• Nenhum resultado encontrado

Neste trabalho foi feito um estudo preliminar sobre os processos de conformação plástica de chapas metálicas, e sua simulação numérica. Para um conhecimento mais aprofundado das áreas apresentadas e face à complexidade dos assuntos tratados seria interessante dar con- tinuidade a este trabalho. Para tal, são propostas diversas perspectivas de trabalhos futuros: ˆ analisar comparativamente o desempenho das formulações dos elementos nitos do tipo casca no ABAQUS (S4, S4R, S4R5) e do tipo sólido-casca (SC8R), nos benchmarks testados;

ˆ utilizar de modelos constitutivos anisotrópicos mais complexos através da implementação e utilização de subrotinas em Fortran no ABAQUS (users subroutines - UMAT); ˆ estudar e utilizar modelos de encruamento cinemático na simulação dos processos de

conformação plástica em múltiplas etapas e na simulação do retorno elástico (sujeitos a condições cíclicas de carregamento e descarregamento);

ˆ realizar de simulações numéricas de aplicações industriais em mais detalhe, com especial atenção à utilização e domínio dos algoritmos de contacto disponíveis no ABAQUS.

Bibliograa

[1] LPMTM, Selection and identication of elastoplastic models for the materials used in the benchmarks. IMS 1999 000051, University Paris 13: Digital Die Design Systems (3DS), 2001. 18-Months Progress Report.

[2] J. L. Alves, Simulação numérica do processo de estampagem de chapas metálicas, Tese de Doutoramento, Universidade do Minho, Guimarães, Portugal, 2003.

[3] R. J. Alves de Sousa, Modelação de problemas incompressíveis pelo método de defor- mações acrescentadas em domínio tridimensional, Tese de Mestrado, Faculdade de En- genharia do Porto, Porto, Portugal, 2002.

[4] A. D. dos Santos, J. F. Duarte, and A. B. da Rocha, Tecnologia da Embutidura - Princí- pios e Aplicações, vol. 3. INEGI, 1 ed., Maio, 2005.

[5] H. A. Flegel, The challenge of car manufacturing in the 21st century, International Conference - New developments in forging technology, pp. 135150, Alemanha, 2001. [6] F. Barlat, Constitutive modeling for sheet metal forming, Numisheet 2005: Proceedings

of the 6th Internatioal Conference on Numerical Simulation of 3D Sheet Metal Forming Processes, pp. 353358, AIP Conference Proceedings (778), 2005.

[7] J. Cao and M. C. Boyce, Optimization of sheet metal forming processes by instability analysis and control, NUMIFORM '95 - Simulation of materials processing: Methods and Apllications, New York, USA, 1995.

[8] K. Roll, Simulation of sheet metal forming - necessary developments in the future, Numisheet 2008: Proceedings of the 7thInternatioal Conference on Numerical Simulation of 3D Sheet Metal Forming Processes, pp. 312, Interlaken, Suiça, 2008.

[9] M. Tisza, Numerical modelling and simulation in sheet metal forming, Journal of Ma- terials Processing Technology, vol. 151, pp. 5862, 2004.

[10] M. L. Wenner, Overview - simulation of sheet metal forming, Numisheet 2005: Pro- ceedings of the 6th Internatioal Conference on Numerical Simulation of 3D Sheet Metal Forming Processes, pp. 37, AIP Conference Proceedings, 2005.

82 BIBLIOGRAFIA

[11] E. Bresciani, C. A. C. Zavaglia, S. T. Button, E. Gomes, and F. A. C. Nery, Conformação Plástica dos Metais. UNICAMP, 5 ed., 1997.

[12] K. Kazama and N. Mori, Report on experimental conditions for benchmarks, IMS/3DS - Digital Die Design System Project Report, 2001.

[13] K. Lange, Handbook of Metal Forming. McGraw-Hill Company, EUA, 1985.

[14] G. L. Kinzel, A new model for springback prediction in which the bauschinger eect is considered, International Journal of Mechanical Sciences, vol. 43, pp. 18131832, 2001. [15] A. Taherizadeh, A. Ghaei, D. E. Green, and W. J. Altenhof, Finite element simulation of springback for a channel draw process with drawbead using dierent hardening models, International Journal of Mechanical Sciences, vol. 51, pp. 314325, 2009.

