrin structure, activation and interactions. Cold Spring Harb Perspect Biol, 3:a004994, 2011.

Camper, L.; Hellman, U.; Lundgren-Akerlund, E. Isolation, cloning, and sequence analysis

of the integrin subunit alpha10, a beta1-associated collagen binding integrin expressed

on chondrocytes. J Biol Chem, 273:20383–20389, 1998.

Carvalho, I. et al. Introdução a modelagem molecular de fármacos no curso experimental

de química farmacêutica. Quim. Nova, Vol. 26, No. 3, 428-438, 2003.

Cho, A. E.; Chung, J. Y.; Kim, M.; Park, K. Quantum mechanical scoring for protein

docking. J. Chem. Phys. 131, 134108, 2009.

Chung, L. W.; Hirao, H.; Li, X.; Morokuma, K. The ONIOM method: its foundation and

applications to metalloenzymes and photobiology. Wiley Interdisciplinary Reviews: Computational Molecular Science, v. 2, n. 2, p. 327-350, 2012.

Coelho, L.W. et al. Aplicação de mecânica molecular em química inorgânica. Quim. Nov 22(3), 1999.

Coller, B.S. Activation affects access to the platelet receptor for adhesive glycoproteins. J Cell Biol, 103(2): p. 451-6, 1986.

Cox, D.; Brennan, M.; Moran, N. Integrins as therapeutic targets: lessons and

opportunities. Nat Rev; 9:804-20, 2010.

Curran, S.; Murray, G.I. Matrix metalloproteinases in tumour invasion and metastasis. J Pathol. 189: 300-308, 1999.

Critchley, D. R.; Gingras, A. R. Talin at a glance. J. Cell Sci., 121, 1345-1347, 2008.

Da Costa, R.F.; Freire, V.N.; Bezerra, E.M.; Cavada, B.S.; Caetano, E.W.S.; De Lima Filho, J.L.; Albuquerque, E.L. Explaining statin inhibition effectiveness of HMG-CoA reductase

73

by quantum biochemistry computations. Physical Chemistry Chemical Physics, v. 14, p. 1389-1398, 2012.

Damodaran, S.; Parkin, K. L.; Fennema O. R. Química de alimentos de Fennema. 4. ed. Porto Alegre (RS): Artmed; 2010.

Delley, B. An All-Electron Numerical Method for Solving the Local Density Functional

for Polyatomic Molecules. Journal of Chemical Physics, v. 92, n. 1, p. 508-517, 1990.

Desgrosellier, J. S.; Cheresh, D. A. Integrins in cancer: biological implications and

therapeutic opportunities. Nat Rev Cancer, Vol 1; pp 9-22, 2010.

Dewar, M.J.S.; Zoebisch, E.G.; Healy, E.F.; Stewart, J.J.P. AM1: A new general purpose

quantum mechanical molecular model. J. Am. Chem. Soc., v. 107, p. 3902- 3909, 1985.

Dill, K.A.; et al. The protein folding problem: when will it be solved? Current Opinion in Structural Biology, v.17(3), p. 342-346, 2007.

D’Souza, S.E.; Ginsberg, M.H.; Burke, T.A.; Lam, S.C.T.; Plow, E.F. Localization of an

Arg-Gly-Asp recognition site within an integrin adhesion receptor. Science, 242:91-93, 1998.

Drews, J. Drug Discovery: A Historical Perspective. Science. 287, 1960-1964. 2000.

Drews, J. Strategic trends in the drug industry. Drug Discovery Today. 8 (9), 411-420. 2003.

Donald, J.E.; et al. Salt Bridges: Geometrically Specific, Designable Interactions. Proteins; 79(3): 898–915, 2011.

Donoghue, P.C.J.; Purnell, M.A. Genome duplication, extinction and vertebrate evolution. Trends Ecology Evol. 20:312–319, 2005.

Ferraz, F.B; Hernandez, J.H. Integrinas na adesão, migração e sinalização celular:

associação com patologias e estudos clínicos. Rev Cient da FMC ,Vol. 9, nº 2, 2014. Freitas, L.C.G. Prêmio Nobel de química 1999. Química Nova na Escola, n. 8, p.3-6, 1998. Friedl, P.; Wolf, K. Plasticity of cell migration: A multiscale tuning model. J Cell Biol; 188:11–9, 2010.

