• Nenhum resultado encontrado

O trabalho desenvolvido para uma dissertação de mestrado nunca é um ponto de chegada, é sim um ponto de partida que conduz a encruzilhadas, relativamente às quais o mestrando tem de fazer opções. Assim, ficam sempre por resolver outras pistas promissoras, das quais serão de destacar, neste trabalho:

1) Estudo da regenerabilidade do CRB;

2) Testar diferentes parâmetros de activação/carbonização e observar as diferenças nas propriedades dos carvões;

3) Estudo da influência da variação da temperatura no processo de adsorção;

4) Usar uma gama de concentrações do Diclofenac próxima das encontradas habitualmente em efluentes de ETARs;

5) Estudo da capacidade de adsorção dos carvões derivados da biomassa na remoção de Diclofenac em efluentes reais.

45

Bibliografia

[1] M. Jia, F. Wang, Y. Bian, X. Jin, Y. Song, F. O. Kengara, R. Xu, and X. Jiang, “Effects of pH and metal ions on oxytetracycline sorption to maize-straw-derived biochar,” Bioresour. Technol., vol. 136, pp. 87–93, 2013.

[2] L. Ji, Y. Wan, S. Zheng, and D. Zhu, “Adsorption of tetracycline and sulfamethoxazole on crop residue-derived ashes: Implication for the relative importance of black carbon to soil sorption,” Environ. Sci. Technol., vol. 45, pp. 5580–5586, 2011.

[3] T. Heberer and T. Heberer, “Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data.,” Toxicol. Lett., vol. 131, pp. 5–17, 2002.

[4] N. Vieno and M. Sillanpää, “Fate of diclofenac in municipal wastewater treatment plant - A review,” Environ. Int., vol. 69, pp. 28–39, 2014.

[5] “Diretiva 2013/39/UE do Parlamento Europeu e do Conselho, de 12 de Agosto de 2013 - Altera as Diretivas 2000/60/CE e 2008/105/CE no que respeita às substâncias prioritárias no domínio da política da água,” 2013.

[6] M. Carballa, F. Omil, and J. M. Lema, “Comparison of predicted and measured concentrations of selected pharmaceuticals, fragrances and hormones in Spanish sewage,” Chemosphere, vol. 72, pp. 1118–1123, 2008.

[7] Y. Luo, W. Guo, H. Hao, L. Duc, F. Ibney, J. Zhang, S. Liang, and X. C. Wang, “Science of the Total Environment A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment,” Sci. Total Environ., vol. 473–474, pp. 619–641, 2014.

[8] Y. Yao, B. Gao, H. Chen, L. Jiang, M. Inyang, A. R. Zimmerman, X. Cao, L. Yang, Y. Xue, and H. Li, “Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation,” J. Hazard. Mater., vol. 209–210, pp. 408–413, 2012.

[9] D. Fatta-kassinos, S. Meric, and A. Nikolaou, “Pharmaceutical residues in environmental waters and wastewater : current state of knowledge and future research,” Anal Bioanal Chem, vol. 399, pp. 251–275, 2011.

[10] S. Faculty, “Characteristics of Pore Structures and Surface Chemistry of Activated Carbons by Physisorption , Ftir And Boehm Methods,” J. Appl. Chem., vol. 2, no. 1, pp. 9–15, 2012. [11] M. Adib, Z. Al-qodah, and C. W. Z. Ngah, “Agricultural bio-waste materials as potential

sustainable precursors used for activated carbon production : A review,” Renew. Sustain. Energy Rev., vol. 46, pp. 218–235, 2015.

[12] K. Qian, A. Kumar, H. Zhang, D. Bellmer, and R. Huhnke, “Recent advances in utilization of biochar,” Renew. Sustain. Energy Rev., vol. 42, pp. 1055–1064, 2015.

[13] E. M. Cuerda-Correa, J. R. Domínguez-Vargas, F. J. Olivares-Marín, and J. B. de Heredia, “On the use of carbon blacks as potential low-cost adsorbents for the removal of non-steroidal anti-inflammatory drugs from river water,” J. Hazard. Mater., vol. 177, pp. 1046–1053, 2010. [14] X. R. Jing, Y. Y. Wang, W. J. Liu, Y. K. Wang, and H. Jiang, “Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar,” Chem. Eng. J., vol. 248, pp. 168–174, 2014.

[15] B. Petrie, E. J. Mcadam, M. D. Scrimshaw, J. N. Lester, and E. Cartmell, “Trends in Analytical chemistry Fate of drugs during wastewater treatment,” Trends Anal. Chem., vol. 49, pp. 145– 159, 2013.