[16] R. H. Wagoner and M. Li, Simulation of springback: Through-thickness integration, International Journal of Plasticity, vol. 23, pp. 345360, 2007.

[17] B. S. Levy, Empirically derived equations for predicting springback in bending, Journal of Applied Metalworking, vol. 3, pp. 135141, 1984.

[18] W. Gan and R. H. Wagoner, Die design method for sheet springback, International Journal of Mechanical Sciences, vol. 46, pp. 10971113, 2004.

[19] F. Gardiner, The springback of metals, Transactions of the ASME, vol. 79, pp. 19, 1957.

[20] C. Queener and R. J. De Angelis, Elastic springback and residual stresses in sheet metal formed by bending, Transactions of the ASM, vol. 61, pp. 757768, 1968.

[21] W. Johnson and T. Yu, On springback after the pure bending of beams and plates of elastic work-hardening materials - iii, International Journal of Mechanical Sciences, vol. 23, no. 10, pp. 687695, 1981.

[22] D. Adams, A. Kasper, and G. Kurajian, Springback analysis of bixially stretched panels, SAE Report, no. 730528, 1973.

[23] F. Pourboghrat and E. Chu, Springback in plane strain stretch/draw sheet forming, International Journal of Mechanical Sciences, vol. 36, no. 3, pp. 327341, 1995.

[24] T. Kuwabara, S. Takahashi, K. Akiyama, and K. Ito, Springback analysis of sheet metal subjected to bending-unbending under tension (parts i and ii), Advanced Technology of Plasticity, pp. 743750, 1996.

BIBLIOGRAFIA 83

[25] F. Pourboghrat, K. Chung, and O. Richmond, A hybrid membrane/shell method for rapid estimation of springback in anisotropic sheet metals, ASME Journal of Applied Mechanics, vol. 65, no. 3, pp. 671684, 1998.

[26] J. M. F. Duarte, Conformação plástica de chapas metálicas: Simulação numérica e car- acterização mecânica, Tese de Doutoramento, Universidade do Porto - Faculdade de Engenharia, Porto, Portugal, 1997.

[27] A. E. Tekkaya, State-of-the-art of simulation of sheet metal forming, Journal of Mate- rials Processing Technology, vol. 103, pp. 1422, 2000.

[28] A. S. Wi, An incremental complete solution of the stretch-forming and deep-drawing of a circular blank using a hemispherical punch, International Journal of Mechanical Sciences, vol. 18, pp. 2331, 1976.

[29] N.-M. Wang and B. Budiansky, Analysis of sheet metal stamping by a nite-element method, Journal of Applied Mechanics, vol. 45, pp. 7382, 1978.

[30] M. Gotoh and F. Ishise, A nite element analysis of rigid-plastic deformation of the ange in a deep-drawing process based on a fourth-degree yield function, International Journal of Mechanical Sciences, vol. 20, pp. 423435, 1978.

[31] S. C. Tang, E. Chu, and S. K. Samanta, Finite element prediction of the deformed shape of an automotive body panel during preformed stage, Proceedings of the 1st International Conference on Numerical Methods in Industrial Forming Processes (NUMIFORM '82), pp. 629640, 1982.

[32] C. H. Toh and S. Kobayashi, Finite element process modelling of sheet metal forming of general shapes. Grundlagen der Umformtechnik I, pp. 39-56, Berlin, 1983.

[33] T. Belytschko and R. Mullen, Explicit integration of structural problems, in Finite Elements in Nonlinear Mechanics (P. B. et al., ed.), pp. 672720, Trondheim, Norway, 1977.

[34] F. Teixeira-Dias, J. P. da Cruz, R. A. F. Valente, and R. J. A. de Sousa, Método dos Elementos Finitos - Técnicas de Simulação Numérica em Engenharia. LIDEL, 1 ed., Portugal, 2010.

[35] J. W. Yoon and T. B. Stoughton, Exploring new horizons of metal forming research, International Journal of Plasticity, vol. 25, pp. 16091610, 2009.