74 Gallant, N.D.; Michael, K.E.; Garcia, A.J. Cell adhesion strengthening: contributions of

adhesive area, integrin binding, and focal adhesion assembly. Mol Biol Cell, 16:4329– 4340, 2005.

Geiger, B.; Spatz, J.P.; Bershadsky, A.D. Environmental sensing through focal adhesions. Nat Rev, 10:21–33, 2009.

Gelse, K.; Pöschlb, E.; Aigner, T. Collagens-structure, function, and biosynthesis. Advanced Drug Delivery Reviews 55, 1531 – 1546, 2003.

Giancotti, F.G.; Ruoslahti, E. Integrin signaling. Science, 285:1028–1032, 1999.

Goldmann, W.H.; Bremer, A.; Haner, M.; Aebi, U.; Isenberg, G. Native talin is a dumbbell-

shaped homodimer when it interacts with actin. J Struct Biol, 112:3–10, 1994.

Grenache, D. G.; Zhang, Z.; Wells, L. E.; Santoro, S. A.; Davidson, J. M.; Zutter, M. M.

Wound healing in the α2β1 integrin-deficient mouse: altered keratinocyte biology and dysregulated matrix metalloproteinase expression. J. Invest. Dermatol. 127, 455-466, 2007.

Gullberg, D.E.; Lundgren-Akerlund, E. Collagen-binding I domain integrins-what do they

do?. Prog Histochem Cytochem, 37(1): p. 3-54, 2002.

Gullberg, D.; Turner, D.C.; Borg, T.K.; Terracio, L.; Rubin, K. Different α1-integrin

collagen receptors on rat hepatocytes and cardiac fibroblasts. Exp Cell Res, 190:254-264, 1990.

Gurry, T.; Nerenberg, P.S.; Stulz, C.M., The contribution of interchain salt bridges to

triple-helical stability in collagen. J.Biophys., 98, 2634, 2010.

Gordon, M.S.; Fedorov, D.G.; Pruitt, S.R.; Slipchenko, L.V. Fragmentation methods: a

route to accurate calculations on large systems. Chem. Rev., v. 112, n. 1, p. 632-672, 2011. Habart, D.; Cheli, Y.; Nugent, D. J;, Ruggeri, Z. M.; Kunicki, T. J. Conditional knockout of

integrin alpha2beta1 in murine megakaryocytes leads to reduced mean platelet volume.

PLoS ONE 8, e55094, 2013.

Harburger, D.S.; Calderwood, D.A. Integrin signalling at a glance. Journal of Cell Science, 122, 159-163, 2009.

75 Hemler, M.E. VLA proteins in the integrin family: structures, functions, and their role

on leukocytes. Annu Rev Immunol 8:365–400, 1990.

Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Physical Review, v. 136, p.B864- B871, 1964.

Hulmes, D.J; Miller, A. Molecular packing in collagen. Nature 293 234– 239, 1981. Humphries, M.J. Integrin structure. Biochem Soc Trans, 28(4): p. 311-39, 2000.

Humphries, J.D.; Wang, P.; Streuli, C.; Geiger, B.; Humphries, M.J.; Ballestrem, C.; Vinculin

controls focal adhesion formation by direct interactions with talin and actin. J Cell Biol, 179:1043–1057, 2007.

Hynes, R.O. Integrins: A Family of Cell Surface Receptors. Cell, Vol. 48, 549-554, 1987. Hynes, R.O. Integrins: Versatility, Modulation, and Signaling in Cell Adhesion. Cell, Vol. 69, 1 l-25, 1992.

Hynes, R.O.; Zhao, Q. The evolution of cell adhesion. J Cell Biol, 150:F89–F96, 2000.

Hynes, R.O. Integrins: bidirectional, allosteric signaling machines. Cell, 110(6): p. 673-87, 2002.

Ilic, D.; Furuta, Y.; Kanazawa, S.; Takeda, N.; Sobue, K.; Nakatsuji, N.; Nomura, S.; Fujimoto, J.; Okada, M.; Yamamoto, T. Reduced cell motility and enhanced focal adhesion

contact formation in cells from FAK-deficient mice. Nature, 377:539–544, 1995. Frisch, M. J.; AL., E. Gaussian 09, Revision A.01. 2009.

Juliano, R.L.; Haskill, S. Signal transduction from the extracellular matrix. J Cell Biol, 120(3): p. 577-85, 1993.