[16] J. Rivera-utrilla, M. Sánchez-polo, M. Á. Ferro-garcía, and G. Prados-joya, “Pharmaceuticals as emerging contaminants and their removal from water. A review,” Chemosphere, vol. 93, pp. 1268–1287, 2013.

[17] S. Liang and A. G. McDonald, “Chemical and Thermal Characterization of Potato Peel Waste and Its Fermentation Residue as Potential Resources for Biofuel and Bioproducts Production.,” J. Agric. Food Chem., vol. 62, pp. 8421–8429, 2014.

[18] M. Ahokas, A. L. Välimaa, T. Lötjönen, A. Kankaala, and S. Taskila, “Resource assessment for potato biorefinery : Side stream potential in Northern Ostrobothnia,” Agronomy Research vol. 12, no. 3, pp. 695–704, 2014.

[19] J. Anim. Sci., “Utilization and application of wet potato processing coproducts for finishing cattle,” J. Anim. Sci., vo. 88, pp. E133–E142, 2010.

[20] J. C. Moreno-Piraján and L. Giraldo, “Activated carbon obtained by pyrolysis of potato peel for the removal of heavy metal copper (II) from aqueous solutions,” J. Anal. Appl. Pyrolysis, vol. 90, pp. 42–47, 2011.

[21] J. C. Moreno-Piraján and L. Giraldo, “Immersion Calorimetry Applied to the Study of the Adsorption of Phenolic Derivatives onto Activated Carbon Obtained by Pyrolysis of Potato Peel,” Mater. Express, vol. 2, no. 2, pp. 121–129, 2012.

[22] Z. Zhang, X. Luo, Y. Liu, P. Zhou, G. Ma, Z. Lei, and L. Lei, “A low cost and highly efficient adsorbent (activated carbon) prepared from waste potato residue,” J. Taiwan Inst. Chem. Eng., vol. 000, pp. 1–6, 2014.

[23] G. Z. Kyzas and E. a Deliyanni, “Modified activated carbons from potato peels as green environmental-friendly adsorbents for the treatment of pharmaceutical effluents,” Chem. Eng. Res. Des., pp. 1–10, 2014.

[24] H. Marsh and F. Rodríguez-Reinoso, “Activated carbon,” Elsevier Science & Technology Books, 2006.

[25] T. I., M. Duarte, “Espectroscopia in situ no estudo cinético da adsorção de produtos farmacêuticos poluentes em carvões activados,” Tese de mestrado em Engenharia Química e Bioquímica, FCT-UNL, 2014.

[26] A. Rodríguez-Reinoso, F., Sepúlveda-Escribano, “Porous carbons in adsorption and catalysis,” in Handbook of surfaces and interfaces of material, vol. 5, San Diego: Academic Press, 2001, p. 309.

[27] W. A. Mannheimer, "Microscopia dos Materiais: Uma Introdução"., E-papers serviços editoriais, Brasil, 2002.

[28] K. S. W. Sing, D. H. Everett, R. a. W. Haul, L. Moscou, R. a. Pierotti, J. Rouquérol, and T. Siemieniewska, “International Union of pure commission on colloid and surface chemistry including catalysis - Reporting physisorption data for gas/solid systems with Special Reference to the Determination of Surface Area and Porosity,” Pure Appl. Chem., vol. 57, no. 4, pp. 603–619, 1985.

[29] P. B. Balbuenat and K. E. Gubbins, “Theoretical Interpretation of Adsorption Behavior of Simple Fluids in Slit Pores,” Langmuir, vol. 9, no. 4, pp. 1801–1814, 1993.

47

[30] J. L. Figueiredo and F. R. Ribeiro, Catálise Heterogénea, 2a ed. , Fundação Calouste

Gulbenkian, 2007.

[31] V. A. Crawford and F. C. Tompkins, “The adsorption of gases on glass, mica and platinum,” Trans. Faraday Soc., vol. 46, no. 1914, p. 504, 1950.

[32] K. Y. Foo and B. H. Hameed, “Insights into the modeling of adsorption isotherm systems,” Chem. Eng. J., vol. 156, pp. 2–10, 2010.

[33] D. Mohan, K. P. Singh, S. Sinha, and D. Gosh, “Removal of pyridine derivatives from aqueous solution by activated carbons developed from agricultural waste materials,” Carbon N. Y., vol. 43, pp. 1680–1693, 2005.

[34] W. Clayton, “Capillary and colloid chemistry. By Prof. H. Freundlich. Translated by H. Stafford Hatfield,” J. J. Soc. Chem. Ind., no. 45(44), pp. 797–798, 1926.

[35] H. Yao, J. Lu, J. Wu, Z. Lu, P. C. Wilson, and Y. Shen, “Adsorption of fluoroquinolone antibiotics by wastewater sludge biochar: Role of the sludge source,” Water. Air. Soil Pollut., vol. 224, 2013.