[36] F. Barlat, Material modeling for sheet metal forming simulations, Numisheet 2008: Proceedings of the 7thInternatioal Conference on Numerical Simulation of 3D Sheet Metal Forming Processes, pp. 2736, 2008.

84 BIBLIOGRAFIA

[37] M. D. Merz, Strength dierential eect in α-pu, Metallurgical and Materials Transac- tions B, vol. 4, no. 4, pp. 11861188, 1973.

[38] S. R. Kalidindi, Modeling anisotropic strain hardening and deformation textures in low stacking fault energy fcc metals, International Journal of Plasticity, vol. 17, pp. 837860, 2001.

[39] G. I. Taylor, Plastic strains in metals, Journal Institute Metals, no. 62, pp. 307324, 1938.

[40] J. F. W. Bishop and R. Hill, A theory of the plastic distortion of a polycrystalline aggregate under combined stress, Philosophical Magazine, vol. 176, pp. 127146, 1999. [41] S. S. Hecker, Experimental studies of yield phenomena in biaxially loaded metals, in

Constitutive equations in viscoplasticity: computational and engineering aspects (J. A. Strick and K. J. Saczalski, eds.), pp. 133, ASME, New York, EUA, 1976.

[42] A. M. Habraken, Modelling the plastic anisotropy of metals by nite element method, Tese de Doutoramento, Département MSM, Université de Liege, Bélgica, 2000.

[43] A. M. Habraken, Modelling the plastic anisotropy of metals, Archives of Computational Methods in Engineering, vol. 11, no. 1, pp. 319, 2004.

[44] D. Drucker, A more fundamental approach to plastic stress-strain relations, Proceedings of the First US National Congress in Applied Mechanics, pp. 487491, ASME, 1951. [45] D. S. Comsa and D. Banabic, Plane-stress yield criterion for highly-anisotropic sheet

metals, Numisheet 2008: Proceedings of the 7th International Conference on Numerical Simulation of 3D Sheet Metal Forming Processes, pp. 4348, Interlaken, Suiça, 2008. [46] A. P. Karalis and M. C. Boyce, A general anisotropic yield criterion using bounds and a

transformation weighting tensor, Journal of the Mechanics and Physics of Solids, vol. 41, pp. 18591886, 1993.

[47] H. Vegter, Y. An, H. H. Pijlman, B. D. Carleer, and J. Huetink, Advanced material models in simulation of sheet forming processes and prediction of forming limits, 1st ESAFORM Conference on Material Forming, pp. 499514, Sophia Antipolis, França, 1998.

[48] F. Barlat, H. Aretz, J. W. Yoon, M. E. Karabin, J. C. Brem, and R. E. Dick, Lin- ear transformation-based anisotropic yield functions, International Journal of Plasticity, vol. 21, no. 5, pp. 10091039, 2005.

BIBLIOGRAFIA 85

[49] R. Hill, A theory of the yielding and plastic ow of anisotropic materials, in Proceedings: Mathematical, Physical and Engineering Science, pp. 281297, Royal Society London, 1948.

[50] R. Hill, Theoretical plasticity of textured aggregates, Mathematical Proceedings of the Cambridge Philosophical Society, vol. 75, pp. 179191, 1979.

[51] J. Bressan, Relationship between the material parameters of normal anisotropy, r-value, in sheet metal forming, Proceedings of the 6th European Mechanics of Materials Confer- ence, pp. 1724, 2002.

[52] R. Hill, A user friendly theory of orthotropic plasticity in sheet metals, International Journal of Mechanical Science, vol. 15, pp. 1925, 1990.

[53] R. Hill, Constitutive modelling of orthotropic plasticity in sheet metals, Journal of Mechanics and Physics of Solids, vol. 38, pp. 405417, 1993.

[54] D. Banabic, Sheet metal formability predicted by using the new hill's yield criterion, in Advanced Methods in Materials Processing Defects (P. Predeleanu, M. e Gilormini, ed.), pp. 257264, 1997.

[55] F. Barlat, D. Lege, and J. Brem, A six-component yield function for anisotropic mate- rials, International Journal of Plasticity, vol. 7, pp. 693712, 1991.