Kamata, T.; Liddington, R. C.; Takada, Y. Interaction between collagen and the alpha(2) I-

domain of integrin alpha(2)beta(1). Critical role of conserved residues in the metal ion-

dependent adhesion site (MIDAS) region. J Biol Chem.; 274(45):32108-11, 1999.

Kanazashi, S.I.; Sharma, C.P.; Arnaout, M.A. Integrin-ligand interactions: scratching the

76 Kern, A.; Marcantonio, E.E. Role of the I-domain in collagen binding specificity and

activation of the integrins alpha1beta1 and alpha2beta1. J Cell Physiol, 176(3): p. 634-41, 1998.

Kitano, H. Standards for modeling. Nature Biotechnol. 20, 337, 2002.

Kloeker, S.; Major, M.B.; Calderwood, D.A.; Ginsberg, M.H.; Jones, D.A.; Beckerle, M.C.

The Kindler syndrome protein is regulated by TGFβ and involved in integrin-mediated adhesion. J. Biol. Chem., 279, 6824-6833, 2003.

Kohn, W; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation

Effects. Physical Review, v. 140, n. 4A, p. A1133-A1138, 1965.

Kühn, K. The collagen family-variations in the molecular and supermolecular structure. Rheumatology 10, 29 – 69, 1986.

Knight, C.G.; Morton, L.F.; Peachey, A.R.; Tuckwell, D.S.; Farndale, R.W.; Barnes, M.J.

The collagen-binding A-domains of integrins a1b1 and a2b1 recognize the same specific amino acid sequence, GFOGER, in native (triple-helical) collagens. J. Biol. Chem. 275, 35–40, 2000.

Kunicki, T.J.; Orchekowski, R.; Annis, D.; Honda, Y. Variability of integrin alpha 2 beta 1

activity on human platelets. Blood 82:2693–2703, 1993.

Kunicki, T. J.; Nugent, D. J. The genetics of normal platelet reactivity. Blood 116, 2627- 2634, 2010.

Lau, T.L.; Kim, C.; Ginsberg, M.H.; Ulmer, T.S. The structure of the integrin aIIbb3

transmembrane complex explains integrin transmembrane signalling. EMBO J, 28:

1351–1361, 2009.

Leach, A. R. Molecular Modeling: Principles and Applications. 2. ed., Pretince Hall, 2001. Legate, K.R.; Wickstrom, S.A.; Fassler, R. Genetic and cell biological analysis of integrin

outside-in signaling. Genes Dev, 23:397–418, 2009.

Lehninger, A. L.; Nelson, L. D.; Cox, M. M. Princípios de Bioquímica. 3 ed., São Paulo: SARVIER, 1009p, 2002.

77 Li, R.; Babu, C.R.; Lear, J.D.; Wand, A.J.; Bennett, J.S.; DeGrado, W.F. Oligomerization of

the integrin alphaIIbbeta3: roles of the transmembrane and cytoplasmic domains. Proc

Natl Acad Sci USA, 98:12462–12467, 2001.

Liddington, R.C.; Ginsberg, M.H. Integrin activation takes shape. J Cell Biol, 158:833–839, 2002.

Liotta, L.A.; Steeg, P.S.; Steller-Stevenson, W.G. Cancer metastasis and angiogenesis: an

imbalance of positive and negative regulation. Cell; 64: 327-36, 1991.

Loh, E.; Qi, W.; Vilaire, G.; Bennett, J.S. Effect of cytoplasmic domain mutations on the

agonist-stimulated ligand binding activity of the platelet integrin alphaIIbbeta3. J Biol Chem, 271:30233–30241, 1996.

Lu, C.; Oxvig, C.; Springer, T.A. The structure of the beta-propeller domain and C-

terminal region of the integrin alphaM subunit. Dependence on beta subunit association and prediction of domains. J Biol Chem, 273(24): p. 15138-47, 1998.

Lu, C., et al. An isolated, surface-expressed I domain of the integrin alphaLbeta2 is

sufficient for strong adhesive function when locked in the open conformation with a disulfide bond. Proc Natl Acad Sci U S A, 98(5): p. 2387-92, 2001.

Luo, B.H.; Carman, C.V.; Springer, T.A. Structural basis of integrin regulation and

signaling. Annu Rev Immunol, 25:619–647, 2007.

Luo, B.H.; Carman, C.V.; Takagi, J.; Springer, T.A. Disrupting integrin transmembrane

domain heterodimerization increases ligand binding affinity, not valency or clustering.