[36] A. Mittal, V. Gajbe, and J. Mittal, “Removal and recovery of hazardous triphenylmethane dye, Methyl Violet through adsorption over granulated waste materials,” J. Hazard. Mater., vol. 150, pp. 364–375, 2008.

[37] H. Qiu, L. Lv, B. Pan, Q. Zhang, W. Zhang, and Q. Zhang, “Critical review in adsorption kinetic models,” J. Zhejiang Univ. Sci. A, vol. 10, no. 5, pp. 716–724, 2009.

[38] European Committee for standardization, EN 15290:2011 - Solid biofuels - Determination of major elements - Al, Ca, Fe, Mg, P, K, Si, Na and Ti. Brussels, Belgium, 2011.

[39] European Committee for standardization, “FprEN 15148:2009 - Solid biofuels - Determination of the content of volatile matter, 2009, Brussels, Belgium,” Brussels, Belgium, 2009.

[40] S. A. C. Carabineiro, T. Thavorn-Amornsri, M. F. R. Pereira, P. Serp, and J. L. Figueiredo, “Comparison between activated carbon, carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofloxacin,” Catal. Today, vol. 186, no. 1, pp. 29–34, 2012. [41] S. Liang, Y. Han, L. Wei, and A. G. McDonald, “Production and characterization of bio-oil and

bio-char from pyrolysis of potato peel wastes,” Biomass Convers. Biorefinery, 2014.

[42] Silva, M. “Remoção de compostos farmacêuticos de águas residuais por carvões activados” ,Tese de Mestrado em Engenharia Química e Bioquímica, FCT-UNL, 2013.

[43] A. S. Mestre, J. Pires, J. M. F. Nogueira, and A. P. Carvalho, “Activated carbons for the adsorption of ibuprofen,” Carbon, vol. 45, pp. 1979–1988, 2007.

[44] I. Cabrita, B. Ruiz, A. S. Mestre, I. M. Fonseca, A. P. Carvalho, and C. O. Ania, “Removal of an analgesic using activated carbons prepared from urban and industrial residues,” Chem. Eng. J., vol. 163, no. 3, pp. 249–255, 2010.

[45] C. Saucier, M. A. Adebayo, E. C. Lima, R. Catalu, P. S. Thue, L. D. T. Prola, F. M. Machado, F. A. Pavan, and G. L. Dotto, “Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents,” J. Hazard. Mater., vol. 289, pp. 18–27, 2015.

[46] P. Taylor, E. Hoseinzadeh, M. Samarghandi, G. Mckay, and N. Rahimi, “Removal of acid dyes from aqueous solution using potato peel waste biomass : a kinetic and equilibrium study,” Desalin. Water Treat., vol. 52, pp. 4999–5006, 2014.

[47] I. Vergili, “Application of nanofiltration for the removal of carbamazepine, diclofenac and ibuprofen from drinking water sources,” J. Environ. Manage., vol. 127, pp. 177–187, 2013. [48] Mestre, A. S., J. Pires, J. M. F. Nogueira e A. P. Carvalho, "Activated carbons for the adsorption

of ibuprofen." Carbon, vol. 45(10), pp. 1979-1988, 2007.

[49] Mestre, A. S., J. Pires, J. M. F. Nogueira, J. B. Parra, A. P. Carvalho e C. O. Ania, "Waste- derived activated carbons for removal of ibuprofen from solution: Role of surface chemistry and pore structure." Bioresour. Technol, vol. 100(5), pp. 1720-1726, 2009.

[50] I. Cabrita, B. Ruiz, A. S. Mestre, I. M. Fonseca, A. P. Carvalho e C. O. Ania, "Removal of an analgesic using activated carbons prepared from urban and industrial residues." Chem. Eng, J., vol. 163(3), pp. 249-255, 2010.

[51] A. S. Mestre, M. L. Pinto, J. Pires, J. M. F. Nogueira e A. P. Carvalho, "Effect of solution pH on the removal of clofibric acid by cork-based activated carbons." Carbon, vol. 48(4), pp. 972-980, 2010.

[52] A. S. Mestre, A. S. Bexiga, M. Proenca, M. Andrade, M. L. Pinto, I. Matos, I. M. Fonseca e A. P. Carvalho, "Activated carbons from sisal waste by chemical activation with K2CO3 Kinetics of paracetamol and ibuprofen removal from aqueous solution." Biores.Technol., vol. 102(17), pp. 8253-8260, 2011.

[53] T. S. Of, H. Dye, N. Red, B. By, and C. Substrate, “Equilibrium, kinetic, and thermodynamic studies of hazardous dye neutral red biosorption by spent corncob substrate,” Bioresour., vol. 6, pp. 936–949, 2011.

49

Documentos relacionados