[56] F. Barlat and J. Lian, Plastic behavior and stretchability of sheet metals. part i: A yield function for orthotropic sheets under plane stress conditions, International Journal of Plasticity, vol. 5, pp. 5166, 1989.

[57] F. Barlat, R. C. Becker, Y. Hayashida, Y. Maeda, M. Yanagawa, K. Chung, J. C. Brem, D. J. Lege, K. Matsui, S. J. Murtha, and S. Hattori, Yielding description for solution strengthened aluminium alloys, International Journal of Plasticity, vol. 13, pp. 385401, 1997a.

[58] F. Barlat, Y. Maeda, K. Chung, M. Yanagawa, J. C. Brem, Y. Hayashida, D. J. Lege, K. Matsui, S. J. Murtha, S. Hattori, R. C. Becker, and S. Makosey, Yielding function development for aluminium alloys sheets, Journal of the Mechanics and Physics of Solids, vol. 45, pp. 17271763, 1997b.

[59] F. Barlat, J.-W. Yoon, R. E. Dick, K. Chung, and T. J. Kang, Plane stress yield function for aluminium alloy sheets, part ii: Formulation and its implementation, International Journal of Plasticity, vol. 20, pp. 495522, 2004.

[60] H. Ziegler, A modication of prager's hardening rule, Quarterly Applied Mathematics, vol. 17, pp. 5565, 1959.

86 BIBLIOGRAFIA

[61] J. Lemaître and J. L. Chaboche, Mechanics of solids materials, Cambridge University Press, Cambridge, Reino Unido, 1985.

[62] W. Johnson and P. B. Mellor Plasticity for Mechanical Engineers, Van Nostrand Reinhold Company, Londres, Reino Unido, 1962.

[63] D. R. J. Owen and E. Hinton Finite Elements in Plasticity: Theory and Practice, Piner- idge Press, Swansea, Reino Unido, 1980.

[64] T. J. Thomas, S. Nair, and V. K. Garg, A numerical study of plasticity models and nite elements types, Computers and Structures, vol. 16, pp. 669675, 1983.

[65] G. Sachs, Institute of automobile engineers, pp. 588-589, London, 1935.

[66] R. Kergen, Computerised process control of blank-holder in deep-drawing, Sheet Metal Industrial, no. 8, pp. 1215, 1992.

[67] A. Makinouchi, Recent developments in sheet metal forming simulation, in Simulation of Materials Processing: Theory, Methods and Applications (K.-I. Mori, ed.), pp. 310, Swets & Zeitlinger, 2001.

[68] D. Blabe, M. Daniels, and B. Shirvani, Reduction of product development time using nite element techniques, in Proceeding of the 4th Internacional Conference on Sheet Metal (H. J. J. Kals, B. Shirvani, U. P. Singh, and M. Geiger, eds.), p. 171, SheetMetal'96, University of Twente, Holanda, 1996.

[69] R. Courant, Variational methods for the solution of problems of equilibrium and vibra- tion, Bulletin of the American Mathematical Society, vol. 49, pp. 123, 1943.

[70] R. W. Clough, The nite element method in plate stress analysis, Proceedings of the 2nd ASCE Conference on Electronic Computation, pp. 345378, Pittsburg, Estados Unidos da América, 1960.

[71] M. J. Turner, R. W. Clough, H. C. Martin, and L. J. Topp, Stiness and deection analysis of complex structures, Journal of the Aeronautical Sciences, vol. 23, pp. 805 823, 1956.

[72] O. C. Zienkiewicz and Y. K. Cheung, Finite elements in the solution of eld problems, The Engineer, vol. 220, pp. 507510, 1965.

[73] O. C. Zienkiewicz and Y. K. Cheung, The Finite Element Method in Structural and Continuum Mechanics. McGraw-Hill, Londres, Reino Unido, 1967.

[74] B. M. Irons, Numerical integration applied to nite element methods, Conference on the Use of Digital Computers in Structural Engineering, Universidade de Newcastle, New- castle, Reino Unido, 1966.

BIBLIOGRAFIA 87

[75] B. M. Irons, A frontal solution program for nite element analysis, International Journal for Numerical Methods in Engineering, vol. 2, pp. 532, 1970.