Proc Natl Acad Sci USA, 102:3679–3684, 2005.

Luo, B.H.; Springer, T.A.; Takagi, J. A specific interface between integrin transmembrane

helices and affinity for ligand. PLoS Biol, 2:e153, 2004.

March, N. H.; Matthai, C. C. The application of quantum chemistry and condensed

matter theory in studying amino-acids, protein folding and anticancer drug technology.

Theoretical Chemistry Accounts, v. 125, n. 3-6, p. 193–201, 2009.

Massa, W. Crystal Structure Determination. Berlin, Germany. Springer. 4° ed. 226 pp., 2004.

78 Miranti, C. K.; Brugge, J. S. Sensing the environment: a historical perspective on integrin

signal transduction. Nat. Cell Biol. 4, E83-E90, 2002.

Monkley, S.J.; Zhou, X.H.; Kinston, S.J.; Giblett, S.M.; Hemmings, L.; Priddle, H.; Brown, J.E.; Pritchard, C.A.; Critchley, D.R.; Fassler, R. Disruption of the talin gene arrests mouse

development at the gastrulation stage. Dev Dyn, 219:560–574, 2000.

Montanez, E.; Ussar, S.; Schifferer, M.; Bosl, M.; Zent, R.; Moser, M.; Fassler, R. Kindlin-2

controls bidirectional signaling of integrins. Genes Dev, 22:1325–1330, 2008.

Morgan, M. R.; Humphries, M. J.; Bass, M. D. Synergistic control of cell adhesion by

integrins and syndecans. Nat Rev Mol Cell Biol., 12:957-969, 2007.

Moser, M.; Nieswandt, B.; Ussar, S.; Pozgajova, M.; Fassler, R. Kindlin-3 is essential for

integrin activation and platelet aggregation. Nat Med, 14:325–330, 2008.

Neves, M. A. C.; Yeger, M.; Abagyan, R. Unusual Arginine Formations in Protein

Function and Assembly: Rings, Strings, and Stacks. J. Phys. Chem B; 116 (23), pp 7006–

7013, 2012.

Nimmi, N.E. Collagen: structure, function, and metabolism in normal and fibrotic

tissues. Seminars in Arthritis and Rheumatism. Vol. 13, 1 (August), 1983.

Nieuwenhuis, H. K; et al. Human blood platelets showing no response to collagen fail to

express surface glycoprotein Ia. Nature 318:470–472, 1985.

Nieuwenhuis, H.K.; et al. Deficiency of platelet membrane glycoprotein Ia associated with

a decreased platelet adhesion to subendothelium: a defect in platelet spreading. Blood 68:692–695, 1986.

Otey, C.A.; et al. Mapping of the alpha-actinin binding site within the beta 1 integrin

cytoplasmic domain. J Biol Chem, 268(28): p. 21193-7, 1993.

Partridge, A.W.; Liu, S.; Kim, S.; Bowie, J.U.; Ginsberg, M.H. Transmembrane domain

helix packing stabilizes integrin alphaIIbbeta3 in the low affinity state. J Biol Chem, 280: 7294-7300, 2005.

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Physical review letters, v. 77, n. 18, p. 3865-3868, 1996.

79 Plow E.F.; Haas, T.A.; Zhang, L.; Loftus, J.; Smith, J.W. Ligand binding to integrins. J Biol Chem, 275:21785–21788, 2000.

Raman, S.S; Parthasarathi, R. Role of aspartic acid in collagen structure and stability: A

molecular dynamics investigation J. Phys Chem B, 20678-85, 2006.

Ramachadran, G. N.; Sasiskhran, V. Conformation of polypeptides and proteins. Advan. Prot. Chem. 23:283-437, 1968

Ramachadran, G.N; Bansal, M.; Bhatnagar, R.S. A hypothesis on the role of

hydroxyproline in stabilizing the collagen structure. Biochim. Biophys. Acta, 322, 166- 171, 1973.

Ratnikov, B.I.; Partridge, A.W.; Ginsberg, M.H. Integrin activation by talin. J Thromb Haemost, 3:1783–1790, 2005.

Rodrigues, C.R. Modelagem molecular. Quim. Nov. 3, 2001.

Rodrigues, C. R. F.; et al. Quantum biochemistry study of the T3-785 tropocollagen

triple-helical structure. Chemical Physics Letters, v. 559, p. 88-93, 2013.

Rossert, J.; Crombrugghe, de B. Type I collagen: structure, synthesis and regulation, in: Bilezkian, J.P.; Raisz, L.G.; Rodan, G.A. (Eds.), Principles in Bone Biology, Academic Press, Orlando, pp. 189–210, 2002.

Sakai, T.; Jove, R.; Fassler, R.; Mosher, D.F. Role of the cytoplasmic tyrosines of beta 1A

integrins in transformation by v-src. Proc Natl Acad Sci USA, 98:3808-3813, 2001.

Sakai, T.; Li, S.; Docheva, D.; Grashoff, C.; Sakai, K.; Kostka, G.; Braun, A.; Pfeifer, A.; Yurchenco, P.D.; Fassler, R. Integrin-linked kinase (ILK) is required for polarizing the

epiblast, cell adhesion, and controlling actin accumulation. Genes Dev, 17:926–940, 2003. Sant’Anna, C.M.R. Métodos de modelagem molecular para estudo e planejamento de

compostos bioativos: uma introdução. Rev. Virtual Quim., 1 (1), 49‐57, 2009.

Santoro, S.A.; et al. Analysis of collagen receptors. Methods Enzymol, 245: p.147-83, 1994. Santos, H. F. O Conceito da Modelagem Molecular. Cadernos Temáticos de Química Nova na Escola, n. 4, 2001.

Santos-Filho, O. A.; Alencastro, R. B. Modelagem de proteínas por homologia. Química Nova. v26, n2, p253-259, 2003.

80 Santamaria, R.; et al. Molecular electrostatic potentials and Mulliken charge populations

of DNA mini-sequences. Chemical Physics, v. 227, n. 3, p. 317-329, 1998.

Saunders, R.M.; Holt, M.R.; Jennings, L.; Sutton, D.H.; Barsukov, I.L.; Bobkov, A.; Liddington, R.C.; Adamson, E.A.; Dunn, G.A.; Critchley, D.R. Role of vinculin in

regulating focal adhesion turnover. Eur J Cell Biol, 85:487–500, 2006.

Silva, T.F.; Penna, A. L.B. Colágeno: Características químicas e propriedades funcionais. Rev Inst Adolfo Lutz.; 71(3):530-9, 2012

Schwartz, M.A.; Schaller, M.D.; Ginsberg, M.H. Integrins: emerging paradigms of signal

transduction. Annu Rev Cell Dev Biol, 11:549–599, 1995.

Schuppan, D.; Schmid, M.; Somasundaram, R.; Ackermann, R.; Ruehl, M.; Nakamura, T.; Riecken, E.O. Collagens in the liver extracellular matrix bind hepatocyte growth factor. Gastroenterology, 114 139 – 152, 1998.

Shattil, S. J.; Kim, C.; Ginsberg, M. H. The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol. Vol 4 ; pp. 288-300, 2010.

Sherrill, C. D. Frontiers in electronic structure theory. The Journal of chemical physics, v. 132, n. 11, p. 110902, doi:10.1063/1.3369628, 2010.

Shimaoka, M.; Takagi, J.; Springer, T.A. Conformational regulation of integrin structure

and function. Annu Rev Biophys Biomol Struct, 31: p. 485-516, 2002.

Shoulders, M.D.; Raines, R.T. Collagen structure and stability. Annu Rev Biochem. 78: 929–958, 2009.

Sousa, S. F., Fernandes, P. A., and Ramos, M. J. Protein–ligand docking: Current status and future challenges, Proteins: Structure, Function, and Bioinformatics 65, 15-26, 2006.

Springer, T.A. Folding of the N-terminal, ligand-binding region of integrin alpha-

subunits into a beta-propeller domain. Proc Natl Acad Sci USA, 94:65–72, 1997.

Srichai, M.B.; Zent, R. Integrin Structure and Function. Cell-Extracellular Matrix Interactions in Cancer, Springer Science Business Media, LLC 2010.

Staatz, W.D.; Walsh, J.J.; Pexton, T.; Santoro, S.A. The α2β1 integrin cell surface collagen

receptor binds to the α1(I)CB3 peptide of collagen. J Biol Chem, 265:4778-4781, 1990. Stupack, D.G. The biology of integrins. Oncology (Williston Park), Vol. 9. pp. 6-12, 2007.