[76] O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method  The Basics, vol. 1. Butterworth-Heinemann, 5 ed., Oxford, Reino Unido, 2002.

[77] J. N. Reddy, An Introduction to the Finite Element Method. McGraw-Hill, 3 ed., Nova Iorque, Estados Unidos da América, 2005.

[78] K.-J. Bathe, Finite Element Procedures. Prentice-Hall, 1996.

[79] E. Hinton, R. Wood, N. Binacic, P. White, and T. Hellen, Introduction to Nonlinear Finite Element Analysis, NAFEMS Nonlinear Working Group. Swansea, Reino Unido, 1992.

[80] R. D. Cook, Finite Element Modeling for Stress Analysis. John Wiley & Sons, University of Wisconsin-Madison, EUA, 1995.

[81] P. Genevois, Étude expérimentale et modélisation du comportement plastique anisotrope de tôles d'acier en grandes transformations, Tese de Doutoramento, Institut National Polytechnique de Grenoble, França, 1992.

[82] T. B. Stoughton, A non-associated ow rule for sheet metal forming, International Journal of Plasticity, vol. 18, pp. 687714, 2002.

[83] R. M. Natal Jorge and L. M. J. S. Dinis , Teoria da Plasticidade (Apontamentos da Disciplina), Faculdade de Engenharia, Universidade do Porto, Portugal, 2004.

[84] Hibbitt, Harlsson, and Sorensen, ABAQUS/Standard - User's manual. Hibbit, Karlsson & Sorensen, Inc., EUA, 1998.

[85] W. F. Chen and D. J. Han, Plasticity for Structural Engineers. Springer-Verlag, 1987. [86] D. Y. Yang, J. W. Yoon, and D. J. Yoo, Finite element simulation of sheet metal forming

by using non-parametric tool description with automatically rened patches, in NUMI- FORM'95  Simulation of materials processing: Methods and Apllications (S.-F. Shen and P. Dawson, eds.), p. 799, Cornell University, New York, USA, 1995.

[87] A. Santos and A. Makinouchi, Contact strategies to deal with dierent tool descrip- tions in static explicit fem for 3-d sheet metal forming simulations, Journal of Materials Processing Techonology, vol. 50, pp. 277291, 1995.

[88] C. H. Chou, J. Pan, and S. C. Tang, An anisotropic stress resultant constitutive law for sheet metal forming, International Journal for Numerical Methods in Engineering, vol. 39, pp. 435449, 1996.

88 BIBLIOGRAFIA

[89] M. Kawka and A. Makinouchi, Shell-element formulation in the static explicit fem code for the simulation of sheet stamping, Journal of Materials Processing Technology, vol. 50, pp. 105115, 1995.

[90] M. Kawka, T. Kakita, and A. Makinouchi, Simulation of multi-step sheet metal forming processes by a static explicit fem code, Journal of Materials Processing Technology, vol. 80-81, pp. 5459, 1998.

[91] M. Kawka and A. Makinouchi, Finite element simulation of sheet metal forming pro- cesses by simultaneous use of menbrane, shell and solid elements, in NUMIFORM'92 - Numerical Methods in Industrial Process (Balkema, Chenot, Wood, and Zienkiewiczn, eds.), 1992.

[92] P. Wriggers, Finite element algorithms for contact problems, Computational Methods in Engineering, vol. 4, pp. 149, 1995.

[93] M. C. Oliveira, J. L. Alves, and L. F. Menezes, Numerical analysis on the eects of the friction coecient on the deep drawing of a rail, XI Encontro da Sociedade Portuguesa de Materiais MATERIAIS'2003, p. 5, Costa da Caparica, Portugal, 2003.

[94] C. Magny, Lois de frottement évolutives destinées à la simulation numérique de l'emboutissage, La Revue de Métallurgie, pp. 145156, 2002.

[95] J. W. Yonn, F. Barlat, K. Chung, F. Pourboghrat, and D. Y. Yang, Earing predictions based on asymmetric nonquadratic yield function, International Journal of Plasticity, vol. 16, pp. 10751104, 2000.

[96] A. Col, First results of the research project, in Proceedings of the 22nd International Deep Drawing Research Group Congress and Working Group Meeting, Nagoya, Japão, 2002.