81 Svensson, M.; et al. ONIOM:  A Multilayered Integrated MO + MM Method for

Geometry Optimizations and Single Point Energy Predictions. A Test for Diels−Alder Reactions and Pt(P(t-Bu)3)2 + H2 Oxidative Addition. The Journal of Physical Chemistry, v. 100, n. 50, p. 19357-19363, 1996/01/01 1996.

Tsuchida, J.; et al. The ‘ligand-induced conformational change' of alpha 5 beta 1 integrin.

Relocation of alpha 5 subunit to uncover the beta 1 stalk region. J Cell Sci, 111 ( Pt 12): p. 1759-66, 1998.

Tuckwell, D.; Humphries, M. Integrin–collagen binding. Seminars in Cell & Developmental Biology, Vol 7: pp 649–657, 1996.

Valdramidou, D; Humpphries, M.J.; Mould, P. Distinct Roles of β1 Metal Ion-dependent

Adhesion Site (MIDAS), Adjacent to MIDAS (ADMIDAS), and Ligand-associated Metal-binding Site (LIMBS) Cation-binding Sites in Ligand Recognition by Integrin

α2β1. The Journal of Biological Chemistry,283, 32704-32714, 2008.

van der Flier, A.; Sonnenberg, A. Function and interactions of integrins. Cell Tissue Res, 305:285–298, 2001.

von der Mark, K. Structure, biosynthesis and gene regulation of collagens in cartilage and

bone, Dynamics of Bone and Cartilage Metabolism. Academic Press, Orlando, pp. 3– 29,

1999.

Vandenberg, P.; Kern, A.; Ries, A.; Luckenbill-Edds, L.; Mann, K.; Kühn, K.

Characterization of a type IV collagen major cell binding site with affinity to the α1β1 and the α2β1 α3β1 integrins. J Cell Biol, 113:1475-1483, 1991.

Velling T.; Kusche-Gullberg, M.; Sejersen, T.; Gullberg, D. cDNA cloning and

chromosomal localization of human alpha(11) integrin. A collagen-binding, I domain- containing, beta(1) associated integrin alpha-chain present in muscle tissues. J Biol Chem, 274:25735–25742, 1999.

Vreven, T.; Morokuma, K.; Farkas, Ö.; Schlegel, H. B.; Frisch, M. J. Geometry optimization

with QM/MM, ONIOM, and other combined methods. I. Microiterations and constraints. Journal of Computational Chemistry 24, 760-769, 2003.

Vorup-Jensen, T.; et al. The connection between metal ion affinity and ligand affinity in

82 Xiong, J.P.; Stehle, T.; Diefenbach, B.; Zhang, R.; Dunker, R.; Scott, D.L.; Joachimiak, A.; Goodman, S.L.; Arnaout, M.A. Crystal structure of the extracellular segment of integrin

alpha Vbeta3. Science, 294, 339–345, 2001.

Yamaguchi, Y.; Mann, D.M.; Ruoslathi, E. Negative regulation of transforming growth

factor-h by the proteoglycan decorin, Nature 346, 281 – 284, 1990.

Yin, H.; Litvinov, R.I.; Vilaire, G.; Zhu, H.; Li, W.; Caputo, G.A.; Moore, D.T.; Lear, J.D.; Weisel, J.W.; Degrado, W.F.; Bennett, J.S. Activation of platelet alphaIIbbeta3 by an

exogenous peptide corresponding to the transmembrane domain of alphaIIb. J Biol Chem, 281:36732–3674, 2006.

Weiner, S.J.; et al. A new force field for molecular mechanical simulation of nucleic acids

and proteins. J. Am. Chem. Soc.,106 (3), pp 765–784, 1984.

Wegener, K.L.; Campbell, I.D. Transmembrane and cytoplasmic domains in integrin

activation and protein-protein interactions (review). Mol Membr Biol, 25:376–387, 2008. Wegener, K.L.; Partridge, A.W.; Han, J.; Pickford, A.R.; Liddington, R.C.; Ginsberg, M.H.; Campbell, I.D. Structural basis of integrin activation by talin. Cell. 128:171–182, 2007. Zang, Q.; Springer, T.A. Amino acid residues in the PSI domain and cysteine-rich repeats

of the integrin beta2 subunit that restrain activation of the integrin alpha(X)beta(2). J Biol Chem, 276(10): p. 6922-9, 2001.

Zaidel-Bar, R.; Itzkovitz, S.; Ma’ayan, A.; Iyengar, R.; Geiger, B. Functional atlas of the

integrin adhesome. Nat. Cell Biol., 9, 858-867, 2007.

Zhang, D. W.; Zhang, J, Z. H. Molecular fractionation with conjugate caps for full

quantum mechanical calculation of protein-molecule interaction energy. Journal of Chemical Physics, v. 119, p. 3599-605, 2003.

Zhang, D. W.; Zhang, J. Z. H. Full quantum mechanical study of binding of HIV-1

protease drugs. International Journal of Quantum Chemistry, v. 103, p. 246-257, 2005. Zhou, T.; Huang, D.; Caflisch, A. Quantum Mechanical Methods for Drug Design. Curr Top Med Chem 10: 33-45, 2010.

Zweers,M. C.; Davidson, J.M.; Pozzi, A.; Hallinger, R.; Janz, K.; Quondamatteo, F.; Leutgeb, B.; Krieg, T.; Eckes, B. Integrin alpha2beta1 is required for regulation of murine wound

angiogenesis but is dispensable for reepithelialization. J. Invest. Dermatol. 127, 467-478, 2007.

83

84

Tabela A.1 – Interações realizadas entre os resíduos da cadeia A do colágeno e os resíduos do domínio-I α2 da integrina α2β1.

Mg_THR221 Mg_GLU33

GLY4 TYR157 6.84 8.0 -0,008 -0,008

PRO5 TYR157 3.17 8.0 0.85 0.85

PRO5 PRO158 6.11 8.0 0.24 0.24

PRO5 ASP160 HOH9;HOH10;HOH11;HOH49;HOH51 6.88 8.0 -3.84 -3.84

PRO5 TYR285 7.85 8.0 0.13 0.13

HYP6 ILE156 7.96 8.0 -0.41 -0.41

HYP6 TYR157 2.04 8.0 -4.73 -4.73

HYP6 PRO158 5.37 8.0 0.02 0.02

HYP6 TRP159 HOH8 5.73 8.0 -0.87 -0.87

HYP6 ASP160 HOH9;HOH10;HOH11;HOH49HOH51 5.56 8.0 -5.57 -5.57

HYP6 GLN215 HOH93;HOH94;HOH95 7.36 8.0 0.20 0.20

HYP6 LEU286 HOH253 7.31 8.0 0.05 0.05

GLY7 ASN154 HOH307;HOH3;HOH4 7.48 8.0 1.74 1.74

GLY7 ILE156 HOH307 7.36 8.0 0.79 0.79

GLY7 TYR157 HOH307 2.98 8.0 -3.70 -3.70

GLY7 PRO158 HOH307 6.78 8.0 -0.17 -0.17

GLY7 TRP159 HOH8 7.81 8.0 -0.64 -0.64

GLY7 GLN215 HOH307;HOH93;HOH94;HOH95 7.82 8.0 -0.28 -0.28

GLY7 LEU286 HOH307;HOH253 6.20 8.0 0.31 0.31

PHE8 ASN154 HOH382;HOH3;HOH4 6.50 8.0 -0.47 -0.47

PHE8 SER155 HOH382 6.59 8.0 -0.96 -0.96

PHE8 ILE156 HOH382 6.72 8.0 -0.84 -0.84

PHE8 TYR157 HOH382 3.35 8.0 -3.50 -3.50

PHE8 PRO158 HOH382 6.25 8.0 -0.49 -0.49

PHE8 TRP159 HOH382;HOH8 7.92 8.0 -0.32 -0.32

PHE8 GLY284 HOH382;HOH250 6.54 8.0 0.19 0.19

PHE8 TYR285 HOH382 2.40 8.0 -1.42 -1.42

PHE8 LEU286 HOH382;HOH382;HOH253 1.92 8.0 0.41 0.41

PHE8 ASN287 HOH382;HOH254;HOH256 3.63 8.0 -0.59 -0,59

PHE8 ARG288 HOH382;HOH5;HOH257;HOH258 7.13 8.0 2.88 2.88

HYP9 GLU152 HOH308;HOH254;HOH256 7.55 8.0 -0.78 -0.78

HYP9 SER153 HOH308;HOH2 4.98 8.0 -0.11 -0.11

HYP9 ASN154 HOH308;HOH3;HOH4 2.21 8.0 -2.63 -2.63

HYP9 SER155 HOH308 2.48 8.0 -3.80 -3.80

Documentos relacionados